
The Galatea Network Video Device Control System

Version 2.5

Daniel I. Applebaum

Massachusetts Institute of Technology

M.I.T. Media Laboratory
20 Ames Street

Cambridge, MA 02139
danapple@media-lab.media.mit.edu

Abstract

Galatea is a network transparent video device control system, providing reliable access to
various video devices in a distributed network environment. This paper describes many features
of Galatea, in addition to a description of the goals and strategies used in creating the system,
and contains a manual for the C language programming interface.

Copyright ! 1991 Massachusetts Institute of Technology

1

Acknowledgments
Several persons have helped in the development of Galatea. Each of their contributions is

well appreciated. Hal Birkeland has made considerable improvements and fixes to much of the

server implementation. The input of Ben Rubin and Paul Boutin has led to the implementation

of many features in the current version. Patrick Purcell supported the early work on this system,

from arranging for hardware, to consistantly pointing out bugs. Glorianna Davenport’s constant

encouragement and ideas were essential to the proper development of this system. Judson

Harward wrote the manual pages, without which Galatea is largely incomprehensible.

Russ Sasnett provided most of the underlying device control system and device independant

model for device control. These sections were part of an earlier project of his to provide network

video device control. In addition, Russ has constantly added enhancements to the system, both

to the device drivers, and critical portions of the server. Russ has played a principal role in the

development of Galatea.

This project is supported by MIT Project Athena and the MIT Media Lab.

2

1. Introduction

1.1 Development Goals
Galatea was originally conceived to support the Electronic Light Table project at the MIT

Media Lab. This project was an application which permitted users to retrieve images from video

disks into small on-screen "slides." The intended purpose of this application was to provide

users throughout the MIT campus with a simple method to access a large central bank of image

data.

In order to control the centralized bank of video disk players, a client/server video control

system was required. There were two such systems available for this purpose. One was created

by Professor James Anderson of the MIT Architecture Department, the other by Russell Sasnett

of MIT Film/Video. Although each of these systems provided most of the functionality required,

neither could be used on a large enough scale to provide campus-wide distribution of video

information.

During the summer of 1988, development began on a network video device control system

capable of being scaled for campus-wide use. Campus-wide use did not mean that the system

would be deployed on many standalone computer systems, but that there would be many systems

interacting and competing for access to distributed video resources. The resources devoted to

serving the whole campus were a pair of Digital Equipment Corporation VDP50’s video disk

players and a BOA Source Controller II by Presentation Environments to switch the audio and

video between the two players. These three units were controlled via RS232 by a DEC

MicroVAX II which was connected to the campus computer network. The output of the BOA

video switcher was modulated and transmitted over the MIT cable system. Any location

requiring access to the video disk players needed access to both the MIT cable system and the

campus computer network. Additionally, it was common for a user’s computer system to have

its own local video resources. The "distributed" nature of the system stems from the need to

control video devices on multiple computers without additional work by the user or the client

applications. The results of these experiments with the centralized bank led to the development

of the first version of Galatea.

The style of the programming interface was designed to be similar to the C language

interface for the X Window System. Since many applications using video in this environment

were going to be created using X, creating a similar programming interface eased the

3

programmers burden. Galatea is also intended to be a companion to X, and works very well in

that environment, although only one sample Galatea application actually requires the presence of

the X Window System. Galatea is available under the same copyright restrictions as X. A person

may acquire all of the source code from publicly available sources, but must maintain the MIT

copyright notice on all copies.

1.2 Features and Use of Galatea
Galatea provides access to video devices in a distributed network environment. The system

is designed in an enhanced client/server network model. A Galatea client, designed for a custom

application, connects to a Galatea server on either the local or a remote machine. Once this

connection is established, the client has access to the resources on the server. These can include

video disk players, uncontrolled input sources and video/audio switchers. The video/audio

switchers are not referenced directly, but instead controlled by the server when the client

requests access to video disks or uncontrolled inputs. A Volume Table maintained by the server

describes which discs are in which players, how the signal sources are connected to the switches

and how the switches are connected together to form a switching tree, terminating in a number of

server virtual outputs.

A single Galatea server can provide reliable access to many clients. The server dispatches

on the incoming requests from clients, and guarantees each client a small time segment during

which it has exclusive access. One client is not allowed to dominate the server, so that many

clients and users can access a centralized bank of video resources without excessive delays.

1.2.1 Enhanced Client/Server Model
To provide additional flexibility, a Galatea server can connect to another server and utilize

the resources maintained there. Once this connection is established, the resources on the

secondary server are considered equivalent to local resources, except for certain system

maintentance purposes. This provides to a simple client application the ability to access video

resources on multiple machines without having to connect to several servers. There is only one

Galatea server ever on one machine (CPU). The servers maintain the forwarding capability and

have automatic systems for dealing with system crashes and network failures. Typically, a

Galatea server runs on all machines on which you wish to run a Galatea client, even if the

machine has no local resources. The local server has the responsibility of maintaining

connections with the other remote servers. With this technique, a client program does not have

4

to worry about a connection terminating if a remote machine crashes. The remote crash will be

detected by the local server, which will then take appropriate action. Of course, a crash of the

local server will bring down the client, but the local server should only crash if the entire

machine goes down.

1.2.2 The Volume Table
A volume table is a list of video sources, each identified by name. A single volume does

not necessarily correspond to a single video disk player or uncontrolled input channel. Multiple

video disk players containing identical disks are combined into a single volume for client

reference. Using this system, a client need only specify the name of the source that it wishes to

access, and the server will deliver the video from the source most readily available. With this

abstraction, there is no distinction made between resources on a local server and resources which

are accessed through a chain of servers.

On the other hand, the same video device can also be a part of multiple volumes. A single

volume is associated with a specific server virtual output. Since a video device can be visible on

several virtual outputs, it may be part of several volumes, each of which is associated with a

single virtual output. There is no ambiguity here, since a client is only passed a list of volumes

which correspond to a single output, so there are never multiple volumes of the same name and

type associated with the same virtual output. There may be multiple volumes with the same

name if each volume is of a different type. The two types of volumes are record/play devices

and uncontrolled input sources.

1.2.3 Server Virtual Outputs
A Galatea server is capable of serving multiple outputs, be they several channels on a cable

television system or several displays on a single workstation. The identification of these outputs

is site specific. In other words, the numbers used as identification for each output can be an

arbitrary non-negative integer, in order to directly match cable channels or display numbers.

These outputs are termed ’server virtual outputs’ since they represent the outputs of a "virtual

switch" that Galatea creates out of all the physical switchers available. The configuration of the

physical switchers into the virtual switch is desribed in the configuration file for galatead(8).

When a client connects to a server, it claims the ability to view one particular virtual output. The

client is then passed a list of volumes which are available on that output. A device can be

viewable on multiple virtual outputs, if the underlying physical routing is setup appropriately.

5

1.3 Network Communication Protocols
Galatea uses two forms of network communication to provide the reliability and flexibility

necessary in a distributed network environment. The first level is a client to server protocol

which utilizes TCP/IP as the transport layer. This level handles commands and requests to the

server for device action or queries about device state. The other communication level uses UDP

transport layer for server to server communication to manage machine or network failure

recovery.

1.3.1 Client to Server Communication
The Galatea server initially creates a TCP/IP socket for listening to requests from clients for

connections. This socket is bound to a well known TCP/IP port number, usually 4001. When a

client requests a connection to this socket, the server accepts this connection request by creating

another socket which is used to serve that client. The initial socket is ready to be used again for

accepting connections from more clients. This methodology is almost universal among TCP/IP

based servers.

Once the client to server connection is established, the client may make requests to the

server. The packet containing the request is structured. After the first request packet, the

protocol is not clearly defined and can vary from command to command. The command request

is defined by the following C language structure declaration.
typedef struct {

int parm[10];
} Galatea_packet;

All of the integers in this packet are in network byte ordering, thus enabling hosts of

different achitecture to communicate. The content of the first integer is defined to be a number

indicating to the server what action should be performed. The server uses this number to branch

to an appropriate routine to handle the rest of the command. The other integers in the packet are

dependent on the particular command being executed. For example, many commands use the

second integer to store the volume identifier for a volume action request.

If the command needs to send more data to the server than can fit in the initial command

packet, additional data can be sent in a rather free-form manner. Strings and integers are passed

as necessary for each command. Subroutines are provided to send and receive strings and

integers.

There are two modes for specifying responses from the server. In synchronous mode, most

6

requests to the server are acknowledged by the server. The acknowledgment takes the form of a

single integer, which is either a return value that the client requested, such as the current frame

number on a device, or a value indicating an error. Values above 999,999 and below -999,999

are reserved for error values. Some commands, for instance a request for statistics about the

server, will return much more information than just a single integer response.

In some cases, however, it is advantageous for the return values from the server to be

suppressed. This mode of operation is called asynchronous mode. Asynchronous mode is useful

for video shuttlebar clients, which do not need responses to each request, and will operate faster

if the client need not wait for the server responses. Requests which only query the server are

usually not affected by asynchronous mode, since suppressing the returns in a query-only request

is pointless.

After a request is handled in synchronous mode, the server blocks operation until a release

command is issued from the client. This gives the client a short amount of time in which to use

the results of its request. For instance, after searching to a frame on a Record Play Device, a

client may digitize the frame. In order for this digitization to be reliable, the server must

guarantee that no other client can manipulate any resource on the server during the digitization.

Once the digitization is complete, the client sends the G_Release command to the server, freeing

the server to accept commands from other clients.

1.3.2 Server to Server Communication
The protocol for server to server communication is designed to compensate for machine

and network failures. Normally, a server can connect to another server as a regular client. The

server which is acting as a client is called a "client" server, and the server which is a server for a

"client" server is a "serving" server. A "client" server makes one request that a normal client

never makes. This is a G_RequestNotification request. When a server receives such a

command, it places the network address of the requesting client in a file on disk. By placing this

information directly to disk, the server guards against spontaneous machine crashes.

Whenever a Galatea server rebuilds its internal volume table, it reads the list of hosts from

disk, and notifies each host that it has rebuilt its volume table. The notification takes the form of

a UDP packet containing the string "imhere". A server that receives such a UDP packet then

rebuilds its own volume table. This technique propagates volume table rebuilds so that all of the

servers which are affected by a change in device configuration have proper information.

7

When a Galatea server is shut down, it also sends out a "imhere" packet, but then does not

accept new connections. This action forces "client" servers to rebuild volume tables, but since a

connection can no longer be established to the "serving" server which is now shutdown, the

"client" servers do not use any information about the devices on the now shutdown server.

Since a Galatea server builds its volume tables when it is first started, it sends out a UDP

"imhere" packet when it is first started. This causes any "client" servers which were using the

"serving" server before the machine stop to establish new connections to the now running

"serving" server.

There is one common case which cannot be handled solely by "imhere" packets. This is

where a network between two hosts fails, and the "client" server gets a network transmission or

reception error. In this case, the "client" rebuilds its volume tables. While rebuilding, the

"client" server will fail to connect to the "serving" server, and will not include the "server" server

in the currently available volume table. When a "client" server fails to connect to a server, it

establishes a pattern of sending query UDP packets to the server which was unavailable. These

query packets contain the string "areyouthere". If a server receives a query packet, it sends an

"imhere" to the host from which it received the "areyouthere" packet. This "imhere" packet will

cause the querying server to rebuild its volume table, which should now include the previously

unavailable server.

8

2. Glib - C Language Interface for Galatea
This is a description of Glib, version 2.5.

2.1 Opening a Galatea server
The first operation a Galatea client needs to perform before making use of video resources

on a server is establishing a connection to the server. The action is accomplished with or

GNewOpenServer() or GOpenServer():
Server *GNewOpenServer(hoststring)
char *hoststring;

hoststring Specifies the name of the system which is running the Galatea server to
which you wish to connect and the server virtual output number you wish to
use. The format for hoststring is "hostname:output" so that it closely
matches the display name description in the X Window System.

GNewOpenServer() attempts to establish a connection to the Galatea server specified by

hoststring. If hoststring is NULL, then GNewOpenServer() will attempt to use the GALATEA

environment variable. If that does not exist, GNewOpenServer() will default to using "unix:0" as

the hoststring. If the specified, or defaulted, hostname is "" or "unix" Galatea will attempt to

connect to a local server, possibly using UNIX domain sockets.

GNewOpenServer() will eventually replace GOpenServer().
Server *GOpenServer(host, outputnum)
char *host;
int outputnum;

host Specifies the name of the system which is running the Galatea server to
which you wish to connect. If host is NULL or "unix" Galatea will attempt
to connect to a local server.

outputnum Specifies the number of the server virtual output which the client wishes to
use. A server which is used by several several workstations or several
displays on the same workstation may define independent outputs for each
unit.

If a connection to the server cannot be established, a NULL is returned. Otherwise a

legitimate connection has been established, and the returned structure should be used in future

Glib calls.
Server *GOpenedHost()

GOpenedHost() returns the name of the host to which GNewOpenServer() or

GOpenServer() has most recently either succeeded or failed in opening a connection. If no

connection has yet been attempted, or an internal parsing error occurs, GOpenedHost() returns

9

NULL. A parsing error is probably caused by a misformatted host and output specification in

the GNewOpenServer() argument or the GALATEA environment variable.

2.2 Obtaining information about the server
Several subroutines are provided for obtaining information about the contents of the Server

structure. Clients applications should use these routines for referencing the structure, and never

attempt to modify it or inspect it directly.

int GNumberExtensions(server)
Server *server;

server The server connection as returned by GOpenServer().

Returns the number of extensions that the server has available. Once this call is made, it is

possible to interate down the list of extension names with the following command.

char *GExtensionName(server, which)
Server *server;
int which;

server The server connection as returned by GOpenServer().
which Specifies the position of an extension in the extension list.

Returns a pointer to a private area which contains the extension name of the extension at

position which in the extension list.

int GNumberVolumes(server)
Server *server;

server The server connection as returned by GOpenServer().

Returns the number of volumes available on the server. The volume list is comprised of

entries numbered from zero to the number of volumes minus one. After inquiring into how

many volumes a server has, it is possible to interate down the volume list with the following

three functions.

char *GVolumeName(server, which)
Server *server;
int which;

10

server The server connection as returned by GOpenServer().
which Specifies the position of a volume in the volume list.

Returns a pointer to a private area which contains the volume name of the volume at

position which in the volume list.

int GVolumeIndex(server, which)
Server *server;
int which;

server The server connection as returned by GOpenServer().
which Specifies the position of a volume in the volume list.

Returns the index number of the volume at position which in the volume list.

int GVolumeType(server, which)
Server *server;
int which;

server The server connection as returned by GOpenServer().
which Specifies the position of a volume in the volume list.

Returns the volume type of the volume at position which in the volume list. The volume

type can be one of RPD_DEV or INPUT_DEV, specifying a "Record/Play Device" or

uncontrolled "Input Device," respectively.

int GWhichVolumeIndex(server, volume_name)
Server *server;
char *volume_name;

server The server connection as returned by GOpenServer().
volume_name String containing the name of the volume whose index number you wish to

obtain.

Returns the index number of the specified volume on the given server. This command

allows a client which knows exactly which volume it needs to find the volume index number

easily. The index number of a volume is used in all server action requests.

11

char *GWhichVolumeName(server, ind)
Server *server;
int ind;

server The server connection as returned by GOpenServer().
ind The index number of the volume whose name you wish to obtain.

Returns the name of the volume whose index is ind. This is the reverse function of

GWhichVolumeIndex().

int GMaxLockTime(server)
Server *server;

server The server connection as returned by GOpenServer().

Returns the maximum time, in seconds, for which a client can acquire exclusive access to a

server, either by a GLock() or by a GPlaySeg() in RETURN_SYNC mode. A lock which

exceeds this time is silently broken by the server and the server will refuse to play a segment by

GPlaySeg() which would exceed this time limit. A time limit of zero means that there is no limit

on the length of a lock or segment. In a distributed environment, this is not reliable, since remote

locks may be broken earlier.

G_INT32 GRevisionNumber(server)
Server *server;

server The server connection as returned by GOpenServer().

Returns the revision number of the specified server, multiplied by ten. Since a revision

number is represented as a decimal number, multiplying by ten eliminates the need to transmit

floating point numbers over the network.

int GConnection(server)
Server *server;

server The server connection as returned by GOpenServer().

Returns the connection number for the server. In UNIX, this is the file descriptor of the

connection.

12

2.3 Closing the server connection
Once the client is finished accessing the resources of a server, it may close the server

connection with GCloseServer().

GCloseServer(server)
Server *server;

server The server connection as returned by GOpenServer().

GCloseServer() closes the connection to the server and frees all the data in the server

structure.

2.4 Controlling the switches
Once a server is opened and the client has determined which volumes are of interest, it is

useful to set the server to display a particular volume of interest. The explicit switching

command, GSwitch(), is used for this function:

int GSwitch(server, ind, mask)
Server *server;
int ind;
int mask;

server The server connection as returned by GOpenServer().
ind The index number of the volume to which the switch should be made.
mask Bitwise or of one or more of LEFT_CHAN, RIGHT_CHAN, and

VIDEO_CHAN, indicating which channel should be switched.

GSwitch() commands the server to arrange for the volume indicated to become the current

source for one or more of the signal channels. Servers can typically switch left audio, right

audio, and video independantly, although the independance of the two audio channels is not

guaranteed. AUDIO_CHAN can be used to indicate the bitwise or of LEFT_CHAN and

RIGHT_CHAN, and ALL_CHAN can be used to indicate the bitwise or of LEFT_CHAN,

RIGHT_CHAN and VIDEO_CHAN. Note that switching does not explicitly determine a

particular switcher to affect, as the server may have to traverse a tree of switchers to accomplish

the desired result. Only the desired volume is necessary.

Many other commands can perform an implied switch for better performance. A switching

mask is one of the parameters for those commands, for which a non-zero value indicates that

13

switching should be performed. Using implied switching can increase speed of operation and

reliable delivery. The only way to switch to an uncontrolled input source is GSwitch(), as none

of the commands which implement an implied switch can operate on an uncontrolled input.

2.5 Manipulating uncontrolled input sources
As the name implies, there are no operations to be performed on an uncontrolled input

source. The only command which can take the index number of an uncontrolled input source is

the GSwitch() command, explained above.

2.6 Manipulating record/play devices
There are several methods of controlling a record/play device, ranging from variable speed

play, single frame search to recording new frames. Several of these commands have a switching

mask as an argument. When this mask is non-zero, it indicates to the server that after the

requested operation is performed, a equivalent action to GSwitch() should be undertaken by the

server. Therefore the end result of:
GSearch(server, ind, 20000, ALL_CHAN);

is the same as the result of:
GSearch(server, ind, 20000, 0);
GSwitch(server, ind, ALL_CHAN);

The former will typically be a smoother and faster operation. Also, there is no chance that

another client can access the server and disturb the arrangements in the first case, as can happen

in the second. Only the results of a single command are guaranteed to be handled without

another client interfering, unless GLock() is used to lock the server. The GRelease() command is

used to indicate to the server that client is finished with a particular request. When a request is

made to a server, the server usually maintains the results of that request until the client calls

GRelease(), or the server times out on the release. The client can indicate (with GSetState()) that

an asynchronous mode should be used, in which the server does not maintain results. If the

client issues another command, instead of a GRelease(), that command implies a GRelease() and

the server then handles any other incoming requests, not necessarily the command that acted as a

GRelease(). This algorithm ensures that a single client cannot dominate a server by simply

sending a stream of commands without GRelease()’s. Additionally, servers typically time out on

releases in five seconds in order to allow other requests to be processed.

14

2.6.1 Playback commands

int GSearch(server, ind, frame_num, mask)
Server *server;
int ind;
int frame_num;
int mask;

server The server connection as returned by GOpenServer().
ind The index number of the volume on which you wish to search.
frame_num The absolute frame number to which the volume should be searched.
mask A switching mask used for an implied switch.

GSearch() requests the server to search on the requested volume to the specified frame

number. At the end of this operation, GSearch() returns the frame number which the volume is

currently displaying. This command may not simply cause a search on a single video disk

player. If multiple copies of a volume are available, the server will use the copy which will

provide the fastest response time. This action is invisible to the client. After the search is

complete, an implied switch is performed, if mask is non-zero.

int GRun(server, ind, speed, mask)
Server *server;
int ind;
int speed;
int mask;

server The server connection as returned by GOpenServer().
ind The index number of the volume you wish to play.
speed The speed, in frames per second, at which the volume should be played.
mask A switching mask used for an implied switch.

GRun() sets the requested volume in motion at the speed indicated. The speed is specified

in frames per second, and the server will attempt as well as possible to match the requested

speed. Not all players can play at an arbitrary frame rate. A closest match is attempted. The

actual speed of playback is reported back to the client as the return value. The speed can be

positive or negative. The switching mask is handled as for GSearch(). The play continues until

one of the ends of the disk is reached, or another motion command is executed.

15

int GJog(server, ind, direction, mask)
Server *server;
int ind;
int direction;
int mask;

server The server connection as returned by GOpenServer().
ind The index number of the volume you wish to jog.
direction The direction in which the volume should be jogged.
mask A switching mask used for an implied switch.

A video jog is a single frame motion. This provides an easy way to step around a small

portion of a video disk. The directions possible are FORWARD and REVERSE, only one of

which may be specified. The new current position on the disk is returned.

int GStill(server, ind, mask)
Server *server;
int ind;
int mask;

server The server connection as returned by GOpenServer().
ind The index number of the volume you wish to stop.
mask A switching mask used for an implied switch.

To stop a running volume, use GStill(). The requested volume will be stopped and the

current frame number of the volume will be returned to the client.

int GPlaySeg(server, ind, start, end,speed, mask,
return_flag)

Server *server;
int ind;
int start;
int end;
int speed;
int mask;
int return_flag;

16

server The server connection as returned by GOpenServer().
ind The index number of the volume you wish to play.
start The starting frame number from which the segment will be played.
end The ending frame number to which the segment will be played.
speed The speed at which the segment will be played.
mask A switching mask used for an implied switch.
return_flag Value indicating whether the server should block until the end of the

segment.

GPlaySeg() arranges to play a fully specified segment of video from a volume. The volume

is first searched to the start frame, and playback is then assumed at the specified speed. Playback

is stopped at the end frame. The implied switched in a GPlaySeg() is performed after the initial

search and before the playback begins. The return_flag indicates to the server whether to block

until the segment is complete. A client may wish to block until a segment is complete, or it may

wish to simply start the segment and let it progress, while returning the client to a running state.

RETURN_NOW is the flag for starting the segment and then immediately returning control back

to the client. RETURN_SYNC indicates to the server that the server should block until the

segment is finished. Some servers may place a limit on the length of a segment requested with

RETURN_SYNC, as such a segment might interfere with the operation of other clients.

GPlaySeg() normally returns the frame number at which the server returned control to the client.

This may be early in the segment for a RETURN_NOW, and should be the end frame for a

RETURN_SYNC. A client may also specify a return_flag of

RETURN_NOW_WITH_SPEED. This requests that control should be returned to the client

immediately, but that GPlaySeg() should return the current speed of the device in frames-per-

second, as if from GGetSpeed() (see GRun() and GGetSpeed() for an explanation of returned

speed values). If start is CURRENT_FRAME, then the initial search is inhibited, and the

segment is played from the current frame to the end frame.

int GPlaySequence(server, numsegs, segs, return_flag)
Server *server;
int numsegs;
GSegment *segs;
int return_flag;

server The server connection as return by GOpenServer().
numsegs The number of segments that make up the sequence.

17

segs An array of segments to be played in order.
return_flag Value indicating whether the should should block until the end of the

sequence.

GPlaySequence() plays a sequence of video segments specified by segs. Each element of

segs is a GSegment structure which is defined as:
typedef struct {
int volumenum;
int start, end;
int speed;
int mask;

} GSegment;

This structure defines a segment similar to the segments defined in GPlaySeg(). The

volume specified by volumenum is played, starting at frame start, ending at frame end, at speed

speed. If speed is 0, then end is a number of microseconds for which the frame specified by

start is displayed. The mask is used as the switching mask used just before the particular

segment is played. The return_flag indicates whether the client should be blocked while the

sequence is playing. RETURN_NOW indicates that the client will return as soon as the

sequence starts, RETURN_SYNC indicates that the client will return when the sequence is

completed. In RETURN_NOW mode, the sequence may be interupted by another client, unless

the server is locked, but in RETURN_SYNC mode, the sequence can not be interupted. The

RETURN_NOW_WITH_SPEED option from GPlaySeg() may not be used in a

GPlaySequence() request.

GPlaySequence() will attempt to do simple optimizations to eliminate the inter-segment

delay. Some pre-searching will be performed, but this routine does not guarantee "seamless"

playback. If each segment is longer than the maximum search time of the video devices, and at

least two devices are available, there should never be searching delays, only switching and

startup delays, between consecutive segments. In addition, there is no way to overlap the audio

of one segment with the video of an adjacent segment.

2.6.2 Record commands
Currently, recordable volumes are only considered recordable by a Galatea server if the

volume’s device is local to the server. In other words, record requests cannot be forwarded.

Also, volumes containing multiple devices are not ever recordable. Galatea also assumes that

recordable devices are write-once, not write-many.

18

int GAlloc(server, ind, nframes)
Server *server;
int ind;
int nframes;

server The server connection as returned by GOpenServer().
ind The index number of the volume on which the allocation should be made.
nframes The number of frames requested in the allocation.

GAlloc() allocates nframes contiguous frames on the volume indicated by ind. If the

allocation succeeds, then the starting frame number of the allocated block is returned and the

client may proceed to record onto any or all of the frames in the block. The allocation may fail

because the device is not a recorder (FUNC_NOT_SUPPORTED), the device is too remote

(FUNC_NOT_SUPPORTED), or the device does not have a sufficient number of free frames

(COULDNT_ALLOC).

int GAllocAtFrame(server, ind, start, nframes)
Server *server;
int ind;
int start;
int nframes;

server The server connection as returned by GOpenServer().
ind The index number of the volume on which the allocation should be made.
start The starting frame number for the requested block.
nframes The number of frames requested in the allocation.

GAllocAtFrame() functions similarly to GAlloc() except that the allocated block will start

with the frame number specified by start. GAllocAtFrame() is useful when a recording is being

continued from a previous session, and the new material must have a precise relationship to the

previously recorded material.

GFree(server, ind, start, nframes)
Server *server;
int ind;
int start;
int nframes;

server The server connection as returned by GOpenServer().

19

ind The index number of the volume on which the allocation should be freed.
start The starting frame number to be freed.
nframes The number of frames requested to be freed.

GFree() frees part or all of a previously allocated block, allocated by GAlloc() or

GAllocAtFrame(). A client should only attempt to free frames which were not recorded. Frames

that have been recorded can not be freed, since they will not be available for subsequent record

operations.

GRecord(server, destvolume, start,end,speed, mask,
sourcevolume,return_flag)

Server *server;
int destvolume;
int start;
int end;
int speed;
int mask;
int sourcevolume;
int return_flag;

server The server connection as returned by GOpenServer().
destvolume The index number of the volume on which the recording should take place.
start The first frame on which recording should occur.
end The last frame on which recording should occur.
speed The speed at which the destination volume should record. (This paramter is

currently ignored.)
mask A switching mask used for an implied switch.
sourcevolume The index number of the volume from which the recording should take

place.
return_flag Value indicating whether the server should block until the end of the

recorded segment.

GRecord() records the video and audio from one volume onto a section of another volume.

The sourcevolume may be either an uncontrolled input or another record/play device. The

start, end, speed, mask, and return_flag operate the same as in GPlaySeg(). The start, end,

speed, and return_flag parameters affect only the destination volume. The mask parameter

affects the routing between the source volume and the destination volume. Before recording

20

takes place, the parameters are checked to make sure the recording can take place. Possible

failures include BAD_VOLUME if either the source or destination volume is not valid,

VIOLATE_ALLOC if the specified destination segment has not been previously allocated by the

client, FUNC_NOT_SUPPORTED if the specified destination volume is not a recordable

volume, COULDNT_ROUTE if the output of the source volume could not be patched to the

input of the destination volume, COULDNT_DO_FUNC if the record command failed, and

COULDNT_FREE if the segment was recorded correctly, but could not be removed from the

allocation.

GRecordPreview(server, destvolume, sourcevolume,mask)
Server *server;
int destvolume;
int sourcevolume;
int mask;

server The Server connection as returned by GOpenServer().
destvolume The index number of the volume on which the record preview should take

place.
mask A switching mask used for an implied switch.
sourcevolume The index number of the volume from which the record preview should take

place.

GRecordPreview() allows the client to do all the routing associated with a GRecord()

without actually performing the recording. The source volume is routed to the destination

volume according the the switching mask and the destination volume device is placed into a

record standby mode. This is useful to preview what the recording will look like, or to allow the

destination volume to sync to the source volume. It may be necessary to position the destination

to a recordable frame before this command is used, because some devices will not enter the

record standby mode unless the device is positioned at an empty frame. The error

COULDNT_DO_FUNC is returned if the record standby mode fails, possibly due to the device

not being positioned at an empty frame. COULDNT_ROUTE is returned if the source volume

could not be routed to the destination volume.

21

GDub(server, destvolume,deststart,destend,destspeed,
srcvolume, srcstart,srcspeed, mask, return_flag)

Server *server;
int destvolume;
int deststart;
int destend;
int destspeed;
int srcvolume;
int srcstart;
int srcspeed;
int mask;
int return_flag;

server The server connection as returned by GOpenServer().
destvolume The index number of the volume on which the recording should take place.
deststart The first frame on which recording should occur.
destend The last frame on which recording should occur.
destspeed The speed at which the destination volume should record. (This paramter is

currently ignored.)
srcvolume The index number of the volume from which the recording should take

place.
srcstart The first frame on the source volume that should be recorded onto the

destination.
srcspeed The speed at which the source volume should play.
mask A switching mask used for an implied switch.
return_flag Value indicating whether the server should block until the end of the

recorded segment.

GDub() records a section of the contents of one RPD onto another RPD. The dub is not

guaranteed to be frame accurate. In order to do the dub, the server takes the following steps:
Setup a route from srcvolume to destvolume using mask.
Search srcvolume to srcstart.
Search destvolume to deststart.
Prepare destvolume for recording.
Start playing srcvolume at srcspeed frames per second.
Start recording destvolume until frame destend.
Stop srcvolume.

Possible failures include BAD_VOLUME if either the source or destination volume is not

valid, VIOLATE_ALLOC if the specified destination segment has not been previously allocated

by the client, FUNC_NOT_SUPPORTED if the specified destination volume is not a recordable

22

volume, COULDNT_ROUTE if the output of the source volume could not be patched to the

input of the destination volume, COULDNT_DO_FUNC if the record command failed, and

COULDNT_FREE if the segment was recorded correctly, but could not be removed from the

allocation.

2.6.3 Other device operations
Other operations possible on a record/play device are changing the load state of the volume,

changing the visibility of player frame index numbers, changing the audibility of the two audio

channels, and getting the current frame number.

int GLoad(server, ind, on_off)
Server *server;
int ind;
int on_off;

server The server connection as returned by GOpenServer().
ind The index number of the volume you wish to load.
on_off The new load state requested.

GLoad() allows the client to manually load, unload or eject disks during runtime. This

allows the user the change disks dynamically for some applications. An on_off value of LOAD

requests that the volume should be spun up, or loaded. A value of UNLOAD requests that the

volume should be spun down, or unloaded. A value of EJECT requests that the disks be spun

down and the disk player lids opened. If an EJECT request is sent, the Galatea will rebuild its

volume tables, since a player with an open lid is not considered available. When a Galatea

server is properly configured, changing the disks in a player where multiple copies of a disk exist

may cause odd results, as the server assumes that all of the players contain the named disk.

int GConfigure(server, ind, chan, on_off)
Server *server;
int ind;
int chan;
int on_off;

server The server connection as returned by GOpenServer().
ind The index number of the volume whose configuration you wish to change.

23

chan Specifies the channel or channels whose configuration should be changed.
on_off The new configuration state requested.

When the client needs to change the audibility of the audio channels, or change the state of

the frame index numbers, a call to GConfigure() should be made for a specific volume. The

chan parameter indicates whether the left audio channel, the right audio channel, the audio

squelch mode or the index numbers should be changed by the bitwise or of LEFT_CHAN,

RIGHT_CHAN, SQUELCH_CTRL and INDEX_CTRL. Any combination of these may be

specified. The on_off parameter indicates the desired state of the specified channel. Values of

TURN_ON and TURN_OFF can be specified.

int GGetFrame(server, ind)
Server *server;
int ind;

server The server connection as returned by GOpenServer().
ind The index number of the volume whose current position you wish to obtain.

GGetFrame() provides for the client to obtain the current position of a volume. If the user

has searched maunally using GRun() commands for a particular frame, and now wishes to note

the frame number, GGetFrame() can be used by the application to acquire that information. The

current frame number is returned.

int GGetSpeed(server, ind)
Server *server;
int ind;

server The server connection as returned by GOpenServer().
ind The index number of the volume whose current speed you wish to obtain.

GGetSpeed() provides for the client to obtain the current speed of a volume. The current

speed, in frames per second, is returned.

2.7 Various server functions
There are several server requests which do not specify or access particular resources on the

server, but do control server behavior.

24

int GRelease(server)
Server *server;

server The server connection as returned by GOpenServer().

GRelease() releases the server from maintaining the results of the previous command. If

the server is not maintaining results because the library is in ASYNC_MODE mode, this

command has no effect.

int GLock(server)
Server *server;

server The server connection as returned by GOpenServer().

GLock() establishes a temporary lock on all the resources of the server. This allows a client

to be guaranteed of exclusive access to all resources on the server without other client

interfering. These locks are typically limited in length by servers so that other clients are not

permanently locked out of a server. Any other client that attempts to access the server during a

locked period is simply blocked. If the locking client does not unlock the server before the time

limit is reached, the lock is silently broken by the server. The maximum lock time is available

with the GMaxLockTime() call. Using locks is encouraged for clients which need to ensure that

a volume of interest is completely set up for them for a short period of a time. Say, to

GConfigure(), then GSearch(), then perform a still frame grab with an external processor, then

unlock. GLock() is the only method to guarantee that no other client will intrude between the

GConfigure() and the GSearch(). Also, if the frame grabbing board takes more time to grab than

the standard release time, this mechanism provides for a slightly longer leeway after the

GSearch().

(Caution: locks that must be forwarded between servers may provide less than the normal

maximum lock time.)

int GUnlock(server)
Server *server;

server The server connection as returned by GOpenServer().

GUnlock() unlocks a server which has been locked by GLock(). Clients are encouraged to

unlock a server as soon as possible, in order to allow other clients access to server resources.

25

G_INT32 GGetServerTime(server)
Server *server;

server The server connection as returned by GOpenServer().

GGetServerTime() returns the current time on the server machine in seconds since

midnight, January 1, 1970. This information is useful in realizing volume scheduling systems.

GGetStatistics(server, stat_struct)
Server *server;
GStats *stat_struct;

server The server connection as returned by GOpenServer().
stat_struct A structure into which the server statistics will be placed.

GGetStatistics() is used to get information regarding the server performance. The

following structure is filled in:
typedef struct {
int revision;
int num_requests;
int run_time;
int num_collisions;
int num_connections;
int max_connections;
int delayed_requests;
} GStats;

revision Indicates how many times the server has rebuilt its internal volume table.
num_requests Specifies how many client requests have been made to the server. (Includes

the current GGetStatistics() request.)
run_time The number of seconds for which the server has been running.
num_collisions The number of times two client requests have arrived at the server

simultaneously. num_connections
The total number of connections made to the server.

max_connections The maximum number of simultaneous connections made to the server.
delayed_requests The total number of client requests that were delayed because the server was

busy processing another request.

int GCheckRevision(server)
Server *server;

server The server connection as returned by GOpenServer().

GCheckRevision() allows a client to manually check if its volume list (contained in the

26

server structure) is up to date. Normally, an out of date volume list is indicated by the error

message, VOLUME_LIST_OLD, returned by the server on most other commands.

GCheckRevision() should only return NO_ERROR, VOLUME_LIST_OLD, or GIO_ERROR.

NO_ERROR means that the client has an up to date volume list. VOLUME_LIST_OLD means

that the client should get a new volume list with GReopenServer(). GIO_ERROR is encountered

when a connection to a server dies. Unless a client is handling SIGPIPE’s however, the

SIG_PIPE will probably arrive first, and the client will exit.

Server *GReopenServer(server)
Server *server;

server The server connection as returned by GOpenServer().

GReopenServer() is used by a client to obtain a new volume list, if the server indicates that

the client has an out of date volume list. This situation can occur if a secondary server crashed,

or comes on-line, and the primary server rebuilds its internal volume tables to match the new

availibilty of resources. A server can also be forced to rebuild its volumes tables by sending it a

SIGHUP. GReopenServer() returns a pointer to a new server structure, or NULL, if there was

some failure.

GRebuild(server)
Server *server;

server The server connection as returned by GOpenServer().

GRebuild() simply requests that the specified server rebuild its volume table.

GShutOff(server, up_down)
Server *server;
int up_down;

server The server connection as returned by GOpenServer().
up_down An integer value indicating whether the server should leave the disks in a

spun up or spun down state.

GShutOff() requests that the server shut itself down, possibly spinning down the disks first.

An up_down value of SPINDOWN will make the server spin down the disks before exiting. A

value of NOSPINDOWN will leave the disks in the spinning state when the server exits.

27

GMount(server, disc_name, dev_name)
Server *server;
char *disc_name;
char *dev_name;

server The server connection as returned by GOpenServer().
disc_name The name of the disc being placed in a device.
dev_name The name of the device into which the specified disc is placed.

GMount() allows a client program to indicate to the server that the contents of a device

have been replaced with a new disc. dev_name is the name of the local device on which the new

disc, disc_name is to be mounted. GMount() can only be performed by a client on the same host

as the server, and only on a device local to that server. Once the mount is performed, the server

rebuilds its volume table so that the mount takes place immediately.

GUmount(server, dev_name)
Server *server;
char *dev_name;

server The server connection as returned by GOpenServer().
dev_name The name of the device which is to be taken off-line.

GUmount() is used to bring a local device, on the local server, off-line. The server

immediately rebuilds its volume table, but ignores the now unmounted device.

GMounts(server, num_mounts, disc_names,dev_names, rets)
Server *server;
int num_mounts;
char **disc_names;
char **dev_names;
int *rets;

server The server connection as returned by GOpenServer().
num_mounts The number of mount operations to perform.
disc_names An array of disc names to be mounted.
dev_names An array of device names to be mounted upon.
rets An array to contain the return values from each mount operation.

28

GMounts() performs like GMount(), except that multiple mount operations are performed

with a single request. The advantage of GMounts() is that num_mounts mounts can be

performed with only a single ensuing volume table rebuild. If GMount() were called multiple

times, a volume table rebuild would be performed for each call. Each mount performed by

GMounts[] is comprised of a disc name from disc_names and the corresponding device name

from dev_names. The return value of each mount is placed in the rets array, which should have

already been allocated by the client program.

GUmounts(server, num_umounts, dev_names,rets)
Server *server;
int num_umounts;
char **dev_names;
int *rets;

server The server connection as returned by GOpenServer().
num_umounts The number of unmount operations to perform.
dev_names An array of device names to be unmounted.
rets An array to contain the return values from each unmount

GUmounts() performs num_umounts unmount operations. The devices to be unmounted

are specified in the dev_names array, and the return values from each unmount are placed in the

corresponding entry in the rets array, which should already have been allocated by the client

program. Once all of the unmounts are accomplished, a volume table rebuild is performed.

GGetMounts(server, num_mounts, mount_devs,mount_discs)
Server *server;
int *num_mounts;
char ***mount_devs;
char ***mount_discs;

server The server connection as returned by GOpenServer().
num_mounts Returns the number of mountable devices.
mount_devs Returns the list of mountable devices.
mount_discs Returns the list of discs mounted on the devices.

GGetMounts() retrieves the list of mountable devices from the server, along with the

currently mounted disc for each device. The number of mountable devices is returned in

29

num_mounts, and the arrays mount_devs and mount_discs are allocated to accommodate the

returned arrays. The client program must free the arrays when finished. If a device has nothing

mounted, then the corresponding disc name is returned as [nothing].

GRequestNotification(server, yesno)
Server *server;
int yesno;

server The server connection as returned by GOpenServer().
yesno An integer value indicating whether to enable notification.

GRequestNotification() should never be used by an ordinary client. It is used by servers to

request that other servers notify them of volume table rebuilds. A yesno value of Notify

indicates that notification to this host should be enabled; and value of NoNotify indicates that

notification to this host should be disabled. Notification is only performed on a per-host basis,

not on a per-client basis. The notification takes place over a UDP channel independent of the

TCP connection used for normal communication.

2.8 Routines which change the action of the Galatea library
The Galatea library (Glib) can be set to act in several different modes. There are debug

settings, timeouts, and asynchronous operation modes, as well as an error handling system.

int GSetState(debug_mode, set_time, set_sync)
int debug_mode;
struct timeval *settime;
int set_sync;

debug_mode Specifies the new debug mode for library operation.
set_time Specifies the new time out length on reads from the server.
set_sync Specifies whether the library should act synchronously or asynchronously.

GSetState() sets several modes of library operation. Debugging allows the library to print

out some information as routines are called. This is mainly used in debugging the library, so the

information printed may not be very consistent or useful. A value of one enables debugging and

a value of zero disables debugging.

The maximum time that the library will wait for a reply from the server can be set with the

set_time argument. If NULL, the time out is infinite. Infinite is the default library time out. If

30

set_time is non-NULL, the time contained in the timeval structure is copied and used for the

new time out.

The library can also be set to use asynchonous or synchronous operation. Normally, all

commands send a request to the server and then wait for a reply from the server indicating the

request has been completed or that an error occured. This is called synchronous operation, since

the client is kept synchronized to the server. For some applications, say a video shuttle control,

acknowledgment of successful completetion is not necessary, since many commands are being

sent, and single failures are not a problem. In the shuttle application, it is also unnecessary to

wait for synchronization, and that wait can cause poor performance. For such applications,

setting the set_sync argument to ASYNC_MODE will provide better performance. In this

mode, many commands will report that no error occurred. For some commands, such as

GReopenServer(), asynchronous mode is meaningless. Some other commands also act

synchronously, even in ASYNC_MODE, such as GLock() and GCheckRevision(). The other

change in ASYNC_MODE is that the server will not wait for a GRelease() from a client. A

set_sync of SYNC_MODE returns the library to synchronized operation.

int GSetErrorHandler(handler)
void (*handler)(Server *, int);

handler A handler procedure to be called when errors are reported by a server.

Many Galatea commands can be met with an error response from the server. These errors

are normally reported back to the client through the return value for the command. It is possible

to intercept these error messages, and cause the library to invoke a client specified error handler.

A very useful error handler is one that can deal with a VOLUME_LIST_OLD error, execute a

GReopenServer() and then update client structures or displays before returning. Such a system

reduces code duplication. The command that caused the server still returns the error code, but

the main sections of the client application need not handle the error explicitly. A NULL for the

handler procedure, causes the library to resume default action, which is to call GReopenServer()

on the server which returned the error. This permits the following Galatea calls to procede

normally.

The arguments to the error handler are the server on which the error was generated and the

error code returned by the server. The return value from the handler is not used.

31

2.9 Error messages
Almost all Galatea library commands can cause an error to be generated on the server, if

there is a fault in the function call or a device failure. The values returned are integers (32 bits).

The return value of NO_ERROR is used to indicate simple completion of request which does not

have an otherwise important return value. All of the actual error return values values have a

value greater than or equal to LOWEST_ERROR.

A routine is provided to return a string which corresponds to a particular error:

char *GErrorString(error_value)
G_INT32 error_value;

server The error value as returned from other functions.

GErrorString() returns a pointer to a static string which contains a description of the

specified error. The application should not manipulate the string referenced by this pointer.

The actually error return codes are as follows:

VOLUME_LIST_OLD
The volume list that the client is using is not up to date with the current
version on the server. GReopenServer() should be called to get a new
volume list.

BAD_VOLUME The volume index number specified in the command is not a valid volume in
the server.

FUNC_NOT_SUPPORTED
An attempt was made to execute a function on a volume which cannot
support the operation. An example of this is trying to do a frame search on
an uncontrolled input device.

BAD_COMMAND
The server was not able to interpret the request as a reasonable command.
This is probably due to a mismatched library/server combination.

COULDNT_SEARCH
A device error was encountered while attempting to search on a record/play
device. A retry may succeed.

COULDNT_STOP
A device error was encountered while attempting to stop a record/play
device. A retry may succeed.

COULDNT_CHANGE_SPEED
A device error was encountered while attempting to change the speed or
direction of a record/play device. A retry may succeed.

COULDNT_DO_FUNC
A device error or internal server error was encountered while attemping an
operation on any type of device. A retry may succeed.

32

BAD_ARGUMENT
An argument to a command was not valid.

GIO_ERROR A server connection has been broken. This error indicates the the server to
which the client is connected has crashed or been shutdown. If a client
receives this error, it should not attempt to access the Galatea server again.

SEGMENT_TOO_LONG
A segment requested in a GPlaySeg() or GRecord() exceeded the maximum
lock time on the server. An attempt for the same segment in
RETURN_NOW mode will probably succeed, but the segment may be
interrupted.

PERMISSION_DENIED
An attempt to access a device or operation for which the user has
insuffucient privleges was made. This includes attempting to load, unload,
mount or unmount volumes on a remote host.

COULDNT_ROUTE
An attempt to switch either the viewable volume, or a recording cross-route
failed due to a switcher error. A retry may succeed.

COULDNT_ALLOC
An attempt to allocated recordable frames failed. The recordable device has
run out of available frames. This is analogous to malloc() returning NULL.

COULDNT_FREE
The server was unable to free the specified block.

VIOLATE_ALLOC
The client requested to record onto frames which are outside of any allocated
segments.

BAD_OUTPUT The client claimed to have access to a server virtual output which does not
exist.

33

3. Installing Galatea

3.1 Customizing the compilation process
The Galatea distribution is set up to compile on a 4.3 BSD derived system. Without any

changes, Galatea should compile on Ultrix, Sun OS, Athena UNIX, and 4.3 BSD. With minimal

changes to the compile configuration file, it is possible to compile Galatea for HP-UX or

Interactive 386/ix.

To change the configuration to work on various systems, copy the file conf/generic to a new

file whose name describes your system, ie. cmuvax. This file should then be modified to reflect

your configuration. This file contains a set of make(1) macro definitions that will be substituted

into makefiles with the gconfig program, which is also in the conf directory. Follow the

instructions supplied as comments within each conf file to set the options you require. The

conf/dirs file directs gconfig to the directories in which it should modify makefiles. If you want

to create a new flag or macro, you can simply add it to the config file. Gconfig will place a copy

of every macro in the config into every makefile it touches, whether or not there was a previous

definition. If there was a previous definition, gconfig removes it.

To run gconfig, change working directories to conf ’cd conf’, type ’make’, then type

’gconfig’. When used without arguments, gconfig uses the ’config’ file to reconfigure the

Galatea programs. If an alternate configuration file, ie. cmuvax, is required, type the name of the

file as the first argument to gconfig, ie. ’gconfig cmuvax’. That invocation will use the cmuvax

file as the template to configure Galatea for use on Carnegie Mellon VAX hosts.

If your system and options are already described in one of the predefined conf files (athena,

hpux, inter386, or sparc), you can simply change the line "CONFIG = generic" to the name of

your conf file in the top-level Makefile. Then type "make all" to automatically configure and

build Galatea. Or, you can type "make all CONFIG=athena", and the build will be performed,

preceeded by a configuration.

3.2 Tuning server parameters
There are several aspects of the server operation, mainly timing parameters, that can be

adjusted for a particular site. All of these parameters are adjustable in the include file

GALATEA/server/tunables.h The documentation for these parameters is in the include file.

34

3.3 Compiling the system
The Makefiles for Galatea are designed to compile the complete system without

intervention. In the top level Galatea directory, typing ’make’ should create the entire system.

’make install’ will create the entire system, if necessary, and then install the executables,

libraries and include files in common locations. This is normally /usr/local/{lib,include,bin} and

/etc. If you wish to make these directories, ’make directories’ will create any necessary

directories that do not already exist. Typing ’make clean’ will erase all of the object files and

executables and typing ’make uninstall’ will remove any installed files.

3.4 The configuration file
The Galatea server uses a configuration file to determine what the devices are connected to

the local machine, what remote servers are available, and the video connectivity of the site. Each

line in the file specifies a directly connected device or a remote server. Fields which are

meaningless for a given device type should be filled with ?. This configuration file is usually

called /etc/galatead.conf

3.4.1 Representing a local videodisk player
A directly connected videodisk player has a line with the following form:

Type VolumeName Model TtyPort Baud Parity Chan

The fields are separated by whitespace. The values for the fields are:

Type This field should contain RPD, for Record/Play Device.
VolumeName This field specifies the name of disk contained in the player.
Model This field specifies the type of videodisk player.
TtyPort This field specifies the port to which the videodisk player is connected. For

a disk player connected to the serial port identified with /dev/ttyS0, this field
would be ttyS0.

Baud This field specifies the baud rate for communication with the videodisk
player.

Parity This field specifies the parity for communication with the videodisk player.
This field can be even, odd, any, or none.

Chan This field specifies the switch and input to which the disk player connects.
This field is comma separated list of items of the form x:n-m where n is the
switcher number and m is the input number on the switch. 1-3 would
represent switch 1, input 3. A special case for the switcher number is 0,
which indicates that the disk player does not feed a switch, but is a direct
server output. In this case, m is the server virtual output number. The x
component of the item is optional and is either a o or i, standing for output or

35

input. Note that if all the items in a single list must either all contain the x
component, or they all must not contain that component. A device that is
capable of recording can have a single item with an i for the x component.
i:0-3 would indicate that the recording input of the RPD is fed from server
virtual output number 3.

3.4.2 Representing a local video routing switch
The line of configuration for a local video switch has the following form:

Type SWTR-n Model TtyPort Baud Parity Chan

Aside from a few differences, the representation of a switch is identical to that of a

videodisk player. If the field is not noted specifically below, use the description given for local

videodisk player.

Type For a local video switch, this field should be SWTR.
SWTR-n This field specifies the switch number. n should be the number assigned to

the switch, which is used in referencing the switch in all other device
representations. For configuration with a single switch, there could be one
switch line with SWTR-1 as the SWTR-n field, although the number chosen
for the switch is arbitrary.

Model This field specifies which type of switcher is connected.
TtyPort Normally this field is the same as for an RPD, but certain switches can be

chained together on a single serial port. For these switches, the TtyPort can
be of the from x:m, where x is the device number in the chain and m is the
port filename as for an RPD.

Chan The channel description is a field made of a comma separated list of items of
the form x:y;n-m The x component specifies which of possibly several
physical switch outputs this item describes. This is used when you are
configuring a multiple output switcher, such as the Akai 16x16 Digital Patch
Panel. The y component indicates the default input which will be patched to
the specified output. The output will be set to this input whenever the
switcher is reset. Switchers are reset when the players are spun down, and
when the volume table is rebuilt. The n and m components are as for an
RPD where n indicates the switch to which the specified output is connected
and m indicates to which channel on the next switcher the specified output is
connected. A value of 0 for n indicates that the specified feeds a server
virtual output and does not feed another switcher.

3.4.3 Representing a remote server
Any Galatea server can be configured to use the resources of another Galatea server. The

local server incorporates the resources of the remote server as if they were located on the local

host. Clients do not have any indication of differences between local and remote devices. To

represent a remote server to the local server, use the following form of configuration file line:

36

Type Hostname ? RemOut ? ? Chan

Type For a remote server, the Type should be FORW.
Hostname This field specifies the hostname for the server to which the local server

should connect.
Remout This field specifies which of the outputs on the remote machine the local

server should utilize.
Chan This Chan field is almost identical to the Chan field for local video switches.

The differences are that there is no default input for each output and that the
output number specification is not important, except that each output number
must be unique. So, the form of this field is a comma separated list of items
of the form x:n-m. (A later version of Galatea will permit the ommision of
the output number.) Of course, if you only have the forwarding device
feeding one local input, you need not specify an output number. Again, if n
is 0, then the forwarding device feeds a server virtual output.

3.4.4 Representing an uncontrolled input
A Galatea server can also make use of uncontrolled input sources, such as a camera. Such a

device can be represented in the configuration file with a line of the form:
Type InputName ? ? ? ? Chan

Type The Type should be INPUT for an uncontrolled input device.
InputName This field specifies the name of the uncontrolled input.
Chan The Chan field is a comma separated list of items of the form n-m, where n

is number of switcher to which the input is connected and m is the input
channel number on the specified switch. If n is 0, then the uncontrolled
input feeds a server virtual output.

3.4.5 Sample configuration files
For a single disk player configuration:

RPD BostonDisc SONY_LDP1000A ttyS0 4800 none 0-0

For a fairly complex configuration, with multiple switchers, multiple disk players, and a

forwarding entry:

A line beginning with a # is a comment line.
This first group feeds the little switcher (SWTR-1)
RPD BostonDisc SONY_LDP1000A ttyS1 4800 none o:1-1
INPUT MIT-CABLE ? ? ? ? 1-2
FORW flotsam ? 0 ? ? 1-2
INPUT ColorBars ? ? ? ? 1-3
This device feeds the AKAI directly, and takes as its input
the 2nd output of the AKAI.
RPD RECORDABLE PANA_3031F ttyS4 9600 none o:3-1,i:0-1

37

The little switch feeds the AKAI, and the default input is
ColorBars
SWTR SWTR-1 ATHENA_4x1 ttyS0 9600 none 1:3;3-2
The big switch feeds virtual output 0 and 1, and has a
default input of SWTR-1, note the way the line is continued
on multiple lines.
SWTR SWTR-2 AKAI16x16 0:ttyS3 19200 none 1:2;0-0,\
2:2;0-1

i

Table of Contents
1. Introduction 2

1.1 Development Goals 2
1.2 Features and Use of Galatea 3

1.2.1 Enhanced Client/Server Model 3
1.2.2 The Volume Table 4
1.2.3 Server Virtual Outputs 4

1.3 Network Communication Protocols 5
1.3.1 Client to Server Communication 5
1.3.2 Server to Server Communication 6

2. Glib - C Language Interface for Galatea 8
2.1 Opening a Galatea server 8
2.2 Obtaining information about the server 9
2.3 Closing the server connection 12
2.4 Controlling the switches 12
2.5 Manipulating uncontrolled input sources 13
2.6 Manipulating record/play devices 13

2.6.1 Playback commands 14
2.6.2 Record commands 17
2.6.3 Other device operations 22

2.7 Various server functions 23
2.8 Routines which change the action of the Galatea library 29
2.9 Error messages 31

3. Installing Galatea 33
3.1 Customizing the compilation process 33
3.2 Tuning server parameters 33
3.3 Compiling the system 34
3.4 The configuration file 34

3.4.1 Representing a local videodisk player 34
3.4.2 Representing a local video routing switch 35
3.4.3 Representing a remote server 35
3.4.4 Representing an uncontrolled input 36
3.4.5 Sample configuration files 36

