Jamal Blackwell
Course 6
Location: Media Lab

Building a Video-centered web community

My UROP consisted of assisting Pengkai Pan with designing
and implementing a portion of the software and web pages
necessary to construct a web community centered on video content.
In such a community, people would be able to communicate with
other members of the community to discuss the videos on the site
and the variations on those videos that the users have produced.
Further, sharing this video content with others is facilitated
through the use of emailing the URL of the c¢lip to the email
address of the viewer. In building this community, our goal was
to get away from the current model of how video is shared.
Instead of a single author producing one “definitive” arrangement
of clips into final project, we hoped to allow multiple authors
to collaborate remotely on many arrangements of various video
clips. For this task, we will draw heavily on the work done by
Penkai Pan on the I-views project.

In I-views, Penkai Pan constructed an online site that
would allow people to form a web community centered on video
content. Users were able to edit and append video clips together
to produce new video sequences for viewing by other users. There
were tools that measured the similarity of video clips based on
the number of common sources the two video clips had. A user

could then contact a user who had produced a very similar or

dissimilar video from the user’s own video via email. In this
way I-views facilitated discussion among the members of its
community. In our new project, we wished to make joining the
community more accessible by simplifying the user interface and
providing new and varied activities for our users’ enjoyment.

In order to build such a community, we had to give people
an incentive to join the site, recommend it to friends, and
interact with other members of the community. To achieve this
task, I was to design and implement various entertaining
activities for the users to engage in during their visits to our
site. Some activities were to be more game oriented, while
others could have focused on interactive story telling by
multiple users. For instance, one possible game idea would have
involved people providing the narration for a sequence of video
arranged by another user. All the game’s participants could then
give each other a score based on the overall quality of the
narration. This game illustrates our main focus when we designed
these activities, in that we entertain the members of the
community while strongly encouraging multiple user interaction.
It was our belief that users entertained by our site would be
prone to refer it to friends and remain active in our video-based
community.

In order to get people to return to the site repeatedly, we
will needed to have new activities for them to perform. For this
reason, video editing will be incorporated into many activities.

In this way, we allowed part of our user’s entertainment stem

from providing content for other users in the community. Much
like friends sitting around a campfire, our users would have the
ability to tell new stories to each other and to alter the
previously told stories in a more entertaining manner. Further,
all games featured on the site were to have special templates
upon which they are constructed. These templates were to be
available for users to construct their own versions of the games
we provide. This is another way in which users may provide
entertainment for each other. Finally, conventional chat is
supported on the site in an effort to encourage user-to-user
interaction within the community. One might combine all of these
aspects into a lobby where one can watch video, edit videos, edit
game, or participate in games, while chatting with their fellow
community members. We believe such an interactive and rewarding
experience would keep users coming back and cause our community
to continually grow.

In order for users to share and author video content, one
would think that they would need a digital video camcorder and
video editing software. Video editing tools or Digital Video
(DV) camcorders are expensive and typically owned by web users.
Therefore, most of our users needed an alternative means of video
production, lest they feel unable to contribute to the community.
The use of SMIL files allowed us to link together various.video
clips on the web, without the use of expensive equipment. We
saved storage space by allowing users to “add” content to the

community’s video store by submitting the URL of the clip instead

of the actual video. URLs can be included in SMIL playlists and
thus a web address was enough to allow us to share a clip with
the entire community. This is the same solution used in I-views.
We wish to automatically generate these SMIL files so that the
user’s editing experience will mainly consist of juxtaposing
video clips via a graphical interface. Another UROP was assigned
this task, so I will refer to the SMIL editor as an abstraction
that performs gives the users video editing capability. Our main
goal was to make joining and participating in the community as
enjoyable as possible, thus simplifying complex tasks will reduce
the learning curve associated with video editing technigques.
Available technology served to determine my choice of
activities to include on the site. More ambitious game ideas
were scrapped due to the most conventional video media player's
lack interactivity with the users. These tools, such as the
Quicktime movie viewer and Realplayer were built with the old
model of authorship in mind, in which one person is simply
putting his video on display for others to view. Presumably this
was the impetus for these player’s restricting the forms of user
interaction to those similar to a common VCR. Functionality such
as recognizing the area within a video c¢lip that a user clicks on
and associating new events with certain keystrokes were not
useful under this broadcast model, but would have formed the
basis for my more ambitious ideas. However, all hope was not
lost by virtue of the SMIL editing applet. The ability to allow

users to produce their own unique video sequences can serve to

provide the large amount of video content necessary to support
some of my other ideas.

The front-runner among my technically feasible projects was
founded on mimicking a common real life situation. I considered
the following scenario when I came up with the idea for the x-
views viewing room. Suppose there is a championship sporting
event being broadcast on television; lets say it is the Superbowl
for the sake of specificity. I call my friends and we talk while
watching the game, commenting on the plays as they happen.
Finally, half-time arrives and we are not satisfied with the
entertainment provided, so we start to change channels in search
of something more compelling to watch. While independently
searching for entertainment we continue talking and updating each
other on our progress. With this in mind the structure for the
viewing room became clear, users should be able to communicate
with each other regardless of the video clip they are watching.
They should be able to provide each other with advice on where to
search for entertainment and comment on the c¢lips they enjoyed
and those they did not enjoy. This is the functionality I sought
to provide users in the online viewing room.

Viewing the clips in the repository should be as dynamic as
the conversations about them are likely to be. With this in
mind, I thought it best to use keyword searching and assignment
to gauge user’s thoughts on a given clip. After or during the
viewing of a clip, users would assign a clip a list of predefined

keywords and submit them to the database. It is the general

consensus that qualitative evaluations of this kind are more
meaningful in the realm of short video clips and a quantitative
value, such as “2 thumbs up”. The user would then be able to
select a keyword categorizing the type of clip she would like to
view. This selection would cause the drop-down menu to p. If
so, the drop-down selection menu should be populated with the
clips in this category and the user would be free to chose from
among these clips which one she would see next. All the while,
the user is interacting with other users enjoying the same
activity that she is.

The overall structure of the viewing room is fairly simple.
Two web pages are used in frames to create the viewing area, a
video display frame and a chat frame. The top-frame is a web
page featuring little more than an embedded Realplayer. Frames
were used due to the Realplayer’s inability to loop a video c¢lip,
so it is necessary to refresh the page at the end of a clip’s
running time in order to create this effect. The real format was
chosen since streaming video is readily available in this format.
Some people have asked why the realplayer was chosen and not a
guicktime player. Both players are SMIL, MPEG, and AVI
compatible and support their own unique streaming media formats,
with the quicktime movie viewer boasting a built-in looping
feature. In my estimation, the advantage of built-in looping is
minimal and offset by the real server being free while the
streaming quicktime server is available at a fee. This make is

more likely to be used by smaller web developers who simply want

to feature video on their personal web sites. Any users can
easily add the URLs of these clips to our repository and edit
them in the sequencing applet. In short, it seemed that this
choice was, at the very least, as efficacious as embedding a
Quicktime player in the video display frame. Further, it would
be a trivial matter to replace the realplayer with a gquicktime
player at a later date.

It is interesting to consider how well the viewing room
compares to the scenario that inspired its creation. The
inherent differences in the nature of the communication methods
involved, namely chat and verbal communication, are not to be
overlooked. It might have been a far better model of the
scenario had the chatroom employed telephony software, verbal
Internet chat, to facilitate user-user interactions. I opted
against this since the software is not free or ubiquitous. It
requires speaker and a microphone, in addition to the phone
emulation software. Having a comparably obscure and costly
communication method would limit our user base and make using our
site prohibitive to some people. Further, viewing online videos
is a bandwidth intensive activity and to accommodate those with a
slower Internet connection, chat is the preferred option.

The use of chat comes with the added bonus of allowing
users to easily adjust the amount of attention they pay to the
conversation and the video. Voice would compete with the sound
in the video clips and perhaps lessen the experience viewing some

clips. Further, it is not apparent that most computer systems

would be able to handle simultaneous sound output from the
realplayer and the telephony software. For this reason, verbal
communication might imply the total removal of sound from the
clips in our repository. My choice of chat in this application
comes at the cost of limiting the emotion that can be conveyed
and making the communication less intuitive for our users, but I
thought the pros outweighed the cons in this situation.

The chat applet is my most useful and versatile
contribution to x-views. I started to build my own chat applet,
but mid-way through development I decided to search the Java
Repository for a similar application. The Repository is known
for having a wide variety of open source applications that tend
to be useful and well written. I decided to take a promising
program called JavaTalk for a test run. Hoping to find some
answers on some of the trickier issues I encountered while
developing my own applet, I instead found that JavaTalk had all
of the functionality I wanted to add to our site. My questions
about how to handle and create user sessions, connection and the
notion of rooms were all dealt with, in addition to features that
give the application a quite professional feel. Users can
“whisper” to each other by highlighting the username of another
chat participant and send a message that will only appear on the
screen of the specified user. User blocking is also available to
allow users to ignore the input of individuals that seek to annoy

other chat participants. This allows us to truly let an

autonomous community form, without the need for a chat room
administrator to mediate every conversation.

There is no notion of rooms in JavaTalk, but instead only
one chat is associated with each instance of the JavaTalk Server
running on the web server. Users will not have to fumble around
an overwhelming list of chatrooms, as is the case with most IRC
servers that I have encountered. Relevant prompts and
information, such as JavaTalk’s emote commands, are detailed in
the client applet, eliminating the need for users to refer to
external documentation. Since the point of x-views 1is to build a
video-centered web community, having only a select few chats
hosted on the gite makes interaction between a wide variety of
different users much more likely. Further, novice chat users
will not be intimidated by the vast number of chat options
available to them. I think this the success of AOL tells us a
valuable lesson: simple is sometimes the most popular option.

The administration of the JavaTalk Server is likewise
simpler than that of a complex IRC server. To add more than one
chat to x-views running another instance of the JavaTalk Server
associated with another web page containing the client applet is
necessary. Since the computational demands of JavaTalk are not
extensive, having multiple chat servers running on the main x-
views server is not likely to bog down the system. If it was
necessary to shut down a chat, one could just shut down the
associated server (identified by the port with which it is

associated) and continue to let the other chats proceed

uninterrupted. Creating a chat room ig as simple as running the
JavaTalk server using any version of the Java Development Kit
(JDK) greater or equal to 1.1, with a number as its argument.
The one parameter is to specify the port that the server is
associated with. A page can then be created in which the client
applet is embedded and associated with a port number. The
JavaTalk package comes with a pre-written HTML page which handles
most of the work. All one needs to do is edit the existing page
and change the port parameter to equal the port number of its
associated server. More optionsg are available to the advanced
administrator, such as idle time before a user is automatically
logged out and log file name, and are described in the attached
documentation of the JavaTalk package.

The uses for JavaTalk, or just online chat in general, are
quite varied and afford great depth to x-views. As an applet,
JavaTalk can be placed in a frame adjacent to any other x-views
page and provide chat throughout the site. This would go a long
way towards building and sustaining an online community.

Further, it is a small, simple to use applet which makes it ideal
for a site that makes excessive bandwidth demands in other ways,
such as by providing streaming video. Without having to support
IRC servers or other more standardized chat protocols, we
simplify and streamline the user’s experience. All users need to
do in order to chat 1is to point a java-enabled web browser to the
web page holding the applet, type in their desired username and

begin chatting. Had we supported IRC we would have to run an IRC

server and support numerous features such as “whois” and numerous
“emote” commands that are not worth the extra development time to
incorporate. We simply want to connect the users to each other
for the time being, with features to come mainly due to user
demand.

JavaTalk was more than adequate for our purposes in most
respects, but did fall short in one area, namely its logging
feature. The log file contains only data on how many users
logged in on a given day. It also shows data of how many
messages a user has sent successfully. For some reason, I can
not get the log file to store the complete conversation logs for
a given server. The code seems to specify that it should, but
the bug may have something to do with the original JavaTalk
package being written 3 years ago and run on a much later version
of the JDK. This feature would allow us to store and associate
each user with the conversations he has on our site, thus
providing a history feature similar to that of ICQ.

The various prototypes of the viewing room seemed to
indicate that the design and implementation were sound. I the
pfototype from my computer serving a real video in the upper
frame of the page and found that the site loaded quickly and
neither application was noticeably hindered by inhabiting the
same browser. The final version of the viewing room was not
built due to the API that will allow the video repository to
communicate with the other components of x-views not being

completed as of May 22, 2000. Any integration that could have

been done would have been purely cosmetic as the state of the API
was such that the viewing room would have to know the universal
identification number of the clips it would allow the users to
browse. Therefore, the viewing room would have to be rewritten
every time that the database of clips was updated. Although the
final version of the viewing room was not completed, this
document provides an adequate blueprint for its construction. I
believe that it would only take another week of development for
someone to learn the x-views API and use it to assemble the

viewing room from the components I specified.

JavaTalkServer Source Code

// $RCSfile: JavaTalkServer.java,v $

// $Id: JavaTalkServer.java,v 1.17 1996/06/27 23:43:21 fms Exp fms $

-

// by Frank Stajano, http://www.cam-orl.co.uk/~fms
// Development started on 1996 05 09
// (c) Olivetti Research Limited

/*
Copyright (c¢) 1996 Olivetti Research Limited

Permission is hereby granted, without written agreement and
without license or royalty fees, to use, copy, modify, and
distribute this software and its documentation for any purpose,
provided that the above copyright notice and the following three
paragraphs appear in all copies of this software, its documentation
and any derivative work.

In no event shall Olivetti Research Limited be liable to any party
for direct, indirect, special, incidental, or consequential damages
arising out of the use of this software and its documentation, even
if Olivetti Research Limited has been advised of the possibility of

such damage.

Olivetti Research Limited specifically disclaims any warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis, and Olivetti
Research Limited has no obligation to provide maintenance,
support, updates, enhancements, or modifications.

Derived or altered versions must be plainly marked as such, and
must not be misrepresented as being the original software.

*/

// TODO:

// make various logging activities be methods of the applet, not the
threads

// make broadcast be a method of the applet

// remove debugging printouts

// check if access to participants shouldn't be synchronized

// tell others whether the one who left did so by choice or was kicked

out

// ADVANCED TODO

// remember names of participants based on address (lst guess at least)
// implement timestamp echo protocol

// synchronise clocks and compute half-paths

// non-positional handling of command-line arguments

import java.io.*;
import java.net.*;

import java.util.*;

public class JavaTalkServer extends Thread implements Trigger {
// These are automatically substituted

public static final String rcsVersion = "$Revision: 1.17 $";
public static final String rcsDate = "$Date: 1996/06/27 23:43:21 $";
public static final String rcsProgram = "$SRCSfile:

JavaTalkServer.java,v $";

// These extract the useful parts from the automatically substituted
ones.

public static final String version = rcsVersion.substring(1l1l,
rcsVersion.length()-2);

public static final String date = rcsDate.substring(7, 17);
public static final String program = rcsProgram.substring (10,
rcsProgram. length()-9);

public static final String about = "";

public final static int DEFAULT_PORT = 6764;

public final static int WARNING_IF_INACTIVE_FOR = 5*60;
public final static int TIME_TO_LIVE_AFTER_WARNING = 60;

// seconds before a connection is closed

// (later transformed into milliseconds})

public final static int REAPER_PERIOD = 10*1000;

// milliseconds between checks of who is inactive

protected int warningIfInactiveFor = WARNING_IF_INACTIVE_FOR;
protected int timeToLiveAfterWarning = TIME TO_LIVE_AFTER_WARNING;
protected int port = DEFAULT_PORT;

protected String logFileName = "javatalk." + Time.ymdhms (false) +
" . log" '.

protected int maxInactivity;
protected PrintStream log;

protected ServerSocket listen_socket;
protected Hashtable participants;
protected Ticker ticker;

public static void main(String[] args) {
//System.err.println("main() called");
System.out.println(about) ;

new JavaTalkServer (args) :

}

public static void usage() {

System.out.println ("USAGE (all arguments optional and positional):\n"
+ " java " + program

+ " warningIfInactiveFor timeToLiveAfterWarning port logFileName\n"

+ " warningIfInactiveFor After this many seconds of inactivity:
warning\n"

+ " timeToLiveAfterWarning After this many extra seconds: kicked out\n"
+ " port Port number on which to listen for connections\n"

+ " logFileName A transcript of the talk goes here\n"”

) ;

System.exit (1) ;

}

public JavaTalkServer (Stringl] args) {

// parse arguments

switch (args.length) {

case 4:

logFileName = args[3];

// fallthrough

case 3:

try {

port = Integer.parselnt(args(2]);
}

catch (NumberFormatException e) {
usage() ;

}

// fallthrough

case 2:

try {

timeToLiveAfterWarning = Integer.parselnt(args[l]);
}

catch (NumberFormatException e) {
usage() ;

}

// fallthrough

case 1:

try {

warningIfInactiveFor = Integer.parselnt(args[0]);
}

catch (NumberFormatException e) {
usage() ;

}

// fallthrough

case 0:

break;

default:
usage() ;

}

// Print out the actual parameters for this invocation
System.out.println (

"\nwarningIlfInactiveFor " + warningIfInactiveFor

+ "\ntimeToLiveAfterWarning " + timeToLiveAfterWarning
+ "\nport " + port

+ "\nlogFileName " + logFileName

+ "\n\nServer running and waiting for connections..."
)

// transform seconds into milliseconds, because that's what
// the Java library routines eat.

warningIfInactiveFor *= 1000;

timeToLiveAfterWarning *= 1000;

maxInactivity = warningIfInactiveFor + timeToLiveAfterWarning;

try {

log = new PrintStream(new FileOutputStream(logFileName));
}

catch (IOException e) ({

fail(e, "Can't open log file '" + logFileName + "' for writing.");
}

log.println(about) ;

Date d = new Date();

log.println("Server started on " + d.toGMTString{() + " ("
+ Time.ymdhms (d, true) + " server's local time)\n");
log.flush();

try {
listen_socket = new ServerSocket (port) ;

}
catch (IOException e) {
fail (e, "Exception creating server socket");

}

participants = new Hashtable();
ticker = new Ticker (REAPER_PERIOD, this);

this.start();
}

public void run() {

try {

while(true) {

Socket client_socket = listen_socket.accept();
Connection ¢ = new Connection(client_socket, this);
}

}

catch (IOException e) ({

fail (e, "Exception while listening for connections");
}

}

public static void fail (Exception e, String msg) {
System.err.println(msg + ": " + e);
System.exit (1) ;

}

public void tick() {

// All the connections that have received no data for longer
// than the timeout shall be killed.

Vector toBeKilled = new Vector();

Date d = new Date();

long now = d.getTime() ;

Enumeration e = participants.keys();

while (e.hasMoreElements()) {
String key = (String) e.nextElement();
Connection thisClient = (Connection) participants.get (key);

long inactivity = now - thisClient.timeOfLastActivity;
if (inactivity > maxInactivity) {
toBeKilled.addElement (thisClient) ;

} else if (inactivity > warningIfInactiveFor) {
thisClient.out.println("INACTIVITY WARNING: you'll be kicked off in "
+ ((maxInactivity - inactivity)/1000) + " seconds");
thisClient.out.flush{();

}

}

// now we've finished with participants, we can safely
// do things that remove stuff from it.

for (int i= 0; i < toBeKilled.size(); i++) {

Connection thisClient = (Connection) toBeKilled.elementAt(i);
// TODO: broadcast that we're throwing him out for inactivity
//System.err.println ("Killing " + thisClient.clientName) ;
try {

thisClient.client.close();

//System.err.println ("Client killed ok");

-}

catch (IOException e2) {

fail (e2, "Couldn't kill client"):

}

}

}

// For every chat client that logs in, there is a new connection
thread.

class Connection extends Thread {

protected Socket client;

protected DataInputStream in;

protected PrintStream out;

protected InetAddress clientAddress;

protected int clientPort;

protected String clientName;

protected long timeOfLastActivity;

protected Hashtable participants;
protected PrintStream log;

public static void fail (Exception e, String msg) {
System.err.println(msg + ": " + e);
System.exit (1) ;

}

// Initialize the streams and start the thread

public Connection(Socket client_socket, JavaTalkServer server)
logActivity ("Accepted incoming connection, spawned thread.");
client = client_socket;

timeOfLastActivity = (new Date()) .getTime();

participants = server.participants;

log = server.log:;

try {

in = new DataInputStream(client.getInputStream()) ;
logActivity("Successfully created input stream for new socket");
out = new PrintStream(client.getOutputStream());

logActivity ("Successfully created output stream for new socket");
}

catch (IOException e) {

try {

client.close();

logActivity("Successfully closed client socket");

}

catch (IOException e2)

}

logException(e, "Exception while getting socket streams");

//??? how to you kill this thread before having started it?
this.stop();

return;

}

clientAddress = client.getInetAddress();

clientPort = client.getPort();

clientName = clientAddress + ":" + clientPort;
participants.put(clientName, this);

logActivity("Got a connection from " + clientName);
out.println(server.about) ;

broadcast ("User " + clientName + " joined the conference."};
logPrint (whoString()) ;

this.start():;

}

public String whoString() {
String result ="\n CURRENTLY CONNECTED:\n";
Enumeration e = participants.keys();

while (e.hasMoreElements()) ({

String key = (String) e.nextElement();

Connection thisClient = (Connection) participants.get (key);
result += " " + thisClient.clientName

+ " (from " + key + ")\n";

}

return result;

}

public void run() ({
String line;

int len;

try {

for(;;) {

// read in a line

line = in.readLine();

logActivity ("Received line: " + line);
timeOfLastActivity = (new Date()).getTime();
if (line == null) ({

logActivity ("Received empty line: closing down'");
break;

}

// command MYNAME changes the user's name

if (line.startsWith("MYNAME ")) {

String msg;

msg = "RENAME: " + clientName + " --> "

+ line.substring(7) + " ("

+ clientAddress + ":" + clientPort + ")";

clientName = line.substring(7);
broadcast (msg) ;

logPrint (whoString()) ;
continue;

}

// command WHO lists who is connected
if (line.startsWith("wHO")) {
out.println (whoString());
out.flush();

continue;

}

// no command, just text.
broadcast (clientName + "> " + line);
}

}

catch (IOException e) ({

logException (e, "Exception in main loop talking to "
+ clientName + " (" + clientAddress

+ ":" + clientPort + ")");

}

finally {

logActivity ("Connection to "

+ clientAddress + ":" + clientPort
+ " not working, I'll close it"):
try {

client.close():

logActivity ("Successfully closed broken socket for "
+ clientAddress + ":" + clientPort);

}

catch (IOException e2) {

logException (e2, "Exception while closing socket for "
+ clientAddress + ":" + clientPort);

}

finally {

client = null;

logActivity ("Broken socket forgotten");

participants.remove(clientAddress + ":" + clientPort);
broadcast ("User " + clientName + " ("

+ clientAddress + ":" + clientPort

+ ") left the conference.");

logPrint (whoString ()) ;

}

}

}

public void logException (Exception e, String message)
System.err.println(message + ": " + e);

}

{

public void logActivity (String message) {
System.out.println (message) ;

}

public void logPrint (String message) {

Date d = new Date();

log.print (" ["+ Time.ymdhms (true) + "} " + message);
log.flush{();

}

public void broadcast (String s) {
Enumeration e = participants.keys();

while (e.hasMoreElements()) {
String key = (String) e.nextElement();
Connection thisClient = (Connection) participants.get (key);

thisClient.out.println(s);
thisClient.out.flush();

}

logActivity ("Broadcasting line: " + s);
logPrint (s + "\n");

}

}

class Ticker extends Thread {
public int period; // period between ticks in milliseconds
protected Trigger trigger;

public Ticker (int period, Trigger trigger) {
this.period = period;

this.trigger = trigger;

this.start ()

}

public void run() ({

for (;:) |

if (trigger !'= null) ({

trigger.tick();

}

try {

sleep(period) ;

} catch (InterruptedException e) {
System.err.println("Ticker thread interrupted: " + e);

}

e

interface Trigger ({

// Something that can be called by a ticker to make things happen.
public abstract void tick();

}

class Time {

/*

NOTE: the year-month-day representation is a Good Thing (tm)
because it puts the most significant digits first.

So you can sort ymd strings alphabetically and they will

be sorted chronologically for free.

*x/

/**

Returns a string with a ymdhms representation of the supplied
date, with or without lots of separators between the fields.
The separators make the string more readable but get in the
way 1f you are composing a file name.
*/

public static String ymdhms (Date d, boolean separators) {
int y = d.getYear();

int month = d.getMonth()+1;

int date = d.getDate();

int h = d.getHours();

int m d.getMinutes () ;

int s = d.getSeconds();

String result = "";

if (y < 10) {

result += "0";

}

result += y;

if (month < 10) {

result += 0;

}

result += month;

if (date < 10) {

result += "0";

}

result += date + "-";

if (h < 10) {

result += "0";

}

result += h;

if (separators) {

result += ":";

}

if (m < 10) {

result += 0;

}

result += m;

if (separators) {

result += ":";

}

if (s < 10) {

result += "0";

}

result += s;

return result;

}

Il

/**

Returns a string with a ymdhms representation of "now".
*/

public static String ymdhms (boolean separators) ({
return ymdhms (new Date(), separators);

}

public static String hoursMins (Date d) {
~int h = d.getHours();
int m = d.getMinutes() ;
String result = "";

if (h < 10) {

result += "0";

}

result += h + ":";

if (m < 10) {

result += 0;

}

result += m;

return result;

}

public static String hoursMins() {
return hoursMins (new Date());

}
}

JavaTalkClient Source Code

// $RCSfile: JavaTalkClient.java,v $

// $Id: JavaTalkClient.java,v 1.25 1996/07/15 20:19:18 fms Exp fms $
// by Frank Stajano, http://www.cam-orl.co.uk/~fms

// Development started on 1996 05 09

// (c) Olivetti Research Limited

/*
Copyright (c) 1996 Olivetti Research Limited

Permission is hereby granted, without written agreement and
without license or royalty fees, to use, copy, modify, and
distribute this software and its documentation for any purpose,
provided that the above copyright notice and the following three
paragraphs appear in all copies of this software, its documentation
and any derivative work.

In no event shall Olivetti Research Limited be liable to any party
for direct, indirect, special, incidental, or consequential damages
arising out of the use of this software and its documentation, even
if Olivetti Research Limited has been advised of the possibility of

such damage.

Olivetti Research Limited specifically disclaims any warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis, and Olivetti
Research Limited has no obligation to provide maintenance,
support, updates, enhancements, or modifications.

Derived or altered versions must be plainly marked as such, and
must not be misrepresented as being the original software.
*/

// TRIVIAL TODO

// only honour enter key if focus is in small window
// provide buttons for functions like MYNAME and WHO
// make font and size changeable by user

// play cute sound when someone joins

// ADVANCED TODO

// implement the more complete timestamp protocol
// make window floating

// provide separate window for roundtrip messages
// synchronize server and client clocks

import java.io.*;
import java.net.¥*;
import java.applet.*;
import java.awt.*;
import java.util.*;

public class JavaTalkClient extends Applet {
// These are automatically substituted

public static final String rcsVersion = "S$Revision: 1.25 s$";
public static final String rcsDate = "$Date: 1996/07/15 20:19:18 s*";
public static final String rcsProgram = "SRCSfile:

JavaTalkClient.java,v $§";

// These extract the useful parts from the automatically substituted
ones.

public static final String version = rcsVersion.substring(l1l,
rcsVersion. length()-2);

public static final String date = rcsDate.substring(7, 17);

public static final String program = rcsProgram.substring (10,
rcsProgram. length()-9) ;

public static final String about = "";

public static final int DEFAULT_PORT = 6764;

public static final String DEFAULT_HOST = "cyclonus.mit.edu";
public static final boolean DEFAULT_SHOWROUNDTRIP = false;
public static final boolean DEFAULT_SHOWTIMESTAMPS = false;

public static final int MAX_CHARS = 10000;

// When the text window contains this

// amount of stuff or more,

// it's time to start chopping old stuff off the top.

// NB: weird behaviour (i.e. you can't write to the window

// any more) is observed around the 27000-28000

// characters mark. I don't know what imposes the limit and
// haven't found any documentation on it yet-- I

// thought it would be more like 64kb, i.e. 32k unicode chars.
// This constant used to be set at 32000 and the program would
// freeze when reaching 28000 or so...

public static Random idGen = new Random() ;
// random number generator, common to the class so that successive
// applets use the same stream instead of restarting a new generator

protected Listener listener = null;
protected Typist typist = null;

protected int port;

protected String host;

protected int maxChars;

protected Socket s = null;

protected String myAddressAndPort;
protected int myId = idGen.nextInt();
protected boolean showRoundTripInitially;
protected boolean showTimestampsInitially;

public String[][] getParameterInfo() ({

String(][] info = {

// name, type, description

{"host", "string", "internet name of the host on which the server
runs"},

{"port", "integer", "port on which the server is listening for

connections"},

{*showRoundTrip", "boolean", "initial value of corresponding
checkbox"},

{"showTimestamps", "boolean", "initial value of corresponding
checkbox"},
{"maxChars", "integer", "maximum number of characters in window before

top chopped off"}
}i
return info;

}

public String getAppletInfo() {
return about;

}

public void init () {

// Figure out parameters
System.err.println("init() called");
System.err.println(about) ;

try {
port = Integer.parselnt (getParameter ("port"));

}

catch (NumberFormatException e) {
port = DEFAULT_PORT;

}

host = getParameter("host");
if (host == null) {

host = DEFAULT_ HOST;

}

showRoundTripInitially = Boolean.valueOf (

getParameter ("showRoundTrip")) .booleanvValue () ;
showTimestampsInitially = Boolean.valueOf(
getParameter ("showTimestamps")) .booleanValue() ;
try {

maxChars = Integer.parselnt (getParameter ("maxChars"));
}

catch (NumberFormatException e) {

maxChars = MAX_CHARS;

}

System.out.println("host = " + host

+ "\nport = " + port

+ "\nshowRoundTrip = " + showRoundTripInitially

+ "\nshowTimestamps = " + showTimestampsInitially
+ "\nmaxChars = " + maxChars

);

}

public void destroy() {
System.err.println("destroy() called");

}

public void finalize() throws Throwable {
System.err.println("finalize() called");

}

public void start() {
System.err.println("start() called");
// make socket, windows and threads
try {

s = new Socket(host, port):

myAddressAndPort = s.getInetAddress() + ":"+ s.getPort();
System.err.printin("Connected to server at " + myAddressAndPort) ;
}

catch (IOException e) {

System.err.println("Couldn't make socket: "+ e);

this.cleanUp():;

return;

}

// {{INIT_CONTROLS

setLayout (null) ;

resize(511,377);

winLocal=new TextField(44);

winLocal.setFont (new Font("Courier",Font.PLAIN,10));
add(winLocal) ;

winLocal.reshape (126,315,371,30);

typePrompt=new Label ("Type here:", Label.RIGHT) ;
typePrompt .setFont (new Font ("Helvetica", Font.PLAIN,12));
add(typePrompt) ;

typePrompt.reshape(7,330,112,15);

winAll=new TextArea(l1l9,60);

winAll.setFont (new Font ("Courier",Font.PLAIN, 10));
add(winaAll) ;

winAll.reshape(7,0,497,308);

showRoundTripCheck=new Checkbox("Show round trip time"};
add (showRoundTripCheck) ;
showRoundTripCheck.reshape(126,353,154,22);
showTimestampsCheck=new Checkbox("Show timestamp messages");
add (showTimestampsCheck) ;

showTimestampsCheck.reshape (315,353,182,22);

//%}}

showRoundTripCheck.setState (showRoundTripInitially);
showTimestampsCheck.setState (showTimestampsInitially) ;
winAll.setEditable(false);

winAll.appendText (about + "\n");

listener = new Listener(s, winAll, this);

typist = new Typist(s, winLocal, this);

}

public void stop() {
System.err.println("stop() called");
cleanUp () ;

super.stop() ;

}

public void cleanUp() {

System.err.println("cleanUp() called");

// remember these in case the user stops and restarts
showRoundTripInitially = showRoundTripCheck.getState();
showTimestampsInitially = showTimestampsCheck.getState();

// stop threads, remove windows and delete socket

if (typist != null && typist.running) {

typist.stop();

}

typist = null;

System.err.println("typist thread stopped and forgotten");

if (listener != null && listener.running) ({
System.err.println("about to stop listener...");
listener.stop();

System.err.printin("listener stopped ok");

}

listener = null;

System.err.println("listener thread stopped and forgotten");

removeAll () ;
System.err.println("windows deleted");

try {

if (s !'= null) {

s.close();

System.err.println("socket closed ok");
}

}

catch (IOException e) ({
System.err.println("Couldn't close socket: " + e);
}

s = null;

myAddressAndPort = "";

repaint () ;

}

public boolean keyUp(Event e, int key) {

// When the applet receives a key event, if it was a Return
// then it is dispatched to the typist thread.

int flags = e.modifiers;

if ((e.id == Event.KEY_RELEASE) && (e.key == '\n')) {
if (typist != null) {

typist.sendLine () ;

}

return true; // I handled it myself

} else {

return false; // I want someone else to handle it

}

}

public void paint (Graphics g) {
if (typist == null && listener == null && s =
g.setFont (new Font ("Helvetica",Font.BOLD,18));

null) {

g.drawString ("Not connected to server. Threads stopped.", 20, 180);

}
}

public void safelyAppendTextToMainWindow(String toBeAppended) ({
// trim top lines off the widget when we are near the max size
// or it will become full and it won't take any more.

TextArea w = winAll;

String text = w.getText();

while (text.length() + toBelAppended.length() > maxChars) {

int upTo = text.indexOf("\n");

w.replaceText("", 0, upTo+l);
text = w.getText ();

}

w.appendText (toBeAppended) ;

}

// { {DECLARE_CONTROLS
TextField winLocal;

Label typePrompt;

TextArea winAll;

Checkbox showRoundTripCheck;
Checkbox showTimestampsCheck;
//%}}

}

class Typist extends Thread {
protected PrintStream sout;
protected TextField w;

protected boolean running = false;
protected JavaTalkClient applet;
protected long linelId = 0;

public Typist(Socket s, TextField window, JavaTalkClient applet) ({
System.err.println("Making a typist...");

w = window;

this.applet = applet;

try {

sout = new PrintStream(s.getOutputStream()):;
System.err.println("Typist thread opened output stream to server");
}

catch (IOException e) ({

System.err.println ("Typist thread can't open output stream to
server") ;

running = false;

applet.cleanUp() ;

return;

}

this.start();

}

public void run() ({
System.err.println("Typist thread running...");

running = true;

}

protected void finalize() throws Throwable {

sout.close() ;

sout = null;

System.err.println("Typist thread closed its output stream.");
System.out.println("Typist thread stopped.");

}

public void sendLine() {
String line = w.getText();
w.setText("");

if (line == null) {
}

line = line.trim() + "\n";

if (applet.showRoundTripCheck.getState()) {
long timeSent = (new Date()).getTime() ;
sout.print ("TIMESTAMP myid:" + applet.myId
+ " lineid:" + lineId

+ " timesent:" + timeSent + "\n");

}

sout.print(line);

sout.flush();

lineId++;
}
}

class Listener extends Thread {
protected DataInputStream sin;
protected TextArea w;

protected boolean running = false;
protected JavaTalkClient applet;

public Listener(Socket s, TextArea window, JavaTalkClient applet) ({
System.out.println("Making a listener...");

w = window;

this.applet = applet;

try {

sin = new DatalInputStream(s.getInputStream()) ;
System.out.println("Listener thread opened its input stream.");

}

catch (IOException e) {

System.err.println ("Listener thread can't open input stream: " + e);
running = false;

applet.cleanUp() ;

return;

}

this.start();

}

public void run{() {
// listens to the socket and, whenever the server says something,
// puts it in the window.

System.out.println("Listener thread starting...");
running = true;

String line;

while (true) {

try {

line = sin.readLine();

}

catch (IOException e} {

System.err.println("Listener: error in readLine: " + e);
running = false;

applet.cleanUp() ;

return;

}

// Check if connection is closed (i.e. for EOF)

if (line == null) {

System.out .println("Listener got EOF from server: closing");
running = false;

applet.cleanUp() ;

return;

}

String roundTripPrompt = "";

if (applet.showRoundTripCheck.getState()) {
Date date = new Date();

int match = line.indexOf ("TIMESTAMP myid:"
+ applet.myId);

if (line.indexOf ("TIMESTAMP myid:"

+ applet.myId) != -1) {

int i1 = line.indexOf ("lineid:");

int j = line.indexOf ("timesent:");

String lineIdString =
line.substring(i+"lineid:".length(), j).trim();

int lineId = Integer.parseInt(lineIdString);

long timeSent = Long.parseLong (
line.substring(j+"timesent:".length())):

long timeReceived = date.getTime() ;

long roundTrip = timeReceived - timeSent;
roundTripPrompt = "[roundtrip: " + roundTrip + " ms] ";
}

}

// Show timestamp lines only on request,

// but show other lines all the time.

//

// NB: do not confuse "timestamp lines" with "roundtrip prompt"

// because they are different! The timestamp line comes in from

// the server, while the roundtrip prompt is generated locally.

// A timestamp line plus a message line take 2 passes round the loop:
// after each pass, the roundTripPrompt is printed, but it will

// be empty unless the line of the previous pass was a timestamp.

if (applet.showTimestampsCheck.getState()

|| (line.indexOf ("TIMESTAMP myid:") == -1)) {
applet.safelyAppendTextToMainWindow (line + "\n");

}

applet.safelyAppendTextToMainWindow (roundTripPrompt) ;

}
}
}

JavaTalk Readme File

Olivetti JavaTalk

1996 07 16

JavaTalkClient v. 1.25
JavaTalkServer v. 1.17

(c) 1996 Olivetti Research Limited

INDEX:

Introduction

Licence and copyright
What do you need?
Connecting as a user
Running a JavaTalk server
Acknowledgements

Packing list

Contact information

Introduction

JavaTalk is a simple but effective multiuser chat program. Someone
somewhere runs the server software and installs a suitable web page,
then everyone else can join the chat by simply going to that page with
their browser. You go to that page and whatever you type appears on
the screen of everybody else who is watching the page at the same
time. As simple as that! No messing around, no software installation,
no client software to run, no command set to learn. If you want to
give it a test drive, come to

http://badges.cam-orl.co.uk/~fms/javatalk

Writing a chat system in Java has been a popular idea with many
developers and if you search the web you'll certainly find many more
implementations. I know of at least four more. So what has JavaTalk
got for you that makes it better than the others? Well -- that's up to
you to decide, but here are three basic reasons to consider.

* GIMPLE. No complicated command set to remember. No operators, chat
rooms, privileges, private whispers or any of that stuff. Just go to
the JavaTalk page and anything you type is seen by everyone else. Zero
training needed.

* SMALL. The classes for the client software total less than 15K. That
means quick loading time, even on slow links.

* FREE. Because I've got a smart boss, both the executable and the
source are available to you for free, no licence form to £ill in, no
questions asked. You can use it as you wish on your own web pages, or
as an internal communication facility in your intranet.

Licence and copyright

Copyright (c) 1996 Olivetti Research Limited

Permission is hereby granted, without written agreement and

without licence or rovalty fees, to use, copy, modify, and
distribute this software and its documentation for any purpose,
provided that the above copyright notice and the following three
paragraphs appear in all copies of this software, its documentation
and any derivative work.

In no event shall Olivetti Research Limited be liable to any party
for direct, indirect, special, incidental, or consequential damages
arising out of the use of this software and its documentation, even
if Olivetti Research Limited has been advised of the possibility of
such damage.

Olivetti Research Limited specifically disclaims any warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The
software provided hereunder is on an "as is" basis, and Olivetti
Research Limited has no obligation to provide maintenance,
support, updates, enhancements, or modifications.

Derived or altered versions must be plainly marked as such, and
must not be misrepresented as being the original software.

What do you need?

* To participate as a client:

You need a Java-enabled browser. Then simply connect to a page
that runs a JavaTalk server (like for example the JavaTalk home
page mentioned above) and tell your friends to join you there at
the arranged time.

You don't need to download anything, neither the executable nor
the source release of JavaTalk. Everything you need will be picked
up automatically by your browser as and when you visit the web

page.
* To run your own JavaTalk server:

You need the ability to run a Java interpreter on the same machine
as your web server.

Grab the executable release, unpack it in its own directory, edit
the example web page i1f you want to, and launch the server.

* To modify the program:

You need a Java compiler and developer's kit. Currently available
for free from Sun, as well as for money from commercial vendors.

Grab the source release.

All of the above, plus info on newer versions if any, can be found on
the JavaTalk home page (see "contact info" at the end of this file).

Connecting as a user

Most of what appears in this section should be easy to figure out
without instructions, but I'll spell it out in detail just so that you
have a reference handy.

Go to the page of the JavaTalk server you want to connect to. The fact
of going to the page makes your browser download the applet and
connects you to the JavaTalk server.

When the applet has loaded you'll see two windows: a big one above and
a one-line one below. You type, one line at a time, in the one-line
window, pressing Enter after each line. What you type is sent to the
server which then echoes it back to the upper window of everyone who
is connected.

The echoed lines are prefixed with the name of the sender. You can set
your name to whatever you want by using the command "MYNAME xxX"
(commands are all uppercase so that they are unlikely to clash with
anything you normally type). Replace xxx with your chosen name, of
course. Don't choose a terribly long name or there won't be much room
left for your messages and people will have to scroll horizontally,
which is a nuisance.

Before you use MYNAME for the first time, your default name will be
the internet address and port number of the socket you are using to
connect to the server.

To see who else is connected to the server at the time, type "WHO"
(the second and last command understood by the current version of the
server) .

If you don't type anything for a while, the server will suspect that
you went away and will warn you. If you want to stay in, type
something (and press Enter to send it). Otherwise, after another
little while, you'll be disconnected.

(Technical note: this reaping process is performed to get rid of those
zombie users who used to appear as connected even though they had long
since gone away. It turns out that a known bug (SUN bug 1234731, see
http://java.sun.com/java.sun.com/products/JDK/1.0.2/KnownBugs.html) in
the Windows implementation of the Java socket libraries prevented the
JavaTalk server from detecting that they had gone away. So I
pre-empted the problem by kicking out inactive users, regardless of

whether their socket looked OK or not. If you run your own JavaTalk
server, you can customise the timeouts.)

When you are disconnected from the server, either because the server
kicked you out or because the server couldn't be contacted on the
given address and port (maybe because it wasn't running?) then the
applet will not display any windows or buttons: it will just say "Not
connected to server. Threads stopped." To reconnect (assuming the
server is there to connect to), just reload the page.

Every time you leave the page, you disconnect from the server (though
of course you won't see the above message because the applet won't be
visible any more). The other participants to the conference will get
the message "User xxx left the conference". Conversely, every time you
enter the page, you join the conference and again the others are
notified.

There are two checkboxes at the bottom of the applet that activate a
debugging feature to measure the time it takes for your messages to
travel from you to the server and back (the roundtrip delay). This is
done by sending a special extra timestamp line every time you send a
regular line. The server doesn't do anything special-- it just echoes
the timestamp like it does with every other line. Your client, though,
recognises it when it gets it and with some advanced mathematics
(namely a subtraction) it computes how long the message took to get
back. This time is then printed in the prompt that precedes the actual
message. All of this stuff is activated and deactivated with the first
checkbutton, the one that says "Show round trip time". The other one
("Show timestamp messages") ‘is rather useless unless you are me and
are trying to debug the timestamping protocol: it deactivates or
reactivates the filtering of the special timestamps. It probably
shouldn't even be there in a production release, and may disappear
without notice in the future.

Running a JavaTalk server

Note: throughout this section it is assumed that you have already
installed a Java environment on your system, and in particular that
the Java interpreter and the applet viewer are available on the
path. If this is not the case, do that first. (See
http://www.javasoft.com for details and software.)

Because of the restrictions imposed by Java's security model, an
applet can only make a TCP connection to the machine it was loaded
from. This means that the JavaTalk server must necessarily run from
the same machine as the web server that is serving the html page in
which the JavaTalk client applet is embedded.

For a quick start, make a JavaTalk subdirectory in your public html
directory and unpack the executable distribution in it.

For a test run, start the server with the default parameters (on my
systems I type "java JavaTalkServer") and, from another console on the
same machine, run the client inside the appletviewer (on my systems I

type "appletviewer index.html"). You should be able to type in the
bottom window of the client and see your messages echoed (by the
server) in the top window. Of course you can start more copies of
appletviewer and they will chat to each other.

To try out JavaTalk with your web browser instead of the appletviewer,
you'll have to edit the index.html page. Change the <param name=host
value=localhost> entry, replacing localhost with the fully qualified
Internet name of the machine where the JavaTalk server is running (for
example badges.cam-orl.co.uk). Then, ensuring that this page is served
by your web server (check the file permissions), you can point your
browser at it and you should see the applet embedded in the page.

Once you've checked that the supplied page works, you can start
modifying its text and layout to suit your purposes. It is
appreciated, but not required, that you keep the JavaTalk logo and the
link to the JavaTalk home page if you use the unmodified server and
client from the executable release. It is required that you do NOT use
the JavaTalk logo if you run your own modified versions of the
programs. You should instead say something like "derived from Olivetti
JavaTalk (hyperlink to the genuine thing) with unapproved
modifications".

As the server runs, it keeps a transcription of the talk in a log

file. Every time the server starts, it opens a new log file, named
after the current date and time and so very likely to be

unique. Killing and relaunching the server is the approved way to

start a new log file.

Note: the log will not contain all the messages that the server
normally prints on the console. If you want the server to shut up (but
still write to the log as usual), redirect its standard output and
standard error.

You can supply yvour own log file name if you want with a command line
parameter. If you give the name of an existing file, the file will be
overwritten, not appended to. You can give /dev/null, or its
equivalent on non-unix systems, if you don't want a log file to be
produced.

While we are on that subject, here are the parameters accepted by the
server, with their defaults: they are all optional. Note that the
server prints out a help message if you invoke it with "help",
"-help", "-h" and so on (actually, anything that's not a valid
integer) as the first parameter.

USAGE (all arguments optional and positional):
java JavaTalkServer warning afterWarning port logFileName

warning
(default 300)
After this many seconds of inactivity, the user gets a warning.

afterWarning
(default 60)
After this many extra seconds of inactivity after the first warning,

the user is kicked out.

port

(default 6764)

Port number on which to listen for connections. If you run
more than one server on the same machine, each one must listen

on a different port.

logFileName

(default javatalk.YYMMDD-HHMMSS.log, with suitable replacements)
A time-stamped transcript of everything the participants say
during the lifetime of the server goes here.

Because the arguments are positional, you can only omit arguments from
the tail end. For example, if you only want to specify a new port
number of 7000, you still have to give some value for warning and
afterWarning, as in

java JavaTalkServer 300 60 7000

It is accepted JavaTalk etiquette to tell your users, on the page with
the client, that all the chats are logged.

For pre-organised meetings, it is also accepted JavaTalk etiquette to
send a copy of the log to all the participants.

If you are editing the web page that contains the applet, you'll want
to know the parameters that the applet takes: they are listed below,
and they are shown in the example page.

port
(default 6764)
Port number to connect to. Please ensure that it matches the

port number that the server is listening on. You'll have to
change this value if you use many servers to provide several
chat rooms.

host

(default badges.cam-orl.co.uk)

Fully qualified name of the host that the server is running
on. You'll definitely want to change this one.

showRoundTrip
(default false)
Initial state of the "Show round trip" checkbox.

showTimestamps
(default false)
Initial state of the "Show timestamps" checkbox.

maxChars

(default 10000)

Maximum number of characters that will be accepted in the
scrolling window before we start chopping old stuff off the
top. Don't set it too high or the widget will fill and lock
up. (NB: 32K minus epsilon is still too high. Experimentally,

it locks up at about 27000, but I like to err on the side of
safety.)

JavaTalk doesn't have multiple "rooms" or "subconferences", but you
can implement this by dedicating a different web page to each. Of
course, behind each page must be a different instance of the JavaTalk
server, listening on its own dedicated port. This means that the
various pages will have to supply different values for the "port"
parameter.

The disadvantage of this scheme is that people can't open new
conferences dynamically. But the advantage (other than simplicity) is
that the conferences are completely decoupled and you can even safely
shut down the server for one of the conferences without affecting any
of the others that are running.

Acknowledgements

The working core of JavaTalk was written in two days of furious
hacking (9 & 10 May 1996). Alessandro Morales gets credit as the first
beta-tester: I dragged him in with an international phone call on the
evening of the 10th, as soon as I got the prototype to work. Quentin
Stafford-Fraser was always available to discuss Java issues and
contributed with helpful advice on many occasions. Adriano Vernassa
helped with stress-testing of the applet over poor routing conditions
(the roundtrip-measuring code went in because of the problems he was
experiencing). Hiang-Swee Chiang was kind enough to read through my
code before the public release and he came back with some helpful
comments. Harold Syfrig helped me track down a scrolling-related bug
in the client. My thanks to all these people, though of course any
bugs and shortcomings remain my responsibility.

Packing list

Note: you'll need an unzip program capable of dealing with long
filenames. There are free versions of such a program both for Unix and
for Win32. Alternatively you'll need a tar and gunzip pair, again
capable of long file names. Again, there are free versions of such
programs for both Unix and Win32.

I keep wondering why I can't get away with supplying only one flavour,
but then I'm a nice guy and I want to make your life easier, so please
pick the compression flavour that you're already familiar with. After

going to the trouble of providing two sets of distributions, I decided
to make the .tar.gz one more unixy (LF) and the .zip one more windowsy
(CRLF). This only affects the line terminators in the text

files. Everything else is exactly the same.

Executable release:

JavaTalk-executable.zip or JavaTalk-executable.tar.gz

./readme.txt this file

./client/index.html sample web page containing the applet
./client/javatalk.gif JavaTalk logo appearing on page
./client/*.class classes implementing the client applet
./server/*.class classes implementing the server

Source release:

JavaTalk-source.zip or JavaTalk-source.tar.gz

./readme.txt this file
./JavaTalkClient.Java source for the client
./JavaTalkServer.Java source for the server

In case you're wondering, I developed the software with Symantec Cafe'
under Windows 95. I normally run the server on Unix (Solaris). I tend
to run the client on Windows via Netscape but I occasionally run it
from Unix too (Solaris and OSF, again with Netscape) .

Contact information

I welcome your feedback. If you want to be kind, start your subject
line with "javatalk" so that the message will go in the right mail
folder by itself.

Frank Stajano (filologo disneyano)
Olivetti Research Limited

24A Trumpington Street

Cambridge CB2 1QA

UK

http://www.cam-orl.co.uk/~fms
mailto:fstajano@cam~orl.co.uk

The JavaTalk page: http://badges.cam-orl.co.uk/~fms/javatalk

--— END of readme.txt ---

JavaTalk Example Web Page

<html>

<head>
<title>JavaTalk 1l.1l</title>
</head>

<body>
<!-- Ingert HTML here -->

<p align="center"> </p>

<p align="center">

<applet code="JavaTalk.class" width="415" height="300">
<param name="host" value="cyclonus.mit.edu">
<param name="port" value="600">

</applet>

</p>

</body>

</html>

Viewing Room Prototype Page

<html>

<head>
<title>JavaTalk l.l</title>
</head>

<body>
<l-- Insert HTML here -->

<p align="center"> </p>
<p align="center"><embed width="128" height="128" src="Episode3l2.ram"></p>

<p align="center">

<applet code="JavaTalk.class" width="415" height="300">
<param name="host" value="cyclonus.mit.edu">
<param name="port" value="600">

</applet>

</p>

</body>

</html>

Lori Robertson (ERA), 02:34 PM 5/24/00 +0200, RE: [Fwd: Media Lab Notes on key points]Page 1 of 2

From: "Lori Robertson (ERA)" <Lori.Robertson@era.ericsson.se>

To: deco@media.mit.edu, gid@media.mit.edu

Cc: "Fiona Williams (EED)" <Fiona.Williams @ eed.ericsson.se>
Subject: RE: [Fwd: Media Lab Notes on key points]

Date: Wed, 24 May 2000 14:34:17 +0200

X-Mailer: Internet Mail Service (5.5.2651.58)

X-OriginalArrivalTime: 24 May 2000 12:32:17.0953 (UTC) FILETIME=
[193A4910:01BFC57C]

Dear Gloriana,
| would like to try to have a short telephone conference with you prior to the 31st of May. |

have been

speaking with the 2 potential fellowships from our lab regarding the possibility of doing their
studies in conjunction with MedialL.abEurope. | have a number of practical questions
regarding how

to proceed with their continued studies.

Both candidates could consider doing their doctorate courses at a University in Ireland

such
as Trinity College - Computer Vision & Robotics Group. We are currently investigating

universities that
have similar programs of interest.

Could you possibly contact me at + 46 8 404 69947 | can also be reached at + 46 70
5816354.

Best Regards,

Lori Robertson

----- Original Message-----

From: Terry Turner [mailto:tt@broadcom.ie]

Sent: den 17 maj 2000 16:08

To: deco@media.mit.edu; gid @media.mit.edu

Cc: fiona.williams @ eed.ericsson.se; lori.robertson @era.ericsson.se
Subject: [Fwd: Media Lab Notes on key points]

Hi Deb and Glorianna,

On behalf of Fiona, attached is a file produced directly after the
meeting today.

Best regards,

Terry

Printed for Glorianna Davenport <gid @media.mit.edu> 5/24/00

Lori Robertson (ERA), 02:34 PM 5/24/00 +0200, RE: [Fwd: Media Lab Notes on key points]Page 2 of 2

Terry Turner
R&D Operations Manager

Broadcom Eireann Res. Ltd. Phone: +353 1 6046028
Kestrel House Fax: +353 16761532
Clanwilliam Place

Dublin 2

Printed for Glorianna Davenport <gid @media.mit.edu> 5/24/00

