
ComicKit: Acquiring Story Scripts Using Common Sense
Feedback

Ryan Williams
MIT Media Lab

20 Ames St
Cambridge MA

breath@mit.edu

Barbara Barry
MIT Media Lab

20 Ames St
Cambridge MA

barbara@media.mit.edu

Push Singh
MIT Media Lab

20 Ames St
Cambridge MA

push@media.mit.edu

ABSTRACT
At the Media Lab we are developing a resource called Sto-
ryNet, a very-large database of story scripts that can be used
for commonsense reasoning by computers. This paper intro-
duces ComicKit, an interface for acquiring StoryNet scripts
from casual internet users. The core element of the interface
is its ability to dynamically make common-sense suggestions
that guide user story construction. We describe the encour-
aging results of a preliminary user study, and discuss future
directions for ComicKit.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge Acquisition; H.5.2 [User In-

terfaces]: Interaction Styles

General Terms
Human Factors

Keywords
Common sense, Story Representation, Knowledge Acquisi-
tion, Case-Based Reasoning.

1. INTRODUCTION
At the Media Lab we are developing a resource called

StoryNet, a very-large database of story-scripts that can be
used for case-based commonsense reasoning by computers
[7]. Our goal is to acquire a corpus of one million unique
story-scripts of the breadth, depth and quantity of knowl-
edge to understand real world situations.

This paper introduces ComicKit, a novel web-based inter-
face for acquiring story knowledge from thousands of users
over the internet. ComicKit uses the distributed knowl-
edge capture method that was shown to be effective in the
Open Mind Common Sense project (OMCS) [6]1. OMCS
succeeded at collecting about 700,000 simple commonsense
facts from 15,000 contributors around the world. ComicKit
takes the same approach – casual, non-expert internet users
contribute commonsense knowledge via simple and engaging
knowledge acquisition activities on a public website.

1http://openmind.media.mit.edu/

Copyright is held by the author/owner.
IUI’05, January 10–13, 2005, San Diego, California, USA.
ACM 1-58113-894-6/05/0001.

One challenge we face is that people are natural-born sto-
rytellers. How can we create a system that can guide the
user to contribute stories that cohere to a machine represen-
tation of stories, and guides the collection of commonsense
stories, rather than fantastical or unreal stories?

We wanted a design that allowed users to enter any de-
sired story content, yet hinted them to input them in a for-
mat compatible with a script-like representation. It should
be easy for the player to create the type of story that satis-
fies the script representation of StoryNet, and more difficult
to create story scripts that defy easy entry into StoryNet.
A comic-creation format satisfies our needs because it isn’t
free-form text entry, yet through a combination of graphical
elements can represent a broad range of stories.

The suggestion aspect of the ComicKit is its core func-
tionality, and serves three purposes: guiding the user into
creating a usable story script; reducing the amount of work
the user has to spend to create a story; and making the expe-
rience more fun through feedback from the inference engine.
The suggestion engine bases its suggestions on the content
of the story as the user creates it, and referencing a sizeable
body of existing common sense knowledge. For example,
the system knows that if a character were near a phone, a
phone call would be a sensible next action and presents that
suggestion to the user. In the future, we intend to study
how often people take the suggestions and how often they
create their own content.

The suggestion engine uses an existing commonsense rea-
soning system, ConceptNet, whose knowledge base consists
of a large semantic network mined from OMCS data, to
generate educated guesses about what the user could add to
their story [5]. Educated guesses are cited as principle in hu-
man teaching and learning that can be used as an effective
knowledge acquisition method [3], and in addition, gives the
system the quality of a playful storytelling partner.[4]

2. COMICKIT SYSTEM
Over the summer, we wrote a proof-of-concept mockup of

the ComicKit in Java. An example of the interface is shown
in Figure 2. In the example, the entire comic is shown to
illustrate one of the comics created during our user test. On
screen the panels below the blue region would be cropped,
and the user would scroll the workspace to view them.

The left half of the interface is the workspace, where pan-
els are composed into a story. The right half contains sev-
eral palettes, each of which contains a different type of scene
component. From the top left down these elements are peo-
ple, actions, things, captions, panels, and thoughts/speech.



In the example (Figure 2), the second visible frame contains
a person “Sara”, and a “walk” action. Note that each palette
contains a blank component in addition to several suggested
components. When playing, a player will drag a panel to the
workspace, then drag the other elements (things, people, ac-
tions, thoughts) onto the panel. By hovering the mouse over
a component, the player is given the ability to edit the text
in that component.

Figure 1: ComicKit interface

The ComicKit is a Java applet that acts as a client to a
centralized XML-RPC server. The server, written in Python,
is connected to ConceptNet. Every time the player makes
a change to some element of a panel, the client sends its
state to the server, and receives in return a list of sugges-
tions for the palettes. The next version of ComicKit will
enable users to save and retrieve their comics, to and from
the server. The future version of the ComicKit interface will
be written in Flash, but the server as a back-end will not
require changes to support the new front-end.

In order to make suggestions in the palettes, the back-
end parses the contents of the panels on the workspace, and
makes three types of queries to ConceptNet, the results of
which are used to populate the palettes. The first type of
query retrieves objects that are similar to the objects in the
workspace. The second type of query returns the actions
that are likely to be performed by or on the objects in the
workspace. The third type of query generates sentences for
the caption by combinatorially guessing the subject-object
relationships and letting the user select the best caption.

When the suggestions fail to suit the player, it is a very

simple matter for the player to relabel any element or type
a new caption. Every text field is editable, and empty-label
elements are always available for relabeling. The only ele-
ments that are never suggested are thoughts/speech.

Figure 2: Dataflow in the ComicKit system

The existing interface should be thought of as a platform
for story script acquisition games, rather than an end in
itself. The platform allows the user to create stories by
dragging icons into panels and occasionally typing new la-
bels. Around this platform could be built a variety of future
activities that aim to increase player engagement. For ex-
ample, we could distribute a small Flash application that
displays a stored comic, which players could download and
use on their own websites to display comics they have cre-
ated.

3. RESULTS
In evaluating the game, we wanted to see whether the

comic interface was more effective than a plain text interface,
and if the intelligent suggestions were helpful. We ran an ex-
periment that pitted three story-entry applications against
each other.

1. SN-Text The first was a Flash-based story generator
that had users dragging sentences into order. The sen-
tences originated in a related common sense resource
called LifeNet [8], and were not modifiable. In order
to tell their story, users had to repeatedly search the
LifeNet database for the existing sentence that most
closely matched their intent.

2. ComicKit-1 The second tested application was the
Comic Kit’s interface as describe, but with no sugges-
tions of elements from the server side.

3. ComicKit-2 The last tested application was the fully
intelligent ComicKit with suggestions for elements and
captions.

For each application, subjects were asked to create three
stories, then rate the application on three scales: entertain-
ment value, helpfulness, and intelligence. We collected data
from five grad students/professors at the MIT Media Lab
for the preliminary study, and their average subjective re-
sponses are charted in Figure 3. We believe that for this
test at least one user was not able to connect to the server
and thus her experience for parts 2 and 3 were identical.

The evaluators found the ComicKit interface to be more
rewarding than ordering sentences into a list to tell a story.
They also found that the ComicKit with suggestions was
more intelligent, and more helpful.

It was fairly clear even during the experiment that the
evaluators were using the three applications in different ways.



Figure 3: User Evaluation Subjective Results

They spent about ten minutes total creating stories on the
text interface, and about two hours on the two versions of
ComicKit, much more than we expected or asked. Some of
them needed to be reminded of the time before they stopped.
It is possible that the comic interface is very inefficient, and
thus it took the users much longer to create an equivalent
story. The other possibility is that the users found the comic
interface more engrossing, and created longer and more in-
volved stories with it.

It is hard to compare the experience of creating a story
with the ComicKit with the text story creation utility. Users
commented that the comic medium was richer, allowing
them to tell the story both graphically in the panels, and in
the text captions. They felt limited by the suggestions pro-
vided, and responded to this limitation in two ways. Some
let the suggestion engine inspire them when their own ideas
were running low, and sometimes they made choices they
wouldn’t have made on their own. Others felt challenged
by the limitations, and went out of their way to overcome
them. Because each label was completely editable, the only
real limitation was in the amount of typing the user was
willing to do in order to tell their story.

Most people used the thought and speech bubbles much
more than we had anticipated – most people had at least
one thought bubble in every panel. They were the primary
means for people to get around the simplistic subject-object-
verb model created by the objects in the interface. Thought
bubbles provide an important insight into the mental state of
story script characters, but unfortunately they can take on
difficult-to-understand forms due to their freeform nature.

We tracked the number of scene elements that each per-
son composed into their comic strip, as well as the num-
ber of steps they took to generate each strip. The av-
erage values of these are presented below for comparison.

ComicKit-1 ComicKit-2

Elements Used 13 17
Modifications 50 76
These values show that the users created comics with more

elements when the interface included suggestions, and they
spent more time trying out combinations. The interface
afforded “playing”, since virtually everything in it was in-
teractive.

4. RELATED WORK
ComicKit is superficially similar to other story construc-

tion systems, but departs significantly in its purpose. The
ComicKit can be thought of as a graphical knowledge repre-
sentation and generation tool, whereas other projects have

focused on the learning of the user [9], fostering communi-
cation skills [2], and story authoring[1].

Comic Kit as a story creation tool is similar to StoryWriter
because users construct a story graphically using a palette of
story elements and captions. ComicKit is distinguished by
its use of story suggestions and abstract appearance of story
elements. ComicKit does not have representational objects
like StoryWriter[9] does – a ComicKit pear does not bear any
visual resemblance to a real pear, whereas in StoryWriter
pears are identified and used based on their appearance. By
deliberately dissociating the appearance of the object from
its meaning, we allow the scope of the stories to be limited
only by the user’s imagination. ComicKit makes suggestions
to the user in the manner of an intelligent story agent[1].

5. IMPLICATIONS
We believe that this study showed that ComicKit is likely

to achieve our goals as a knowledge acquisition interface for
StoryNet. As we acquire story script knowledge, we gain
the ability to feed this knowledge back into the ComicKit
through suggestions. This feedback loop will improve the
sophistication of the system, and encourage users to play
with it more. While we have yet to test the collected knowl-
edge in an actual case-based commonsense reasoning sys-
tem, ComicKit gets us closer to our goal of acquiring the
very-large corpus of story-scripts that such a system would
need to reason robustly about a wide range of commonsense
scenarios.

6. ACKNOWLEDGMENTS
This research is being supported by the sponsors of the

MIT Media Lab, in particular Warner Brothers Interactive
Entertainment. Thanks to Glorianna Davenport and Mar-
vin Minsky for their guidance.

7. REFERENCES
[1] K. M. Brooks. Do story agents use rocking chairs? the theory

and implementation of one model for computational narrative.
In Proceedings of the fourth ACM international conference on
Multimedia, pages 317–328. ACM Press, 1996.

[2] A. Druin, J. Stewart, D. Proft, B. Bederson, and J. Hollan.
Kidpad: a design collaboration between children, technologists,
and educators. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 463–470. ACM
Press, 1997.

[3] Y. Gil and H. Kim. Interactive knowledge acquisition tools: A
tutoring perspective. In Proceedings of the 24th Annual
Meeting of the Cognitive Science Society (CogSci), Fairfax,
VA, August 8-10, 2002.

[4] H. Lieberman, H. Liu, P. Singh, and B. Barry. Beating some
common sense into interactive applications. AI Magazine, To
Appear Fall 2004. AAAI Press, 2004.

[5] H. Liu and P. Singh. Conceptnet: a practical commonsense
reasoning toolkit. BT Technology Journal, 22(4):201–210, 2004.

[6] P. Singh. The public acquisition of commonsense knowledge. In
AAAI Spring Symposium: Acquiring (and Using) Linguistic
(and World) Knowledge for Information Access, Palo Alto,
CA, 2002. AAAI, AAAI.

[7] P. Singh, B. Barry, and H. Liu. Teaching machines about
everyday life. BT Technology Journal, 22(4):227–240, 2004.

[8] P. Singh and W. Williams. Lifenet: a propositional model of
ordinary human activity. In Proceedings of the Workshop on
Distributed and Collaborative Knowledge Capture
(DC-KCAP), 2003.

[9] K. E. Steiner and T. G. Moher. Graphic storywriter: an
interactive environment for emergent storytelling. In Proceedings
of the SIGCHI conference on Human factors in computing
systems, pages 357–364. ACM Press, 1992.


