
 1

Interactive Cinema
Technical Note

August 1993

LogBoy and FilterGirl:
Tools for Personalizable Movies

Ryan Evans
Interactive Cinema Group
MIT Media Laboratory

Abstract
LogBoy and FilterGirl constitute a toolkit designed specifically for building
personalizable movies which use a fluid interaction mode. Fluid interaction is an
important interaction metaphor which relies on narrative playout which is
uninterrupted by the interface. By avoiding periodic viewer queries, fluid interaction
encourages reverie and continuity in storytelling. Fluid interaction requires not only
an interactive story structure, but also a machine-readable representation of content.
LogBoy and FilterGirl provide tools for these ends. LogBoy is a video database tool
which allows the moviemaker to attached descriptions to video clips. LogBoy's
interface provides a graphical "overhead" view of descriptions which aids in the
creative process. FilterGirl provides a way for creators to quickly and easily create
personalizable story structures. FilterGirl implements a filter-based story description
language as well as a story structure previewing facility. Functionality of the tool set
is discussed as well as interface design and implementation details.

 2

1. Introduction

LogBoy and FilterGirl are two complimentary applications (a video database tool and a
story structure editor) which make up a tool kit for the creation of personalizable movies.
Personalizable movies are movies which can be tailored to the preferences of a particular
viewer using parameters defined by the creator of the movie. LogBoy and FilterGirl are
specifically designed to create personalizable movies which make use of a fluid
interaction mode. Fluid interaction is an interactive paradigm which stresses reverie and
storytelling by presenting the personalizable movie in an uninterrupted format based on
user preferences.

Often, essential storytelling conventions (e.g. reverie and continuity) suffer in the context
of interactive narratives because the viewer is periodically interrupted by the interface.
For example, the typical computer adventure game repeatedly asks the viewer (either
explicitly or implicitly) which way he or she wants to go and will not continue until that
decision is made. This type of interface makes it difficult to tell a coherent story since the
viewer must constantly worry about driving the story on to the next stage rather than the
progress of the story itself.

Fluid interaction provides uninterrupted interactive stories by presenting interactive
movies in an uninterrupted format based on user preferences. Under this paradigm the
burden of driving the story on to the next stage no longer lies with the viewer. Instead,
the computer drives the playout of the story guided by parameters set by the user. For
example, the viewer might set a violence level parameter before watching a favorite
television show. The show would then play out with the amount of violence the viewer
was interested in.

Fluid interaction requires that the computer not only use some kind of interactive story
structure, but also representation of content. LogBoy and FilterGirl are tools for modeling
content and interactive story structures. LogBoy is a video database tool which provides a
view of video descriptions suited particularly for interactive narratives. FilterGirl is a
interactive story structure editor designed specifically for creating fluid personalizable
narratives. This document describes the LogBoy/FilterGirl tool set in detail. Chapter 2
describes LogBoy's video description framework and user interface. Chapter 3 describes
FilterGirl's filter language for creating interactive narratives, user interface and
debugging options. Chapter 4 briefly outlines the implementation of the tool kit.

 3

2. LogBoy Design

LogBoy is a database tool for creating and editing descriptions which are attached to
video clips. LogBoy differs from traditional video loggers and computer database
applications in three respects. First, LogBoy is designed specifically as a tool for creating
descriptions for personalizable movies which rely on description based content selection.
As such it provides the moviemaker with an "overhead" view of the database which can
point out database properties in relation to a particular story structure. Second, LogBoy
allows the author of an interactive movie to engage in truly iterative design since it is part
of a single-platform, integrated toolkit for creating and editing personalizable movies.
Finally, LogBoy encourages sketchy descriptive bases for content. Sketchy descriptions,
as discussed in Chapter 2, provide an efficient representation paradigm for content
designed for limited reuse (e.g. personalizable movies).

2.1. Video Clips
LogBoy’s basic unit of content is the video clip. As discussed in Chapter 2, a video clip is
a non-overlapping segment of video with a specified beginning and end point. Under this
paradigm all descriptive structures associated with a clip are valid for the entirety of the
segment. The presentation of a personalizable movie is ultimately made up of a
computationally selected sequence of video clips. Video clips are, by definition, always
shown in their entirety. One of the major reasons that LogBoy uses the video clip as a
database model is to avoid the problem of computationally choosing valid in and out
points for a segment of video. This provides a well-defined division of labor between the
human filmmaker and the computational clip selector. The human decides what
constitutes a good clip while the clip selector (with guidance from human created story
structures) decides what constitutes a good sequence of clips.

Video clips are represented graphically within the LogBoy environment as draggable
icons. Figure 1 shows a collection of four video clip icons. Each icon shows a key frame
from its associated video clip along with two buttons used for obtaining more
information. The info button, indicated by the question mark, opens a window which
displays important information about the video clip. Currently, this includes the location
of the clip on the hard disk, the title of the clip and descriptions which have been attached
to this clip in LogBoy. The playout button, indicated by the greater-than sign, opens a
digital video playout window in which the video clip can be previewed in its entirety.

2.2. Slots and Values
Descriptions in LogBoy are stored in a simple slot and value structure. This means that
each database (collection of video clips) has some associated characteristic types called
slots. Each clip has one or more values associated with it for each slot. This means that
each clip has the same set of slots as every other clip in the database, while the values
within those slots are unique to each clip. Typical slots might include "characters that

 4

appear within the clip", "location where clip takes place" or "part of the story". (Often
slots are given shorter, mnemonic names such as "Characters" or "Setting".) Values take
on meanings only in relation to these slots. For example, a particular clip might have the
value "Betty" within its "Characters" slot or the value "New York" in its "Setting" slot.
The slot/value structure is discussed in more detail in Chapter 2. The LogBoy system
allows the filmmaker to associate zero, one or multiple values with each slot for a video
clip. Figure 2 shows a conceptual model of slots and values attached to video clips.

Figure 1: A collection of four video clip icons.

Figure.2: A conceptual model of slots and values attached to a video clip.

 5

The LogBoy application does not limit the moviemaker to a specific set of standard slot
types, nor does it limit the number of slots that may be associated with a clip database.
This is because LogBoy is designed to create video databases in conjunction with
personalizable story structures. In creating content-based personalizable movies, the
descriptions in the content database are generally paired closely with the content selection
mechanisms and interactive story structures. This means that the creator can use sketchy
descriptive bases and highly personalized description spaces that might not make sense
within some more generalized content selection scheme.

2.3. A Graphical Description Space

LogBoy represents the three major components of its database structure {video clips,
slots and values) graphically to create a description map of the database. As described
above, video clips are represented on the screen as key frame icons. The position of an
icon on the screen gives the user information about the descriptions attached to it.
Additionally, these icons can be repositioned to change their descriptions.

To show the descriptions attached to a video clip slots and values are also shown
graphically on the screen. Slots are represented as windows within the Macintosh
environment {called "slot windows") and values are represented as colored, rectangular
areas within slot windows {called "value areas"). If a video clip icon is positioned within
a value area which is in turn located within a slot window then that value is attached to
that video clip for that slot. Repositioning the clip icon into a different value area will
change its attached description for that slot. Multiple slot/value pairs may be attached to a
particular video clip by using multiple instances {copies) of its key frame icon.

Figure 3 shows a typical LogBoy session including clip icons, slot windows and value
areas. In this example the database currently includes six video clips and three slots. Each
of the three windows ("Mood", "Setting”, "Characters") depicts the descriptive structures
for its associated slot. Each slot window contains value areas and video clip icons. Video
clip icons within value areas inherit slot/value pairs based on the window in which they
appear and the value area in which they reside. The same icon can appear in multiple slot
windows so that multiple slot/value pairs may be associated with it. For example, the icon
which appears in the" Alice" value area of the "Characters" slot inherits the "Characters"/
"Alice" slot/value pair. The same icon also appears in the value area "Happy" within the
slot window "Mood" and the area "New York" in the window "Setting”. Thus the
slot/value pairs associated with this clip are "Characters"/ "Alice", "Mood"/ "Happy" and
"Setting"/ "New York". Pressing the info button (marked with a question mark) on the
bottom of the clip icon opens a description window for that clip which lists all of the
associated slot/value pairs (see Figure 4).

 6

Figure 3: A typical LogBoy scene with three slot windows.

 7

Figure 4: A clip description window containing slot/value pairs.

LogBoy not only displays descriptions graphically, but the logging process is also
graphical. Slot/value pairs attached to clips can be changed by simply dragging the clip
icon to another value area within a slot window. Value areas as well as slot windows are
draggable and resizable. Value areas can be added and deleted through the "Value
Operations" menu available in each slot window. Slot windows and video clips can be
manipulated via LogBoy's control window. (A typical control window is shown in Figure
5. This control window corresponds to the session shown in Figure 3.) The control
window contains a list of all currently defined video clips in the database (listed by their
titles) along with a list of all currently defined slots in the database. Slots can be added
and deleted via the "Slot Operations" menu. Video clips can be added and deleted via the
"Clip Operations" menu. Slot windows can be opened by double clicking on their title in
the list. Video clip description windows can also be opened by double clicking on their
description in the list.

Figure 5: The LogBoy control window showing a list of video clips and a list of slots.

 8

2.3.1. Slot Window Filters

Slot window filters provide a way for the creator to effectively make simple database
queries and also manage icons within slot windows by showing or hiding the clip icons in
a slot window. Slot window filters work in a similar way to the story filters described in
the next chapter, however slot window filters (currently) only come in one flavor while
story filters come in about a dozen different types. Slot window filters simply include or
exclude clips that have a particular description (slot/value pair) attached to them in
LogBoy.

Slot window filters can be applied via the two menus available at the top of each slot
window. The top menu allows the user to select between "Show All Clips", "Show Only
If' and "Show Only If Not", while the bottom menu allows the user to select a slot/value
pair from a list. All possible slot/value pairs are available in this menu even if they are
not currently used. Figure 6 shows the effect of different filters on the "Characters" slot
window originally shown in Figure 3. The top window in Figure 6 shows the
"Characters" window with a "Show Only If” "Mood = Happy" filter applied. This filter
hides all clip icons which do not meet this descriptive criterion. Similarly, the bottom
window shows the "Characters" window with a "Show Only If' "Setting = Paris" filter in
effect. This hides a different selection of icons.

Slot window filters are helpful in two ways. First, the filmmaker can make simple
Boolean queries in a slot window. For instance, in the first window it is very easy to pick
out all of the clips which both contain the character “Matthew” and are described as
being “Happy.” Second, the set of video clips within a particular slot window can be
simplified to include only clips which are relevant to the characteristic described by that
shot. This can be helpful in more complicated databases when a particular characteristic
(i.e. slot) is not relevant to an entire set of clips. For instance, imagine a moviemaker
creating a personalizable movie which includes both a chase scene and a dialog scene.
She might want to describe each of the clips in the dialog scene by the topic of
conversation depicted. To do this she would create a "Conversation Topic" slot for the
database. Obviously, this characteristic has no bearing on clips intended for the chase
scene. If she made a slot called "Scene" with two values "Chase" and "Dialog" and
logged the database under these slots and values, she would be able to hide all of the
chase scene clips within the "Conversation Topic" slot window. In many cases this
greatly increases the understandability of a slot window and reduces visual complexity.

 9

Figure 6: A slot window with slot window filters applied.

2.4. LogBoy and Personalizable Movies

LogBoy's graphical interface to the database provides the filmmaker with a way to
visually scan and evaluate a collection of clips for specific descriptions, anomalies and
general trends. In LogBoy it is very easy to quickly get an idea for how the database as a
whole is divided under a certain characteristic. For instance, in the small database shown
in Figure 3 we can see very quickly that there are many more "Happy" clips than "Sad"
clips in the "Mood" slot window.

 10

This interface works particularly well for designing databases for computational shot
selectors and personalizable moves. This is because the filmmaker must make sure that
the shot selector has a fully populated database into which it can make queries. The
selector cannot ask the database for a close-up of Alice in New York when none exists.
The graphical nature of LogBoy allows the filmmaker to quickly scan the database to
make sure it is fully populated. FilterGirl also helps in the task of fully populating a
database. This process is described in the next chapter.

These same qualities which make LogBoy ideal for use in creating personalizable movies
detract from it's use as a" more general database tool. The LogBoy interface has a
practical limit on the number of clips which may be stored in one database. This is
because the screen and windows become very cluttered with icons when working with
large databases. This is almost never a problem when creating personalizable movies
since the number of clips for a particular movie is generally small because each clip is
designed for use in that movie alone. Similarly, there is also a practical limit on the
number of descriptive structures (slots and values) that can be built in one LogBoy
database. Similarly, this is because the screen real estate will become very cluttered and
confusing. Luckily, this is even less of a problem in creating personalizable narratives
since descriptions are closely tailored to work with a particular shot selector mechanism
resulting in sketchy descriptions.

3. FilterGirl Design

FilterGirl allows a maker of interactive movies to create, edit and preview simple story
structures in conjunction with a LogBoy created database of clips. FilterGirl's design
centers around filters which come in several different types. The several filter types
provide a flexible, hierarchical language within which time dependent and context
dependent movie structures can be built. This chapter describes the filter types and their
behaviors, how the author can create and edit filter instances, how filter based movies can
be previewed and debugging options.

3.1. The Filter Types

At the simplest level a filter takes a set of video clips as input and returns some selected
subset of those clips as output (see figure 7). Filters can select clips based on descriptions
which have been created in LogBoy (e.g. all of the clips containing the character Nicole).
More complicated filters can be constructed by taking advantage of the simple interface
between any particular filter and the clip database (i.e. a set of clips as input, some subset
of those clips as output). This simple interface allows the creator to combine multiple
filters in many interesting ways. Set operations (e.g. set intersection or set union) become
possible for clip selection by chaining the inputs and outputs of filters. Dynamic, time-
dependent story structures can be modeled by swapping filters with other filters as the
viewing experience plays out. Additionally, filters can be selected in real time based on
viewer input or more complicated context dependent means (e.g. rule bases).

 11

Figure 7: A typical filter.

FilterGirl effects many of these filter combinations by providing the creator with a varied
set of filter "types" from which to create story structures. Filter types have been
constructed which implement clip selection by set operations, simple templates, time
dependent structures, context dependent means and viewer interaction. The more
complicated filter types may contain other, simpler filters within themselves and combine
their behaviors according to predefined rules. For example, the "multi-filter" filter type
(see below) implements traditional set intersection by containing two or more other filters
within itself. Each of the defined filter types is described below.

3.1.1. Basic Filter

The basic filter is also sometimes called the identity filter. It outputs exactly the same set
of clips which are given to it as input. It is useful as a placeholder in time dependent
structure when the creator does not want to filter out clips, but needs to place a filter
between other filters. It is also useful when creating new types of filters since the basic
filter forms the CLOS super-class from which all other filter types inherit their basic
behavior.

 12

Figure 8: A description filter which selects clips described as containing the character
Jack.

3.1.2. Description Filter

The description filter is the simplest and most widely used of all of the filter types. Any
particular instantiation of a description filter selects only clips which have a particular
description attached in the LogBoy application. Thus a movie maker can create a
description filter which selects only clips in which a particular character appears, which
take place at a certain location or have some other particular characteristic described in a
LogBoy database. Each instantiation of a description filter only selects clips on one
specific description. Figure 8 illustrates a description filter which selects only clips in
which the character Jack appears. When selecting on combinations of descriptions the
creator must rely on more complicated filters to combine description filters (e.g. the
multi-filter). As noted in previous chapters, descriptions in LogBoy are annotated as

 13

slot/value pairs (e.g. Character/Nicole). This is the format in which descriptions are
specified within a description filter.

Figure 9: The multi-filter.

3.1.3. Set Operation Filters

The set operation filter family implements simple set operations such as intersection,
union, negate, etc. As such, they are not dependent on an internal clock, viewer
interaction or the context of their operation. The set operation filter types provide the
simplest means of combining other filters.

3.1.3.1. Multi-Filter (Intersection Filter?)

The multi-filter allows the movie maker to combine two or more filters with a set
intersection operation. Each of the combined filters is run in turn and the common clips
which are selected by all of the filters are gathered as the output of the multi-filter. Figure
9 shows a multi-filter instance which combines two description filters. The first of the
description filters selects only clips in which the character Nicole appears. The second

 14

description filter selects clips which are located on the beach. The multi-filter combines
the outputs of its contained filters using set intersection so the output of the multi-filter
consists only of clips which are described as containing Nicole at a beach location.

3.1.3.2. Union Filter

The union filter implements the set union operation on two or more inner filters. Each of
the inner filters are run in sequence and all of the clips returned by the filters are gathered
as the output of the union filter (duplicate clips are removed). For example, a union filter
could be used to combine a "Character = Jack" description filter with a "Character =
Nicole" description filter to return all clips in which either Jack or Nicole appears.

3.1.3.3. Negate Filter

Any instantiation of the negate filter type contains exactly one filter inside of it. The
negate filter essentially inverts the behavior of its contained filter by returning all clips
given as input to the negate filter which are not returned by the inner filter. A simple
example: by putting a "Location = Beach" description filter inside of a negate filter one
can create a filter which selects all clips which do not take place at the beach.

3.1.4. Context Dependent Filters

There are two generalized types of context dependent filters: the rule filter and the eval
filter. Their behavior can depend on arbitrary aspects of the movie playout state and
viewer interaction. Other filter types not in this section also depend on particular parts of
the movie context, but rule filters and eval filters allow the movie maker access to any
part of the movie state by allowing arbitrary lisp expressions.

3.1.4.1. Rule Filter

The rule filter makes use of an arbitrary lisp predicate (a predicate is a function which
returns either true or false) to choose which of two contained filters to make valid. If the
predicate returns true the "then filter" is chosen. If the predicate returns false the "else
filter" is chosen. The predicate function has access to all parts of the movie state such as
viewer interfaces, previously shown clips (the movie transcript), the entire clip database
and the state of other filters in the movie. For example, suppose one wanted to build a
filter which would introduce the character Jack only if he has not been introduced yet. A
rule filter could be built with a predicate which would reference the movie transcript to
see if any clips of Jack have been shown yet. If clips of Jack have been shown then it
might choose a different character. If clips of Jack have not been shown then it would
choose an introductory clip of Jack.

3.1.4.2. Eval Filter

Rather than containing and combining other filters, the eval filter contains arbitrary lisp
code which evaluates into a filter object. This allows the movie maker a way to construct

 15

filters on the fly which can depend on any part of the movie state including the clip
database itself, the transcript of previously shown movie clips, viewer interfaces and the
state of other filters in the movie. Eval filters also provide a way to hook into existing lisp
programs which might be useful in creating more complex interactive behaviors (e.g.
network applications, expert systems, etc.).

3.1.5. Template Filters

The template family of filters includes filter types which apply their contained filters over
time. This makes it simple for the creator to sequence clip playout over time or across a
viewing experience.

3.1.5.1. Shot Template Filter

The shot template filter is the most familiar of the template filters. It provides the
capability of making filters valid in sequence, one filter per clip, as the viewing
experience plays out. This capability allows the creator to guide the playout of the final
movie on a clip by clip basis. Figure 10 shows a shot template filter which contains four
filters inside of it. The filters represent four steps in the process of a character, Woody,
cooking an omelet. In this example, the shot template filter is currently set to the third
internal filter, meaning that the first two shots have already been shown in this movie and
that only the third filter will be used in selecting a subset of the clips on the input.

Any instantiation of the shot template filter type" can be set to repeat when it reaches the
end of its filter sequence. This option can be used to create simple looping structures.

3.1.5.2. Time Template Filter

The time template filter allows the movie maker to specify clocked lengths of time over
which specific filters are valid. This is done by associating a "start valid time" and an
"end valid time" with each filter inside the time template filter. The time template filter
watches the system clock and routes its input through the appropriate internal filters. For
example, we could make a movie which starts with 60 seconds of clips featuring the
character Nicole, continues with 120 seconds featuring the character Jack and ends with
30 seconds of clips featuring both characters. If two or more filters are scheduled to be
valid during the same time period their outputs are combined with set intersection, as
with the multi-filter. If other combinations are desired more complicated filter structures
can be built with multiple time template filters. (Note: Filter valid times only specify
when filters are turned on and off. The clips that are selected may in fact run over these
times.)

The time template filter has a repeat mode much like the shot template filter, which zeros
its internal clock when filter valid times have been run through. Also, the time template
filter can run off of one of two separate internal "clocks". The first choice is the absolute
clock provided by the system. This behaves as expected. The second choice is to add up
the length of all clips which have already been viewed and match this time against the

 16

filter valid times. This allows the viewer to skip over unwanted clips and move on to later
clips without disturbing the normal playout.

Figure 10: A shot template filter.

3.1.5.3. Advancable Template Filter

The advancable template filter is the most powerful of the template filters. It is useful
when the movie maker wishes to abstract the development of a personalizable movie into
sections or scenes. The advancable template filter works much like the shot template
filter in that it contains a list of filters within itself and makes them valid (turns them on
and off) in sequence. Unlike the shot template filter, the advancable template filter does
not move to the next filter in its sequence after each shot is played out. Instead, it
advances to the next filter when it receives a special signal.

This signal, called the end of filter signal, can be generated by any type of filter which
can contain another filter. This is because the end of filter signal can take the place of a
normal filter. When an end of filter signal is called upon to filter a set of clips, it instead
sends a signal to the advancable template filter which contains it. This signal tens the
advancable template filter to can on the next filter in its sequence to narrow the clip set.

 17

Figure 11: A simple advancable template filter.

Some details about advancable template filters: First, more interesting behaviors can be
constructed with the advancable template by embedding end of filter signals inside of
context dependent filters or interaction filters. This allows for movies of variable lengths.
Second, if an end of filter signal has no advancable template filter "containing" it to catch
the signal, then the signal is caught by the top level filter driver, the movie experience
ends and the viewer is notified that the experience is over. Third, advancable templates
have a repeat flag just like shot template filters, which allow the construction of simple
looping structures.

3.1.6. Interaction Filters

Interaction filters provide simple on-screen interfaces to the viewer which allow him or
her to easily change the behavior of specific filters, thus affecting the playout. Currently
only one simple type of interaction filter has been implemented, but more complicated

 18

interaction filters could be built which were more suited to particular types of
personalizable movies (e.g. sliders for ranges of values, graphical dialog items which
related to the theme of the personalizable movie).

Figure 12: An instance of the choose one filter type.

The canonical filter family includes filters which could be created with the other filters
types, but are so commonly used that they are included as part of the provided filter
types.

3.1.7.1. Continuity Filter

The continuity filter is a specialized type of context dependent filter which keeps track of
descriptive "variables" as the movie plays out. It allows the author to specify one
descriptive slot which is to be matched or not matched from clip to clip as it plays out.
Options include match slot value to last clip's slot value, match slot value to next to last
clip's slot value, match slot value to first clip's slot value. The inverse of each of this is
also available (e.g. do not match slot value to last clip's slot value). This provides
"continuity" for the movie at the most basic level. For example, a continuity filter could

 19

be used to make sure all the clips in a movie featured the same character. More
complicated continuity structures can be built with the eval filter.

3.1.7.2. Suppress Duplicates Filter

The suppress duplicates filter removes clips which have already been presented to the
viewer (i.e. appear in the clip transcript). This is often a desired behavior when several
similar types of clips might be used in repeated sequences.

3.1.8. Filter Combinations

Most of the power of using FilterGirl as a language for dynamic content selection comes
from combining the many different types of filters in interesting ways. Some of the
simplest combinations are easy extensions of the filter types mentioned above. For
example, the multi-filter can be used to combine two or more description filters and
create a more closely specified selection of the database (e.g. clips in which the
characters Nicole and Woody appear on the beach flying a kite).

Another interesting use of the multi-filter is to combine the different types of template
filters. For example, we could use a multi-filter to combine two shot template filters to
create a dialog between two characters. The first template filter would define the structure
of the dialog (e.g. a question then a story then a reaction and so on) while the second
template would define the cutting back and forth between the two characters (e.g. first
show a clip with the character Dave then the character Thomas). The multi-filter would
take the intersection of these templates at each point resulting in a question from Dave
then a story from Thomas and so on. In this way we have abstracted away the structure of
the dialog from the character specification. Now, assuming our clip database is rich
enough, we can change the dialog structure without modifying the way the characters
appear and we can modify the characters that appear without changing the nature of the
dialog (e.g. an argument between the two characters or a normal dialog between new
characters).

Many other interesting types of combinations can be imagined such as advancable
template filters which advance based on signals from interaction filters, advancable
template filters which advance based on signals from rule filters, eval filters which create
time template filters (to give the viewer control over playout time) or time templates
combined with repeated shot templates.

3.2. Creating and Editing Filters

Instances of all of the filter types can be created and edited interactively with the
FilterGirl application. The command center of FilterGirl is the "filter control window".
The filter control window contains a list of all currently defined filter instances along
with a list of currently running filters and controls for editing and manipulating the filters.
Figure 13 shows a snapshot of the filter control window during a typical session with
FilterGirl. The list in the upper left comer includes all currently defined filter instances

 20

while the list at the bottom includes all of the currently running filters. Remember, since
filters can contain other filters some of the filters in the top list not listed in the running
list may be called during a session if they are contained within another running filter. The
buttons along the right hand side allow the author, among other things, to start a playout
with the currently running filters, create new filters and open editing windows for filters.

To create a new filter instance, the moviemaker selects a filter type from the "new filter"
pull down menu and a new instance is created. An editing window is opened for the new
instance that allows the author to change the internal parameters which vary the behavior
of the filter. Opening edit windows for existing filter instances takes place in a similar
way. The filter instance is selected in the top list and the "open filter script" button opens
the editing window. Double clicking on a name in any filter list (including lists of filters
included within other filters) has the same effect.

Figure 13: The filter control window during a typical FilterGirl session.

Figure 14 shows a prototypical filter editing window. It is an editing window for the basic
filter type and includes features common to all filter editors. All editing windows display
the filter type, the filter name and comments about the filter. They also include a button

 21

which allows the user to redefine the attributes at any point. Redefining the filter records
all of the currently displayed (perhaps new) information as the parameters of this filter
instance.

Figure 14: An editing window for an instance of the shot template filter type.

 22

Edit windows for more complicated filters add more parameters below the common
parameters. Figure 14 shows an edit window for a typical instance of the shot template
filter. In addition to the filter type, instance name and comments there are two more
parameters which correspond to the parameters described in the section on shot template
filters above. First, the template list contains an ordered list of all of the filters within this
shot template. Filters can be added by dragging and dropping from any other filter list
(including the filter control window). Filters can be removed from this list by dragging to
the "trash" icon at the bottom. Second, the repeat-template-p checkbox is a flag which
tells the shot template filter to repeat when it reaches the end (rather than sending an end
of filter signal). Edit windows for other filter types work in similar ways by adding
interfaces for the various parameters below the standard information.

Filter sets can be saved out through the menu bar. By selecting "Save Filter Set" from the
main menu, the author is prompted for a file name to which all currently defined filters
are to be saved. Similarly, a filter set can be loaded through the same menu.

3.3. Running a Filter Story

FilterGirl provides facilities for previewing filter based story structures while filters are
being built. This requires not only that a set of filters be defined in FilterGirl, but also that
a clip database created in LogBoy be loaded. Loading a clip database is accomplished
through FilterGirl's main menu. Previewing takes place by pushing the "run filter story"
button on the filter control window. This opens a playout window which displays the
movie as a viewer would see it. The playout window includes buttons to pause, resume
and skip ahead one clip in the current playout.

Previewing the movie is accomplished by applying in sequence the filters in the running
filters list to the loaded database. Each application of the filters results in some non-
empty subset of clips. One is chosen arbitrarily and presented to the viewer. When
FilterGirl has finished presenting the clip, the filtering/presentation process is repeated.
This continues until an end of filter signal or an end of movie signal is passed out of one
of the filters in the running filters list. Either of these signals will end the current playout.

There is one caveat to the layered filtering process explained in the previous paragraph.
The empty set rule (described at the end of Chapter 3) is in effect during the filtering
process. This means that the filters in the running filter list are applied in top to bottom
order. If any of the filters returns an empty set of clips then FilterGirl stops the filtering
process and returns (as its ultimate output) the input to the filter which returned the empty
set. This provides a simple way to assure that FilterGirl will never come up empty handed
when trying to select a clip to present to the viewer. This rule also means that the
filmmaker must prioritize the running filters. In this prioritization scheme, the most
important filters (e.g. basic story structure) come first in the list while the less important
filters (e.g. user interaction, stylistic structures) come later in the list.

 23

3.3.1. Debugging Output

Used by itself, the playout window simulates the viewer's experience closely, but
provides a poor representation of the inner workings of the layered filtering process. To
help provide a clearer view of how the filters manipulate the database FilterGirl has a
debugging output which presents textual information regarding the input and output of
specific filters in the running filter set.

The debugging output feature of FilterGirl can be turned on via the main menu. In the
debugging output the filter layers are listed down the left-hand side of the text window
while a histogram of the number of clips presented as input to each filter layer is printed
on the right-hand side of the window. The two streams of information are interleaved so
that the filter layers are synchronized with their input and output on the histogram (i.e.
the number of clips fed into the filter layer is printed on the line directly above the filter
layer's line and the number of clips output from the filter layer is printed on the line
directly below). Additionally, each filter layer name is indented to represent how deep it
is within the filter hierarchy. Unindented filter names are at the top level (i.e. the running
filters list in the filter control window) while each successively indented filter name is
contained within the previous filter name. This interleaved filter and clip histogram
output is repeated for each clip selection. When the empty set rule is called into effect
(i.e. when one of the filter layers returns an empty set of clips) a warning is printed in the
debugging output window.

Figure 15 shows a typical FilterGirl debugging output for two clip selections.
There are two top level filters in this scenario. The first is a shot template filter named
"Joe and Nick Argue" while the second is a suppress duplicates filter named "Suppress
Duplicates". In the first selection the filter "Joe Accuses Nick" has been selected from the
shot template filter list. It is a multi-filter which contains three description filters which
each successively narrow the selection. The suppress duplicates filter narrows the
selection to a single clip which is then presented to the viewer. The second clip selection
is very similar, except now the next filter in the shot template filter list has been selected
and it contains two description filters.

The debugging output provides a good picture not only of how each filter affects the clip
selection process, but also exactly which filters are caned upon during each stage of the
movie experience. This provides an interactive previewing and debugging environment
for personalizable movies.

 24

Figure 15: Part of a typical debugging output.

3.3.2. Creating an "EDL"

FilterGirl has a second previewing option which can be used to create multiple linear
non-interactive edits from a personalizable filter structure. This feature, rather than
actually playing each digital movie file, creates a list of the pathnames of each digital
movie file. This list can then be used to create a linear digital movie which represents a
specific playout of the personalizable movie. The list of pathnames serves a similar
function to creating an edit decision list (or EDL) in a traditional video editing suite.
Conceivably the pathname based EDL created by FilterGirl could be used as a template
for creating higher quality linear analog edits of the same material if a lookup table was
created to translate between digital movie pathnames and time code numbers on a
physical video tape.

 25

4. System Implementation

This chapter briefly describes the implementation of LogBoy and FilterGirl and the issues
involved. There are four sections pertaining to the four major software subsystems: video,
database, filters, interface.

4.1. Video

The LogBoy and FilterGirl applications currently use Apple's QuickTime software as a
disk-based digital video standard. Disk based digital video storage provides the random
access video capabilities essential to computational movie generation. Digital video has
several benefits in addition to other random access formats (e.g. videodisc). First, images
from the video source material can be easily sampled and manipulated within the screen
space. One example of this is LogBoy's video clip icons which incorporate a still frame.
Second, QuickTime is a read/ write format. This means that source material can be added
to the database quickly and easily. Read/ write formats allow a more flexible creative
process as the movie maker is not committed to a particular set of source material at any
particular point in the production process. This also opens the door on serialized movies
to which the creator is continually adding content. Finally, QuickTime digital video can
be edited on the desktop using a Macintosh computer. Software packages allow the
creator to digitize, compress, edit and present footage all on the same piece of hardware.

4.2. Database

The video clip database holds the locations of the digital video clips along with the
descriptive slots and values attached to each clip. The LogBoy application must be able
to create, present, edit, load and save this database structure while FilterGirl must be able
to load and access the descriptors. Ken Haase's Framer representation language was
chosen for the database implementation because it supports all of these characteristics
along with providing other sophisticated features which can be made use of in the future.

Framer's hierarchical structure maps easily onto LogBoy's extensible slot/value database
architecture. Framer files are implementation independent and can be read with libraries
provided for several platforms in several computer languages. This flexibility allows
moviemakers to experiment with data paths other than the intended LogBoy -> FilterGirl.
For instance, a Framer database created in LogBoy could be loaded into some other story
structure driver or databases could be created in another logger and loaded into FilterGirl.
Framer also provides inferencing capabilities which can be taken advantage of by
sophisticated story structure editors/ generators.

4.3. Filters

FilterGirl is designed around a hierarchical filter language which supports personalized
video sequencing. This filter language is based on Macintosh Common Lisp's (MCL's)
implementation of the Common Lisp Object System (CLOS). CLOS provides class
inheritance which is useful in situations where there are many types of objects which
have similar, but slightly different characteristics. For example, every filter type exhibits

 26

a different filtering behavior, however each filter must implement the empty set rule
(explained in Section 6.3). This is implemented with a basic filter type from which all
other filter types inherit their basic behavior. Thus, the empty set rule is implemented
once for the basic filter type and all other filter types make use of this implementation.

4.4. Interface

Both LogBoy and FilterGirl use a window based graphical user interface to allow the
moviemaker to create and edit databases and story structures. Both interfaces are created
in Macintosh Common Lisp's (MCL's) implementation of interface objects which is
based in CLOS. Many of the interface objects in both LogBoy and FilterGirl make use of
class inheritance to reduce the amount of duplicated code when many objects share
behaviors. For example, all of the filter editing window types in FilterGirl have several
common interface items. The window definitions are built with a class hierarchy such
that there is a basic filter editing window class which implements all of the common
characteristics and each different type of filter editing window inherits from this
superclass. This is analogous to the inheritance scheme for the filters themselves. Each of
these specific editing window types can specialize the canonical window to suit its own
needs. Similarly, LogBoy has two types of interface items, clip icons and value areas,
which share the behavior of dragability. This behavior is implemented with a "draggable-
object" superclass from which they both inherit.

