The Athena Muse
system combines
four representation
schemes to simplify
the construction of
multimedia
educational software
that lets teachers
and students
explore subjects
from many views.

January 1989

SYSTEMS

Construction Set for
Multimedia
Applications

Matthew E. Hodges, Russell M. Sasnett, and Mark S. Ackerman \

Project Athena

ontent vanishes without form. We

can have wordswithoutaworld but

no world without words or other
symbols,” wrote Nelson Goodman in his
book Ways of World Making' In some re-
spects, as Goodman points out, world mak-
ing is a symbolic affair. Especially in the
case of computer-based realities, worlds
exist only as descriptions. World makers
are confined to the expressive limits of
their symbol systems, and so the range of
possible worlds is limited by the available
means for defining them.

With $100 million in funding primarily
from Digital Equipment Corp. and IBM,
the Massachusetts Institute of Technology
established Project Athena as an eight-
year rescarch program to explore innova-
tive uses of computing in the MIT cur-
riculum. One focus is to create an
experimental construction set for build-
ing multimedia learning environments.
The system, called Athena Muse, was de-
signed to support MIT faculty in develop-

0704-7459/89/0001/0037/301.00 © 1989 [EEE

i software, supports MIT faculty members |

ing worlds — fictional places for students ‘ i
to experience remote or intangible phe- ‘
nomena, to traverse conventional struc- |
tures of knowledge, and to practice the |
skills of research.

The goal of Muse is to reduce the time
and skill needed to construct such learn-
ing environments. The basic approach is
to diversify the tools of symbolic repre- ‘
sentation available to the computer-based
world maker. Rather than restrict the
world’sauthor to justone method, as most i
authoring systems do, our aim is to offer
several complementary approaches to
better match the patterns of human ex-
pression and representation.

To create the hardware platform for
Muse, the project’s Visual Computing
Group modified a standard Athena work-
station to support 256-color graphics as
well as fullmotion digitized video. The
group, which focuses on the uses of still-
and full-motion imagery in educational i

37 “

Target applications

The following projects provided the principal design targets for the Muse Application Con-
struction Set.

- Athena Language Learning Project. This project had two applications, Direction Paris
(Getting Around Paris) in French and No Recuerdo (I Don'tRemember) in Spanish. Direction
Paris has two parts. “Ala Rencontre de Philippe” (“AMeeting with Philippe”) is a story about
ayoung writer who must solve his romantic problems or find a new apartment in Paris. Dans
le Quartier St. Gervais (In the St. Gervais Neighborhood) is a video documentary of the real
neighborhood where this fictional story takes place. No Recuerdo was filmed in Bogota,
Colombia, and features a maze-like series of plots and simulations: Students help Gonzalo,
a Colombian scientist, recover his memory and the secret substance he created before the
onset of an amnesia plague.

+ Neuroanatomy Learning Environment. Aflexible learning environment for the exploration
of the anatomy of the human brain, the project was designed for medical and neuroscience
students. The major components of the project include an illustrated glossary, a 3D rotation
of the brain, a slide collection, and documentary footage of a brain dissection.

. Boston Architecture Collection. Using MIT's Boston Architecture Collection, this video-
disc and database provide resources for the study of city planning, architecture, and histori-
cal development for Boston from 1620 to today.

«New Orleans: A Cityin Transition. With more than five hours of documentary film, this proj-
ect records the changes in New Orleans architecture caused by the 1984 World's Fair there.
The materials are used for the study of urban planning, social policy, and documentary-film
technique.

« Navigation Learning Environment. This Digital Equipment Corp. videodisc project was
developed to explore techniques and tool requirements for producing highly interactive com-

puter-based learning materials.

in the development of both audiovisual
content and software for multimedia ap-
plications.

The Visual Workstation uses cither an
IBM RT PC or DEC MicroVAX T worksta-
ion as a base with a Parallax Graphics
hoard added as the display subsysiem. The
Parallax board digitizes a standard NTSC
video signal in real time. The video images
are presented on the display through the
X Window System, where they can be man-
aged as any other X Windows application.
Normally, the video images are drawn
from an optical videodisc player, but they
can also be received from the campus
cable television network.

We developed Muse underastronglyvap-
plication-driven approach. In general,
people design tools to solve production
problems. The eventual utility and scope
of such tools depend on the clarity and
magnitude of the problems that shape
their design. For the Muse prototype. we
were favored with a broad set of problems.
Our initial set of target applications in-
cluded two foreign-language simulations,

a neuroanatomy database, a collection of

images of Boston's architecture, docu-
mentary-film footage on the architectural
planning for the New Orlean’s World Fair,
and a simulation of coastal navigation and
piloting in Maine.

All these projects were designed by pro-

38

fessional educators across a spectrum of
disciplines (the box above briefly de-
scribes these projects). They represent all
the major approaches to using computers
in cducation: simulation, tutorial, refer-
ence, and educational tools. Fach project
presented its own unique requirements,
and cach brings its own variations to sever-
al common themes.

From the developer’s standpoint, Muse
provides some of the basic capabilitics of a
user-interface management system for de-
fining uscr-interface components and
linking their behavior to application struc-
tures. The Muse architecture provides a
data model and a tool set for creating
structured multimediadocumentsandfor
linking these together in complex net-
works, Ttalso can perform limited forms of
dvnamic system modeling and discrete
simulation.

The work described in this article repre-
sents the initial efforts to build from the
target applications a coherent set of 1ools
capable of addressing the problems they
raisc. These capabilities rest on four dis-
tinct representational approaches:
directed graphs, multidimensional spatial
frameworks, declarative constraints, and a
procedural language. We integrate these
approaches so a developer can use all or
any of them, defining each part of an ap-
plication with the most suitable approach.

Directed graphs

In educational computing, the distinc-
tion between electronic documents and
application software is blurring. Elec-
tronic documents are no longer static con-
structions sharing the limitations of their
paper-based counterparts. With the ad-
vent of multimedia workstations, elec-
tronic documents are becoming richly
choreographed presentations, often with
complex user interaction. Interactive in-
formation processing and display have be-
come part of the expressive medium, and
adocument must now be viewed more asa
set of dynamic resources than as a simple
analog of the printed page.

A multimedia authoring environment
must provide resources to handle conven-
tional documents but also provide facili-
ties to create interactive programs. One
representation system that straddles both
areas is the directed graph, so we chose it
as a starting point for the Muse architec-
wre.

Example structures. In Muse, materials
are grouped into information packages,
which combine text, video, and graphics.
When a package is activated. the display
elements that make up its contents are
presented on the screen. These packages
can be linked together in directed-graph
structures, as shown in the following two
examples.

¢ Hypermedia. The directed graph plays
afundamental role in the hypermedia par-
adigm, where the aim is to manage exten-
sive cross-references among a set of docu-
ments. Normally, cach document
becomes a node in the graph, with cross-
references signified by the arcs or edges
connecting them. Research at Brown Uni-
versity's Iris project™ and other hyperme-
dia svstems* have shown the utility of this
approach in designing educational mate-
rials.

The Neuroanatomy Learning Environ-
ment project at Athenauses thisstructure.
It has 1,400 descriptive text documents
and an archive of still and motion images
of the brain. The documents are cross-ref-
erenced to one another and also to image
regions where anatomical structures ap-
pear. This network of nodes is built on a
concept structure that supports the link-

|IEEE Software

ing of high-level abstractions rather than
the simple linking of data objects.

To implement hypermedia applica-
tions, the Muse packages are linked in a
network. Cross-referencesare fired byacti-
vation signals sent from one package to
another. The display ofinformation is con-
trolled by the activation and deactivation
of packages, so a whole chain of packages
can be displayed as the crossreferences
are triggered.

® State-transition networks. In a differ-
ent branch of educational computing —
onerelated more to simulation than docu-
ment management — the directed graph
again emerges as a fundamental organiza-
tional structure. In the state-transition net-
work, nodes of the directed graph repre-
sent a system’s finite states and arcs
indicate branching paths from onesstate to
another.

The Language Learning Project uses
wwo forms of this model. The first is a
branching movie, which isa simulated in-
teraction with acast of fictional characters.
Each scene occupies a node in the net
work. The order of scenes is based on
input from the viewer, which is generally
gathered at the end of each scene. The
film’s entire structure can be represented
as a tree, where viewer choices determine
which path through the tree is followed
and, ultimately, which conclusion is
reached.

The second example is afixed-route sur-
rogate travel system. In a French-language
application, Direction Paris, students are
asked to visit and explore apartments in
Paris as part of the interactive story. The
apartments are represented as sequences
of photographs that step through the
various rooms. In this case, each sequence
of photographs becomes a node in the
network. The branch points are intersec-
tions in the apartment where the student
can choose to turn left or right, continue
straight ahead, or turn around. Here, the
graph does not follow a tree structure but
is a network of nodes (see Figure 1).

Limitations. While using the directed-
graph model extensively, the foreign-lan-
guage projects also indicate some limita-
tions that this approach has as a
representational scheme. These projects’
design calls for dynamic subtitling for the

January 1989

r Bookcase l

Desk

Key
QO aMuse package

Table

Bed

O aphotographic viewpoint
—p atransition to another package

Cabinets

(a)

R
e \

» pr b o veie

(b)

Figure 1. (a) This floor plan of an apartment in the Direction Paris application shows how
Muse packages arranged in a directed graph can constructan interactive surrogate travel
environment. Each package contains a series of photographs that show the passage
from one point to another. The current position of the dimension determines which pho-
tograph is displayed at any time. (b) A Direction Paris photograph.

full-motion video. Subtitle texts are dis-
plaved on the screen phrase for phrase
with the native speakers. Also, intermittent
cultural flags appear when the speaker
uses an idiomatic expression or references
something of cultural interest.

Students control the video: They can
stop at any point and back up an arbitrary
amount o repeat the presentation. The
problem, of course, is that with the sub-
titles and cultural flags, this means the text
must be rewound to stay matched with the
video.

We could have achieved this with a
directed-graph model. but it would have
been an awkward implementation. In-

stead, we used asecond —and verv differ-
ent — system of representation, one that
uses aspatial framework 1o organize infor-
mation.

Multidimensional
information

Information like that of the foreign-lan-
guage subtitles is a matter of timing. In
such cases, we use a conventional time line
with onset and offset times for cach infor-
mation unit. The time line implies a struc-
ture fundamentally different from the
spaceless web of nodes that make up a
directed graph. In this case, time func-
tions as a dimension, with information or-

39

3 3
/3 A
2 roject plan?

... Bill, how about

.=/ 'dliketo ...

really late.

i, 287
see, Susan

Time

Current positign
Video strea
Subtitle stream |t
Subtitle stream

Figure 2. Internal structure of a package showing the synchronization of subtitles and
full-motion video. The time dimension controls the choreographed display of text and

video.

ganized by position. Muse lets spaces of ar-
bitrary dimensionality exist within each
package. Dimensions need not represent
real time or physical space; they can repre-
sent any changing value in a dynamic sys-
tem.

First dimension. The subtitles for for-
eign-language films described earlierare a
good example of how to use dimensional-
ity (in this case, one dimension). The casi-
est way to couple subtitles with video is to
create links between frame numbers on
the videodisc and text fragments in the
subtitle stream. With this arrangement,
the video stream becomes the repre-
sentative of time in the displayand the sub-
titles look directly to the video for timing
information.

Instead of using frame numbers directly,
we created a layer of abstraction between
the two channels. We used an indepen-
dentdimension of time and attached both
the video and text to this abstraction sepa-
rately. This way, no two components of the
display are directly tied to one another,
which makes it easy to add and remove
channels of information without disrupt-
ing the whole presentation.

The dimensions themselves
bounded integer ranges, with maximum
and minimum values. Each dimension

are

maintains a current position in its range.
Set-position signals adjust the current
positions. User-interface controls, such as
on-screen command buttons and scroll
bars, can generate these signals, as can the
system clock as it drives time forward and
thus determines when the text and video
appear and disappear. You can attach any

40

number of channels to the dimensions, so
a dimension of time can handle multiple
streams of subtitles, cultural flags, and so
on, in acomplex display choreography (as
Figure 2 shows).

This provides a general mechanism for
annotating video material. With the spa-
tial framework, it becomes possible to cut
and paste video without losing the annota-
tions. This capability has utility in several
Project Athena target applications.

For example, the New Orleans: A City in
Transition project has a database of three
hours of full-motion documentary foot-
age stored on videodisc. These materials
were produced in 1983-84 and document
the planning and development that took
place for the New Orleans World’s Fair.
The video is being used in both urban
planning and filmmaking classes. Stu-
dents are asked to draw illustrations from
this archive and to prepare small docu-
mentary pieces representing different in-
terests and perspectives. Itisimportant for
the users to be able to attach annotations
and data references to specific points in
the video.

Second dimension. It'sa small step from
one to two dimensions, where x and y di-
mensions define a Cartesian space. Again,
the dimensions function as an abstract
spatial framework to organize and
manipulate display data.

Such a space is commonly used to
manipulate imageson the screen—zoom-
ing and panning, for example. Once the
image is mapped to the dimension space,
these effects are achieved by manipulating
the dimensions. Any change in the current

position of x or yaffects the image display.
In this respect, the dimensions provide a
coherent system for handling different
kinds of display information.

The Muse prototype lets the x and y di-
mensions be defined as virtual coordi-
nates, so the display window becomes a
viewportinto alarger space. Zooming and
panning over an image become a matter
of moving the viewport within this virtual
space and changing the scope of its dis-
play. All the display materials, including
still video images, are scaled and reposi-
tioned appropriately.

The neuroanatomy project uses this
technique to view cross-sectional photo-
graphs of the brain. The student canzoom
in on any region of an image. Because
Muse defines the image in a virtual space,
it can resolve the coordinates of anatomi-
cal features no matter where the features
appear on the screen or at what scale they
are displayed. This lets different areas be
tagged as endpoints to a cross-reference
while still letting the student manipulate
the image.

You can apply the same technique to
view more than one image. Consider the
Boston Architecture Collection project,
which has an archive of 30,000 images of
Boston architecture from MIT’s Rotch
Visual Collection. These images are used
for comparative analysis of architectural
style; the teacher or student typically wants
to select images and organize them into
presentations.

A query to the Boston database will re-
turn alistof images, which can then be dis-
played and manipulated in a 2D virtual
space. You can control these images the
same way as in the neuroanatomy ex-
ample, so you can view any subset of im-
ages at any scale. Muse allows multiple
simultaneous views of this space, so you
can create more than one viewport, each
showing different regions at different
scales. You can add textand graphic anno-
tations and interface-control mechanisms
such as scroll bars. Asyouwork, you can or-
ganize these virtual light tables into the
pages of a personal notebook.

Nth dimension. Muse does not limit the
number of dimensions that can be
created. Dimensions can represent not
only phyical space and time butany chang-

IEEE Software

ing parameter in a dynamic system. Dy-
namic systems are often modeled as a state
space, which is a set of coordinates or di-
mensions that define the range of move-
ment along each degree of freedom (di-
mension) in the system. A dynamic
function or process governs how the posi-
tion of the system changes and moves
through its state space.

You can use dynamic systems of this kind
to implement some forms of simulation.
Because simulation is a classic method of
using computers in education, itisa highly
important focus of the Muse system.

In Muse, the dimensions are well-inte-
grated into the indexing and crossrefer-
encing machanisms. Taking advantage of
this, a teacher can easily make crossrefer-
ences directly into the state space of a dy-
namic system. This provides a generic
method for querying the simulation state,
changing the simulation state, and setting
trigger conditions in the simulation that
can change state in other nodes of the
directed graph.

The Navigation Learning Environment
project is an example of a time-driven
simulation implemented with Muse. This
project simulates a boat moving through
two square miles of coastal waters in
Maine, using a library of about 10,000 im-
ages to represent the environment. The
entire simulation is implemented as a
single interactive document and uses
seven dimensions. Two dimensions repre-
sent the boat’s x,yposition. Another two di-
mensions represent the boat’s heading
and speed (the systems uses these to com-
pute the boat's position). A fifth dimen-
sion tracks the user’s viewing angle, since
you can look in any direction from the
boat regardless of its heading. The sixth
and seventh dimensions manage a simu-
lated compass that can be positioned any-
where on the image.

The effect is that the user can steer
through a virtual world, using command
buttons and scroll bars to control the boat
and a mouse to take compass bearings
directly from the images. The simulation
becomes active whenever the document is
opened, and the user can choose whether
to take control or simply watch. A system
timer updates the boat’s position every 0.1
seconds.

To implement such a simulation, a fairly

January 1989

high level of orchestration is nceded
among the various display elements. The
directed graph and spatial framework pro-
vide a foundation for organizing and con-
trolling the display elements, but you also
need some facility to coordinate the be-
havior of these elements. In many cases,
you can define the desired relationships as
simple functions and thus implement
them as declarative constraints.

Declarative constraints

Constraints are functional bindings
within a system that define relationships
among different components and auto-
matically propagate change among
them.? In Muse, constraints are limited to
bidirectional equality relations: You can
apply such bindings to attributes of the di-
mensions and display elements.

An example constraint is the relation-

It is usually important to
have a visible
representation of the
dimension, either to
control it or to see what
state it is in. You can use
a scroll bar for both.

ship between ascroll bar and a dimension.
Itis usually important to have avisible rep-
resentation of the dimension, either to
control it or to see what state it is in. You
can use a scroll bar for both operations: If
you use the mouse to reposition the slide
bar indicator, the change will be propa-
gated to the dimension. Conversely, any
changes in the dimension that occur from
some other input or timing event will be
propagated back to the scroll bar, asFigure
3 shows.

A similar case is a dynamic graphic ob-
ject that modifies its appearance based on
aconstraint binding toadimension. In the
navigation project, we created a simulated
hand-bearing compass by using con-
straints. The compass moves to the loca-
tion of amouse click in a water-level view of
the environment and prints a value be-
wween 0 and 359. The system can compute
the bearing because it knows the camera

Figure 3. The appearance of scroll bar
representing time is a function of the time
dimension’s current position. Conversely,
you can control the current value of time by
dragging the scroll bar.

orientation for the panoramic views.

This example uses three constraints,
one each for the xand y locations on the
screen and one for the text label that indi-
cates compass direction. When a mouse
click occurs, the system uses the mouse’s x
and y position to adjust the compasss’s x
and y directions in the simulation docu-
ment. The changes in these dimensions
are then propagated via the constraint to
reposition the graphic object. The num-
ber printed on the screen isconstrained to
the compass x dimension, which ranges
from 0 to 359.

Constraints are a common feature in
Muse applications. They range from
simple one-way bindings on a graphical
object to complex interactions among a
group of dimensions used to implement a
simulation. They are declarative in that
they generally consist of simple mathe-
matical expressions that include refer-
ences to dimensions and display attri-
butes.

Asan editing environment for such con-
straints, we have exp(’,rimemed with a
modified spreadsheet calculator. Our aim
is to embed small spreadsheets in the
Muse environment as editing utilities for
defining and managing constraints. A cell
can directly reference a dimension in any
package as its input value. Values can be
picked up from one or more dimensions,
processed through a series of mathemati-
cal functions on the spreadsheet, and out-
put to other dimensions or display objects.
In asimple case, the spreadsheet can actas
a patch panel or routing switch, directing
the propagation of data values to different
components of the system. In amore com-
plex case, the spreadsheet can maintain
the constraint relations that form the core
of a simulation.

The declarative constraints in Muse
maintain reversible linear functions
among the system components. In many
cases, however, constraints are not suffi-
cient to define all of the actions and be-

41

Display
elements

Compiled
code

Data
resources

Figure 4. The Muse architecture. P1, P2,and P3 are packages in adirected graph. Each
package contains bounded dimensions and display elements. You assign display ele-
ments to a position through mapping. You can link attributes of the display elements
through unidirectional or bidirectional constraints. Display elements can also have inter-
preted scripts for specialized user actions. These scripts have access to external data

and compiled procedural code.

haviors necded in an application. Proce-
dural descriptions fill this need.

Procedural descriptions

In Muse, one design principle is to min-
imize the use of procedural code, since
data specification tends o be quicker to
create and to require less-specialized skill.
However, any purely data-driven system is
bound to fall short because there will be
some application requirements, such as
database queries and user interactions,
that cannot be accommodated effectively
with a strictly data<driven paradigm.

Thus, we included procedural descrip-
tions as one of the four major resources
provided 1o developers. You can incor-
porate two kinds of procedural materials
in Muse applications:

* In the simplest case, single actions can
be defined as attributes of Muse packages
and their display elements. Often, a single
action issufficient, as in one package send-
ing an activation signal to another. This
forestalls the need to use a more formal
procedural description.

 In more complex cases, you use an in-
terpreted language called Event Script.
Event Script was developed as the proce-
dural component of Muse. It lets you at-
tach special-purpose behaviors to in-
dividual display elements. Event Scriptis a
simplified object-oriented language thatis
used primarily for creating user-interface
event handlers. It is not meant to be a
general-purpose programming environ-
ment.

42

Event Script follows an uncomplicated
syntax, similar to Apple’s Hypertalk lan-
guage, using untyped variables and event-
oriented construction.® In addition, Event
Script permits transparent access to any C
variables or functions in the program
space. Thus, any object’s methods can
gain access to general system libraries or
resources, providing an extension mecha-
nism to Muse.

Delegation strategy. Event Script uses a
variant of the delegation strategy for shar-
ing object behavior.” In Event Script, you
can specify an object 1o use the contents of
one or more existing prototype objects. If
a message handler is not found in the re-
cipientobject’smethods, asearchisbegun
in the recipient’s prototypes (and in their
prototypes) until the method is found or
the chain is exhausted. If found, the meth-
od is then borrowed and executed in the
scope of the original object. Event Script
addresses the problem of preserving local
context through an inheritance chain by
built-in functions that return the name of
the client and delegate objects, which can
be used inside any method. (The client is
the original recipient of a message; the
delegate is the owner of the borrowed
method.)

An important feature of delegation is
that any existing object can be duplicated
and given anew name. The duplicated ob-
ject has its own local state variables but
shares the method dictionary and proto-
type list of the original object. This permits

great flexibility in defining new objects dy-
namically. Developers can duplicate and
modify prototype objects for specialized
applications and their interfaces.

Applications. The primary use of Event
Script so far has been as a programmer’s
interface to X Windows. Objects can be
bound to windows; thereafter any X Win-
dows events occurring in that window are
translated into messages to the Event
Script object. Normally, an Event Script
object is associated with a display element
in a Muse package. When the display ele-
ment’s window is activated, the object is
registered to handle all the window’s
events. Often the desired behavior is
shared by many display elements, asin the
case of window exposure events. This sit-
uation is well-suited to the method-bor-
rowing form of delegation we have imple-
mented.

Editing in Muse

The human interface begins with the
data model. Ifthe data model does not ful-
fill the purposes of the system as a whole,
any efforts on the more superficial aspects
of the interface will be largely wasted.
Given a sound model to work from, the
next step is to design efficient editors and
make the development process easier.

One Muse design goal has been to write
the editors that manipulate the data
model in Muse itself. This work is continu-
ing as a primary focus in the second ver-
sion of Muse.

Muse uses a direct-manipulation style of
editing. One example is a Muse video edi-
tor, which we have implemented as a test
case. The editor is modeled after a two-
buffer text editor, where two buffers of
video are displayed on the screen side by
side. The two buffers are defined as Muse
packages, with time as the principal di-
mension. Cutting and pasting video seg-
ments is a matter of selecting a region of
time in one buffer and then cutting all
data resources referencing that part of the
time dimension. You can then paste these
cut materials into the other video stream,
just as a text editor would paste text into
another buffer. We implemented the cut
and paste functions as compiled C func-
tions, but they are controlled through the
Event Scriptsection of Muse.

|EEE Software

o be useful, the four representations

— directed graphs, dimensions, de-

clarative constraints, and proce-
dural descriptions — must be combined
into a coherent framework. Muse inte-
grates them into one datamodel, asFigure
4 shows. We have tried to achieve a system
where the strengthsand weaknesses of the
various approaches complement one
another and allow for free interaction so
that the combination offers much greater
potential than four separate systems
would.

The prototype version of Muse has
shown promise in speeding up the process
of world making that is the basis for teach-
ers and students to explore their subjects
and encourage them to investigate many
points of view. Muse has also shown prom-
ise in reducing the need for specialized

2,

programming skills. <

Acknowledgment

We thank the MIT faculty members who
have carried out the projects for which we de-
veloped Athena Muse: Gloriana Davenport,
Gilberte Furstenberg, Douglas Morganstern,
Janet Murray, Merrill Smith, and Steven Wert-
heim.

References

1. N. Goodman, Ways of World Making, Hack-
ett Publishing, Indianapolis, Ind., 1978.

2. N. Yankelovitch, N. Meyrowitz, and A. van
Dam, “Reading and Writing the Electronic
Book,” Computer, Oct. 1985, pp. 15-30.

3. N. Yankelovitch et al., “Intermedia: The
Concept and the Construction of a Seam-
less Information Environment,” Compuler,
Jan. 1988, pp. 81-96.

4.]. Conklin, “Hypertext: An Introduction
and Survey,” Computer, Sept. 1987, pp. 17-
41.

5. A.Borning, “The Programming Language
Aspectsof Thing Lab,” ACM Trans. Program-
ming Languages and Systems, Oct. 1981, pp.
353-367.

6. D. Shafer, Hypertalk Programming, Hayden
Books, Indianapolis, Ind., 1988.

7. H.Lieberman, “Using Prototypical Objects
to Implement Shared Behavior in Object-
Oriented Systems,” Proc. OOPSLA 86 [Ob
ject-Oriented Programming Systems, Languages,
and Applications Conf.], ACM, New York,
1986, pp. 214-223.

January 1989

R

Matthew E. Hodges is a visiting scientist at the
Massachusetts Institute of Technology's Proj-
ect Athena from Digital Equipment Corp. He
has worked at DEC since 1982 in educational
research and development. At Athena, he con-
ducts research in educational technology and
is manager of software development for the
Visual Computing Group.

Hodges received a BA in art from the Penn-
sylvania State University, a masters in educa-
tion from Harvard University, andisa doctoral

candidate at the Harvard Graduate School of

Education.

-

Russell M. Sasnett is a member of the technical
staff at GTE Laboratories and a visiting engi-
neer with the Visual Computing Group at Proj-
ect Athena. His research interests include
rapid prototypingand the design ofgraphicin-
terfaces to video materials. He is an award-win-
ning documentary filmmaker.

Sasnett received a BA in film and computer
science from Dartmouth College and an MSin
visual studies from the Massachusetts Insttute
of Technology.

MarkS. Ackermanisa doctoral candidate inin-
formation technology at the Massachusetts In-
stitute of Technology and a research associate
at Project Athena’s Visual Computing Group.
His research interests include information re-
trieval, reference systems, and human-com-
puter interaction.

Ackerman received a BA in history from the
University of Chicago and an MS in computer
and information science from Ohio State Uni-
versity.

Address questions about this article to the
authors at Project Athena, Bldg. E40-300, 1
Amherst St., Cambridge, MA 02139; ARPAnet
hodges@athena.mit.edu.

C++ TRAINING

Developing in C? Why Not C++?

Object-Oriented Programming is
clearly the wave of the future and
C++ provides an easy path to that
future. The use of C++ can capital-
ize on your current investmentin C
programs, aliow you to continue to
benefit from the efficiencies of C,
and lay the foundation for new
levels of quality and productivity. If
you are currently developing soft-
ware in C, you should be consider-
ing migrating to C++. Many large
development organizations have
already made a full scale commit-
ment to C++.

The Institute For Zero Defect
Software has extensive experi-
ence in training and consulting in
C++ based development projects
at several major corporations. Our
course

C+ Programming for
C Programmers

is available for on-site delivery. This
three-day course will cover both
the C++ language and its effective
application. Realistic C++ pro-
grams are used for laboratory
exercises. The experience gained
fromthese exercises is directly ap-
plicable to development projects.
Some of the topics covered in this
course are:

Introduction to Object-
Oriented Programming
[
Data abstraction and C++
classes
[]
Class hierarchies, inheritance
and virtual functions
=

For more information contact:

Institute For Zero Defect
Software

200 Runnymede Parkway
New Providence, N. J. 07974
(201) 668-4508

Reader Service Number 8

