High-level scripting environments
for interactive multimedia systems

by
Stefan Panayiotis Agamanolis

B.A., Computer Science
Oberlin College, Oberlin, Ohio
May 1994

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES
at the
Massachusetts Institute of Technology
February 1996

(© Massachusetts Institute of Technology, 1996
All Rights Reserved

Signature of Author:

Program in &edia Arts and Sciences
19 January 1996

Certified by:

V. Michael Bove, Jr.

Associate Professor of Media Technology
Program in Media Arts and Sciences
Thesis Supervisor

Accepted by:

Stephen A. Benton

Chairperson

\AASSACHUSETTS INs17u:. Departmental Committee on Graduate Students
OF TECHNOLOGY Program in Media Arts and Sciences

FEB 211996

LIBRARIES

" ARCHIVES

High-level scripting environments
for interactive multimedia systems

by
Stefan Panayiotis Agamanolis

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on January 19, 1996
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Interactive multimedia systems typically consist of many kinds of media objects and input
and output components, all of which must be controlled in real time to form a presentation.
Although nothing can replace human to human interaction, in many cases it is desirable to
automate these management tasks. As the complexity of such systems grows, some method
of scripting these presentations in a high-level manner becomes a necessity.

Current solutions are inadequate. Ultra-high-level visual (non-scripted) authoring systems
restrict the creativity of the artist, whereas programming in a low-level general-purpose
language forces the artist to become a computer scientist. Many systems that lie between
these two extremes handle interactivity in a very primitive manner. This thesis details work
on the design and implementation of an intuitive and elegant scripting environment that
does not sacrifice expressivity or extensibility. In addition, a real-time interactive object-
based audio and video system has been created to operate under this new environment.

Thesis Supervisor: V. Michael Bove, Jr.
Title: Associate Professor of Media Technology

This work was supported by the Television of Tomorrow consortium.

High-level scripting environments
for interactive multimedia systems

by
Stefan Panayiotis Agamanolis

The following people served as readers for this thesis:

Reader:
Glorianna Davenport
Associate Professor of Media Technology
Program in Media Arts and Sciences

Reader:

Dave L. Sprague

Manager, Multimedia Architecture
Intel Corporation

Media Laboratory Research Affiliate

Acknowledgments

Many people deserve special recognition for the support they have given me over the duration of
this work...

First and foremost, my research advisor, Mike Bove, for giving me the opportunity to work at the
Media Lab. His ideas and down-to-earth suggestions have guided and motivated me throughout my
time here.

Glorianna Davenport, for her invaluable thoughts on the artistic side of my work. In many ways,
she was my second research advisor.

Dave Sprague, for his time in reading my thesis and for giving me an outside point of view.

Master system administrator, Henry Holtzman, for keeping the garden computers and software
working perfectly and for helping me set up the computer in my office.

Araz Inguilizian, for creating the innovative object-based audio software that I use in my system.

Shawn Becker, for helping me dissect the internals of the Cheops library routines, for creating cool
three-dimensional models, and for being a great friend.

John Watlington, for keeping Cheops working and for helping me understand its inner workings.

Teresa Chang, Brett Granger, and Katy Brown, for saving me hours of work by revealing their
discoveries about the oddities of Cheops.

Tony Romain, for being a real director, and Rachel Lillis and Michael Slayton, for being real actors.

Everyone else involved in the highly successful Wallpaper shoot, including Eugene Lin, David Tamés,
Andrew Beechum, and Bill Butera.

Richard Salter, Rhys Price Jones, Bob Geitz, and Garold Garrett, for challenging me and for instilling
in me an enthusiasm for learning that will always be a part of me.

Dan Gruhl, for setting up and maintaining the LaTeX typesetter in the garden.
My officemate and good friend, Chris Verplaetse, for making me laugh and for keeping me sane.
David Letterman, for entertaining me every night of the past year and a half.

My housemates, Martin Szummer, Matt Krom, and April Paffrath, ior being awesome people and
for supporting me through the last part of my work.

And finally, my parents, my sister Chrissie, and my cats, Whiskers, Frisky, and Saucy, for allowing
me to become the greatest power in the universe.

Contents

1 Introduction
2 Previous efforts
2.1 Models of authoring and presentation
2.2 Macromedia Director
23 Kaleida ScriptX
2.4 Oracle New Media and Sybase Intermedia
25 Java e
2.6 Other commercial products
2.7 MADE e,
28 MHEG. e,
3 The scripting language
3.1 The basics of the interpreter
3.2 User-defined higher-order types
3.3 Procedures
3.4 Interface to external functions and libraries
3.5 Structuresandfields
3.6 Timelines e
3.7 Data storage and memory management
4 Structured audio and video
4.1 Structured Video
41.1 Objects e
412 Engines
4.1.3 Windows
414 Cameras v e e e e e e e
4.1.5 Environments e e e e e e e e
4.1.6 Actors e e
4.1.7 Effects e e
4.2 Structured Audio
4.2.1 Objects e e
422 Engines e e
42,3 Speakers. e
424 Listeners e

426 Voices e e 49

427 Effects e e 50
4.3 UserlInterfaces e 50
4.4 Implementation on the Cheopé PrOCESSOT . + .« v v v v v v v e v e e e e e 52
4.5 Applications. L 53
An interactive narrative 55
5.1 Thestory e 57
5.2 Thescene e e e 59
53 Theshoot e 62
5.4 Post-processing e 68
55 Thescript L e 70
56 Theresults e 76
Future directions 79
6.1 ImprovinglIsis. 79
6.2 Enhancing structured audioand video 79
6.3 Increasing the potential for personalization 80
6.4 Expanding beyond point andclick, ... 81
6.5 Experimenting with storytelling, 81
6.6 Building new authoringtools 82
6.7 Finalremarks e 82
Isis Reference Manual & Tutorial 84
Al Introduction. 84
A.2 Theinterpreter e e e 85
A.3 Expressions, values,and types 86
A4 Constant expressions ot i e e 88
A.5 User-definable higher-order types 90
A6 Variables e e 93
A7 Otherexpressions. i ittt 94

AT71 idfexpression 94

A7.2 condexpression. it 94

A.7.3 while expression v v i i i i 94

A74 switchexpression uiueiniiii.. 95

A75 beginexpressiono i e e 95

AT6 letexpressionot 95
A.8 Procedure application and built-in procedures 95

AB1 +, =, %, [/, h e e 96

A8.2 abs, sin, cos, tan, asin, acos, atan2, sinh, cosh, tanh, exp,
log, logliO, pow, sqrt, ceil, floor, deg->rad, rad->deg .. 96

ABI =, =, <> e, 97
ABd <, <=, >, >= e e e e e 97
A.8.5 and, nand, or, nor, not e e e e e 97

A8.6 ref, head, tail 97

AB8.7 length 97
A.8.8 insert-before, insert-after, head-insert, tail-insert ... 98
A89 append e 98
A.8.10 sublist, first, last, allbutfirst, allbutlast 98
A.8.11 seed-random, random 99
AB8.12 print, display ot i e e e 100
A.8.13 1locad, run, interactive, stdin, done, exit, quit, end ... 100
AB14 distype 101
AB8.15env, types 101
A.8.16 print-values, set-typecheck, typecheck 101
AB17 cast e e 102
A.9 Procedure definition L L Lo 102
A10Cfunctions e 103
Al Structures e e e e 104
All2Timelines o e e e e e e 105
Al3Moreexamples e 109
A13.1 Countdown e e 109
A.13.2 Fibonaccisequence 110
A133 Ycombinator 111
Structured Video with Isis 112
B.1 Introduction. 112
B.2 Running Isis and the Structured Video Package 114
B.3 Initializing and controlling system state 115
B.4 Creating structured videoentities 116
B.5 Updating parameters e 117
B.5.1 Engines e 118
B.5.2 Windows e 119
B.53 Camera e e 119
B.5.4 Environments L L 122
B.5.5 Actors e 122
B.6 Plottingframes 124
B.7 Handlingtime. 124
B.8 Debugging 125
B.9 Asimpleexample. e 125
B.10 Making yonr presentation interactive 0L 127
B.ll1 Final remarks 127
Structured Audio with Isis 128
C.1 Introduction. e 128
C.2 Running Isis and the Structured Audio Package 130
C.3 Initializing and controlling system state 131
C.4 Creating structured audioentities. 132
C.5 Updating parameters o v vt i 133

C5.1 Engines
C.5.2 Speakers.
C.5.3 Listener
C.54 Environments
C.5.5 Voices o e
C.6 Renderingtheaudio
C.7 Handlingtime e
C.8 Debugging
C.9 Asimpleexample.
C.10 Making your presentation interactive
CllFinalremarks

User Interfaces with Isis

D.1 Imtroduction.
D.2 Running Isis and the User Interface package
D.3 Imitializing. L e
D.4 Creating and manipulating interfaces
D.5 Creating and manipulatinginputs
D.6 Debugging
D.7 Asimpleexample.
D.8 Finalremarks

Isis on the Cheops Processor

E.1 RumninglIsisonCheops
E.2 Structured Videoo
E.3 Structured Audio e
E4 UserInterface
E.5 Example Scripts e

The Wallpaper script

F.1 Imitializing. o e
F.2 Creating the videoobjects
F.3 Creating the audioobjects
F.4 Creating the structured audio and video entities
F.5 Creating the userinterface
F.6 Describing the mastershot
F.7 Describing the close-up streams
F.8 Expressing the changes in story perspective
F.9 Creatingahelp function
F.10 Defining the delivery procedure
F.11 Giving control to the experiencer

List of Figures

4.1 The Isis interactive structured audio and video system 37
4.2 The framework of the structured video package 38
4.3 Elements of the virtualcamera 41
4.4 Elements of the viewport 42
4.5 The framework of the structured audio package 45
4.6 The audio presentation space coordinate system 48
5.1 The eight photographs used in 3D model generation 60
5.2 Wireframe and textured images of the attic model 61
5.3 The completely empty blue-screen studio 63
54 Cameras mounted highandlow 64
5.5 Calibrationcubes 65
5.6 Rehearsalofthescene 66
5.7 Wornoutdirector 67
5.8 Five views of John along with their alpha channels 69
5.9 The composite scene from five different angles 72
5.10 The composite scene from a synthesized camera angle 73
5.11 Difference in composition based on display size 74
5.12 Difference in composition based on story perspective 75

Chapter 1

Introduction

The word “multimedia” has become so dreadfully hackneyed from overuse that it is difficult
to determine what it truly means or if it has even been invented yet. In the simplest
possible terms, it refers to a combination of many different kinds of individual media for
a common purpose, but this meaning is often twisted. Throwing together a big-screen
video monitor, a couple of slide projectors, and a deafening sound system might produce a
compelling multimedia presentation, but that only acknowledges the physical devices that
are used to render the various media objects. A better way to think about multimedia is
as a melding of several different conceptual media forms ranging from textual to auditory
to graphical objects. These categories could also be subdivided further—graphical media
could be divided into static objects and animated objects, and these objects could be two-
or three-dimensional in nature. Everything from a simple black-and-white photograph to
a CAD model of a skyscraper could be considered graphical media. The advantage of this
interpretation of multimedia is that it is completely independent from the way these media
forms are displayed or otherwise presented. A three-dimensional media object might be

rendered in a small picture in a book or on an interactive holographic video display.

Under this definition, everything from a tiny coupon in the Sunday paper to a multi-million
dollar rock concert would be considered a multimedia presentation. These two examples

also have one important thing in common: they are both static entities, meaning that these

10

productions are not tailored in any way to the viewer’s internal state or personal traits, nor
do they allow her to directly interact in any way to change the presentation. She simply
experiences the same exact thing from one “viewing” to the next. (Of course she could tear
up the coupon or throw tomatoes at the concert performers and the presentations would

probably change, but neither of them has any intended points of interaction.)

This is where the line can be drawn between static and dynamic multimedia. Dynamic
multimedia might be roughly classified as either interactive or personalized. The line is very
fuzzy, but in general, interactive media presentations are those in which the viewer or listener
(or simply the ezperiencer) takes an active part in modifying the media delivery in some
way, whereas in personalized media, the experiencer only passively affects the presentation,
perhaps if the delivery system knows something about the viewing conditions or if it learns
something about the experiencer’s personality or habits. Examples of interactive multimedia
presentations are pop-up books, board games, “interactive 1ovies”, most kinds of live shows,
and flight simulators. On the other hand, electronic newspapers, junk-mail sweepstakes
and advertisements, and world wide web documents often incorporate various degrees of

personalization in their presentations.

Concentrating on interactivity for the moment, some helpful distinctions can be made be-
tween different kinds of interaction, such as between cases where it is highly restricted and
cases where it is virtually unlimited. Interaction can be termed restricted if at any point
the experiencer can only pick from a small set of choices which direction the presentation
will take. For example, if a magician is performing a card trick and asks a member of the
audience to choose a card from the deck, the audience member only has 52 discrete choices
in that interaction—she can’t choose to pick two or three cards, nor could she choose to
take all the cards and throw them up in the air. Most interactive multimedia presentations
in existence today can probably be categorized as restricted. However, it is also possible to
imagine a few cases where interaction is practically unlimited. For example if a television
viewer calls up a talk show and is put on the air, that viewer has the ability to say just
about anything and the talk show host or producers will most likely be prepared to react

in an appropriate way no matter what is said.

11

A more useful distinction can be drawn between situations where the interaction is con-
tinuous and where it is only intermittent. In some of the latest so-called “interactive”
movies, interaction only consists of occasionally pressing buttons to pick from a small set
of choices what will happen next in the story. Between these key points, of which there
might be very few, ilic presentation is purely static, playing out just like a regular movie.
On the other hand, the involvement of a trainec using a sophisticated flight simulator is not
at all intermittent—the presentation provides for and depends on continuous and almost

unlimited interaction.

Perhaps the ultimate interactive multimedia presentations are live one-on-one situations
where the presenter is delivering structnred media that appeal to all five senses for an orga-
nized purpose, and where modifications are made based on the passive or active responses
of the experiencer. Although nothing can replace this kind of human to human interaction,
dynamically changing a multimedia presentation based on real-time input is a process that
is usually desirable to automate. Of course, there are many cases where automation would
be either impossible or unthinkable, but computers are very good at controlling physical
devices which might render the media objects that need to be presented, and they can

respond to interaction almost instantly.

In non-interactive situations, it is possible to exactly “script” every aspect of the presenta-
tion from start to end. If this script is written in a machine-readable format, a computer
could control the entire production by simply sending the right signals to the right com-
ponents (machine or human) at the appropriate times. In cases where interaction is only
intermittent, it might be possible to script everything between those points of interaction.
However, the problem becomes extremely complex in cases where continuous dynamic in-
teraction is desired. In the flight simulator example, a specialized computer program would
have to be written to monitor the input from the user and control all the output devices in

the simulator.

To make this scripting job simpler, very often some kind of special “scripting language” is

used to allow an author to express high level ideas and processes in a format the computer

12

can interpret to run a production. Languages for controlling static or minimally interactive
media presentations can be relatively simple since there is not much processing necessary
beyond sending preset signals at preset times. However, fully interactive systems usually
demand much more processing and language «xpressivity, more than can be handled by a
simple scripting language. Very often, applications of this type (like complicated simulators
or three-dimensional virtual reality systems) are necessarily written at a much lower level
in programming languages like C, and they are usually tailored for specific productions
and physical processing, input, and output hardware. In these cases, scripting ceases to be

scripting and becomes laborious computer software hacking.

Is there some middle ground that can be reached where it would be possible to script complex
interactive presentations in a platform-independent high-level manner without sacrificing

efficiency and expressivity?

13

Chapter 2

Previous efforts

Past work in this area has been quite moderate. There have been many systems and lan-
guages designed for controlling static presentations. Their function is basically to organize
events in chronological order and to execute corresponding instructions to create the de-
sired output. However, many of these languages are not very extensible—the user’s ability
to extend the functionality of the languvage is highly restricted or extremely difficult. The
languages that have flourished are those that allow users to add their own creative ele-
ments or to simplify the script-writing process by writing procedures or creating similar
abstractions. More recent systems are often tailored for certain kinds of applications, such
as interactive television, informational kiosks, or computer-based training, and they usually
give the ability to express some kind of interactivity, but unfortunately it is often very

minimal.

2.1 Models of authoring and presentation

Interactive multimedia systems can be roughly categorized by what kind of authoring and
presentation metaphors they employ. There are three main ways of authoring presentations
on a computer—through an ultra-high-level visual authoring environment, through a high-

level scripting language, or through a low-level computer program. Each has its advantages

14

and disadvantages. In addition, each authoring tool has its own model of how the media
will be presented. Some systems are card-based (in a manner similar to Hypercard on
Macintosh computers), and others are time-based, meaning that there is certain “playout”

quality present. Other tools allow the author to combine these paradigms in different ways.

Icon-based visual (non-scripted) systems have the distinct advantage that the author need
not type a single line of code to create a presentation. Media objects like images, video,
sound, and animation are typically created by using external software, such as paint pro-
grams, video digitizers, or word processors, but sometimes simple editors for these objects
are provided internally. The authoring environment then provides a set of graphical tools
for arranging and controlling the state of these media objects over space and possibly time.
The vast majority of these systems are built to deliver presentations on a single video screen

or computer monitor.

The problem with visual authoring systems is that they stifle the creativity of the artist
by forcing her to work with a set of “mainstream” primitives that the system designers
have somehow determined to be most useful. However, it is very often the case that the
designers and the artist will differ highly in what is interesting and what is not. It may
be possible to create a very good production using the tools given, but it will be hard to
accomplish something truly new or breakthrough without extending the system. Many of
these systems also force the artist to conform to certain media presentation models, such as
the card-based or hyperlink-based metaphor. Further, interactivity in such systems usually
only consists of pointing and clicking to “move to the next card” or to cause the playout
to take a different couise. It would seem that many tool designers believe that the only

interesting input device is the computer mouse.

At the other end of the spectrum, it is possible to author a presentation by writing a
specialized computer program in a low-level language such as C or C++. The advantage
of this route is that expressivity, extensibility, and efficiency are at a maximum. How
media objects are presented is limited only by hardware capabilities. Unfortunately, unless

the artist is also a computer scientist, the process of learning to program a computer, use

15

graphics and sound processing libraries, work with operating systems, deal with networks
of input and output devices, etc., is likely to frustrate the amateur to an extreme. Of
course, an artist could hire several computer programmers and tell them specifically what
she wants, but the artist’s intentions may not always be accurately expressed. After all,
telling someone else how to paint a watercolor or carve a sculpture is not nearly the same

as doing it oneself.

Many systems that lie in between these two authoring extremes employ some kind of “script-
ing language” which in some cases is similar to a programming language, but may provide
more intuitive syntax and higher-level constructs useful in multimedia situations. These
systems trade off the ease of use of visual authoring systems with the expressivity and
extensibility of low-level programs. Very often, visual authoring systems are based on a
scripting language level into which the author may enter to add functionality to a presenta-
tion, but the author is meant to stay at the visual level most of the time. In other systems,

a visual environment is nonexistent and the scripting layer is the primary authoring level.

The function of the scripting language layer is to provide a better interface to libraries of
low-level code that actually do all of the work to manage a production. Many of the most
successful multimedia authoring systems provide this scripting level to users who want to
extend their tools. Not all efforts have been fruitful however. Sometimes writing in the
scripting language can be almost as difficult as writing in a lower level language. Other
times the language is not a complete programming environment, making it impossible to
express certain processes and algorithms. The interface from the language to the low-level
processing routines may be very inefficient or restrictive. Perhaps the most important
problem is that the vast majority of recent systems handle interactivity and personalization

in an unbelievably crude and inelegant manner.

16

2.2 Macromedia Director

The most popular multimedia authoring system in use today is Macromedia’s Director
[Mac95). Director is timeline-based and emphasizes playback ability on personal computers
and, more recently, on the world wide web. It allows the author to create “actors” of
different media types and then arrange how the presentation will proceed in a score-like
visual interface, defining when each actor is on or off the “stage.” The latest version
claims to support “seamless” cross-platform compatibility (between the only two supported
operating systems: Macintosh and Windows). Once a presentation has been completed, it

can be distributed and viewed with a smaller player component.

The main interface of Director does not support interactivity—the underlying scripting
language Lingo must be used for that purpose, and even then the author can only create
restricted and intermittent user interaction through the usual kind of on-screen buttons,
icons, and drop-down menus. Lingo scripts can be attached to any actor to describe how to
handle various “events” that involve the actor. External devices like compact disk players
and video tape recorders can be controlled from Lingo as well, provided that the correct
drivers for these devices are installed. Director has become most popular probably because
of its pleasing visual interface and the large number of media manipulation tools present, but
going beyond the basics and working in Lingo can be difficult. User-defined procedures and
loop constructs are not supported, and language expressiveness is limited mostly to handling
events and controlling movie and actor settings. It won’t be satisfactory for complex or
continuous interactivity, nor is it possible to build presentations for any platforms besides

Magcintosh and Windows.

2.3 Kaleida ScriptX

Kaleida Labs, founded by Apple and IBM in 1992, has developed a platform-independent

system called ScriptX for creating interactive multimedia applications [Kal95]. The system

17

is composed of three parts: a player, a scripting language and class library, and application
development and authoring tools. Programmers write a single application in the ScriptX
language that is read by the platform-specific media player component. This allows a
single presentation to run the same on different platforms. The language itself is a full
object-oriented programming environment with a distinct Smalltalk and C++ flavor. While
the entire ScriptX system enables one to make very complex and interesting interactive
presentations, there are some aspects of the system that leave something to be desired.
For one, the ScriptX language has a fairly complicated syntax and is meant to be used by
experienced object-oriented programmers. Like Macromedia Director, much of ScriptX’s
user interface design depends on there being a mouse and windowing system present in
which things like scrollbars and radio buttons can be created that users will click on, but in
many situations this environment may not be available, especially on experimental media
hardware. Just the sheer size and complexity of the ScriptX system may be a disadvantage
as well. The on-line information produced by Kaleida boasts a core library containing
about 250 classes and approximately 2500 pages of documentation in 5 volumes—enough
to scare away any beginner. In the end, it seems that ScriptX suffers from many of the

same problems as Director.

2.4 Oracle New Media and Sybase Intermedia

The Oracle Media Objects authoring environment, part of the New Media system developed
by Oracle Corporation, uses a card-based presentation model and is specially designed
and optimized for interactive television applications [Ora95]. It uses a visual interface for
creating high-level application structures and a scripting language called Oracle Media Talk
to control presentations. Sybase, Inc., develops a similar system called Gain Momentum
that incorporates the Gain Extension Language [Syb95]. Sybase emphasizes the capability
for seamless access to large databases of information, appropriate for kiosks and interactive
television as well. In both systems, the artist is constrained to work within the confines of

one video monitor with the same tiresome event-based point and click style of interaction.

18

2.5 Java

Sun Microsystems’ Java is a general-purpose object-oriented programming language that
is very similar to C++ but leaves out some “unnecessary complexities” for the sake of
simplicity [Jav95). Java applications are completely portable across multiple platforms.
Programs run inside of a secure environment for protection against viruses and other forms
of tampering. This makes Java ideal for creating applications for internet disiribution or
execution inside Web browsers. It also makes the system much slower than others since
programs must be interpreted inside of the Java “virtual machine.” Several libraries are
provided for managing input and output, connecting to networks, and creating graphical
interface components. As such, Java is not a dedicated multimedia authoring environment,
nor does it currently offer any innovative user interaction possibilities. The application
developer must also have a good understanding of low-level programming tecaniques. The
main value of Java is perhaps its model of architecture-independence at fairly low levels of
the system (like user interfaces)—a medel which could prove useful in future multimedia

work.

2.6 Other commercial products

There are several other systems available that have a more specific focus in their range of
target applications. Apple provides an entirely visual authoring system called the Apple
Media Tool as part of their Media Kit for creating multimedia presentations on Macintosh
computers [App95]. There is also an Apple Media Language available in this package
which provides an object-oriented programming environment for adding functionality to
the tools in the system. Special Delivery, a product of Interactive Media Corporation,
is also a script-free authoring tool useful for creating simple slide-based applications on
Macintosh platforms [IMC95]. Paul Mace Software makes Multimedia Grasp for creating
stand-alone multimedia applications for display on DOS based personal computers [PM95].

None of these offer functionality or interactivity beyond what is available in the other

19

systems discussed.

2.7 MADE

Systems currently in research in laboratories around the world surprisingly don’t provide
much over what these commercial systems offer. For example, the Multimedia Applica-
tion Development Environment (MADE) under construction by the European Communities
ESPRIT III project [HRD94] is focused on designing a portable object-oriented software
library based on C++ for creating interactive multimedia presentations on Unix platforms
and personal computers. They model applications as consisting of low-level toolkits and
higher-level utilities which are accessed by a scripting layer. They are not developing a
scripting language—other research entities are interfacing MADE with languages such as
Python [Pyt95] and Tcl [Ous94]. But in the end, like Kaleida's ScriptX, only very experi-

enced computer programmers will be able to make effective use of this system.

2.8 MHEG

The International Organization for Standardization (ISO) is developing MHEG (Multime-
dia and Hypermedia Information Coding Experts Group), a standard for what they call a
“gystem independent encoding of the structure information used for storing, exchanging,
and executing multimedia presentations.” [ME95] The major components of the MHEG
model are content data, behavior, user interaction, and composition. Oddly, user interac-
tion consists only of two primitives: selection and modification. It seems very early to even
be thinking about formulating a standard for multimedia productions when various aspects
of the field, especially user interaction, are still in an infant stage. The appropriateness of
standardization in this case at all is also questionable. The successful JPEG and MPEG
standards for digital image and motion picture compression created by the same organiza-
tion were all very well-defined scientific problems. However, interactive multimedia exists in

a completely different realm from media compression. It would be ridiculous to even think

20

about creating a standard for something as artistic as drawing pictures or writing novels, so
what is the organization’s reasoning behind building a standard framework for multimedia

art?

Perhaps the single most disturbing aspect of all these scripting environments is the fact that
capabilities for interactivity have not progressed past the point and click era. Multimedia
may have been reinvented, but user interaction is still stuck in the dark ages. Of course, a
mouse and a keyboard are available on almost every computer in existence today, and most
of these systems are designed for creating presentations for mass consumption. It can also
be argued that the input devices themselves are not what matters—what they control in
the presentation is what’s important. Still, most of these products leave little or no room
for experimental input and output devices and models of interaction, and all of them highly
discourage or make it impossible to work outside of the restrictive environment of a single

video screen.

21

Chapter 3

The scripting language

The first part of this thesis will be to design a scripting language that will be the basis
for an authoring environment for experimental interactive and personalized media that
minimizes the disadvantages of the various systems and models discussed earlier. Based on
the successes and failures of previous research, many conclusions can be drawn immediately

about what features should and should not be present in such a language:

e The scripting layer will be the primary authoring level of the system in order to retain
a high level of expressivity. A visual interface could be built at a later time to augment

the scripting language layer but will not be part of this thesis.

e The language should favor the artist over the computer scientist whenever possible.
Simplicity and elegance of syntax is desired, but not at the expense of expressivity.
Unlike Macromedia Director and several of the other high-level authoring tools de-
scribed previously, the language must be useful for controlling applications in which
interaction is continuous and possibly very complex. At the same time, the language
should be easy to learn, use, and read. Someone who has never used low-level lan-
guages like C or Pascal should be able to understand the basics of the language in a

day.

22

The language should be fully extensible and user-defined recursive procedures should
be supported. All of the things expected from a good programming language should

be present, like conditionals and loops.

The language should support several primitive data types and allow the writer to

create her own higher-order types using those primitives as building blocks.

The language should offer data structures that would be useful in simplifying multi-
media applications—-structures that would not be normally found in a general purpose

language.
All data storage systems should be optimized for fast access and manipulation.

Since the language will be used to control live presentations, its design should empha-

size efficiency in areas critical to real-time performance.

The language should be interpretive (as opposed to compiled) to support instanta-

neous incremental updates and easy modification and debugging.
The language interpreter should be completely platiorm-independent.

The language should be readable and writable by humans and also writable by ma-

chines (as the output of a supplemental authoring tool for example).

There should be a low-overhead mechanism that would allow the script writer to
use functions written in lower-level languages in case extra computational efficiency
or functionality is desired. This can also be the way the language will connect to
libraries that will perform the actual processing to deliver a presentation and control
interaction. However, the presence this mechanism should not be an excuse for leaving

useful constructs out of the scripting layer.

This list of goals was kept constantly in mind while designing Isis, a multi-purpose, high-level

interpretive programming language, named after the ancient Egyptian goddess of fertility.

Isis can be used as a stand-alone programming environment, or it can function as an interface

language to packages of C functions that do specialized operations from networking and file

23

access to processing graphics and sound. The Isis interpreter itself is written completely in
ANSI standard C, allowing it to be ported to any platform that has a standard C compiler.
The kinds of data structures available in Isis and its overall design make it suitable for
use as an efficient scripting language for interactive multimedia applications. The various

features of Isis are explored in the following sections.

3.1 The basics of the interpreter

The Scheme language consists of a very simple, intuitive syntax, the basics of which (it
is widely claimed) can be learned and understood fairly quickly by people who have never
programmed a computer before. For this reason, the syntax of Isis has a similar flavor, but
do not be fooled—it is not Scheme. The language core of Isis is small compared to that
of Scheme and other languages—providing a manageable set of primitive expressions and
data types and allowing the user to create her own higher-order entities from these basics.

There are many other internal differences and optimizations that will be discussed later.

The interpreter for this language is a read-evaluate-print loop. First, it reads an ezpression
that you enter in your terminal (or is read from a file). The interpreter then evaluates
that ezpression and produces a value which is printed on your terminal. Every value has a

corresponding type associated with it, like ‘integer’ or ‘boolean’.

There are 10 primitive types available in the language: integer, real number, character,
boolean, procedure, memory address, structure, field, timeline, and type. There are specific
ways to express values of each type. For instance, a character constant is expressed as a
character between single quotes, like “q°. An real number constant is expressed as a number

with a decimal point, such as 42.96.

Isis provides if-then-else, while, and switch constructs for specifying conditional evaluation,
and a Scheme-like let construct for creating statically-scoped local environments. A rich set

of primitive functions for performing mathematics and other operations is also provided.

24

Appendix A contains a reference manual and tutorial in which more information can be
found about the syntax and general use of Isis. The rest of this chapter will be devoted to

describing special innovations in the language and its internal design.

3.2 User-defined higher-order types

Isis allows you to define your own higher-order “list” types based on primitive or previously-
defined types via the newtype construct. A list type is created by specifying a name for
the new type and declaring what the types of the elements of the list should be. For
example, you may want to create a new type named Pos which would be a collection of 3
real numbers. Or you may want to create an IntList type that would be a collection of an
arbitrary number of integers. Or, instead, you may want to create a PosList type that is a

collection of any number of Pos values. Other even stranger types can be expressed as well.

-> (newtype (Pos Real Real Rual))
<Null value>

-> (newtype (IntList Int ...))
<Null value>

-> (newtype (PosList Pos ...))
<Null value>

-> (newtype (PlainList Unk ...))
<Null value>

-> (newtype (Strange Int Unk Bool))
<Null value>

-> (newtype (Weirdo Char Bool Int Real ...3))
<Null value>

->

The lines above demonstrate how to create different kinds of list types. The ... in a
definition means that a list of that type may be of arbitrary length. The PlainList type
definition uses the special keyword Unk to specify that there is no restriction on the types
of the elements in that kind of list. The Weirdo type uses a special form of ... followed
immediately by a number to express an arbitrary-length list in which the last 3 types will

be repeated in that order.

25

Once list types have been defined, they may be used in the same way as any other type.
To form a value of a particular list type, the type name followed by the elements of the
list is enclosed in parentheses. When a list value is entered, Isis will “sanity check” the
values that you provide against the original type definition and report any mismatches—a
useful debugging feature to prevent the propagation of errors. Although very inexpensive,
this type-checking feature may be turned off once the script is running reliably and extra

efficiency is desired.

-> (Pos 1.0 2.0 3.0)
(Pos 1.000000 2.000000 3.000000)
-> (IntList 0 7 2)
(IntList 0 7 2)
-> (IntList 3 42 -2553 68 20)
(IntList 3 42 -2553 68 20)
-> (PosList (Pos 3.2 4.3 -6.4) (Pos 1.2 -3.4 5.6) (Pos -4.0 -2.3 4.5))
(PosList (Pos 3.200000 4.300000 -6.400000)
(Pos 1.200000 -3.400000 5.600000)
(Pos -4.000000 -2.300000 4.500000))
-> (PlainList True 45 ‘s’ -89.4)
(PlainList True 45 °“s” -89.400000)
-> (Strange -96 °q” False)
(Strange -96 "q” False)
-> (Weirdo “w” True 10 -3.0 False 99 2.0)
(Weirdo “w” True 10 -3.000000 False 99 2.000000)
->

-> (set x 42.0)

42.000000

-> (set y (Pos x (* x 2.0) (* x 42.0)))

(Pos 42.000000 84.000000 1764.000000)

-> (PlainList x False y)

(PlainList 42.000000 False (Pos 42.000000 84.000000 1764.000000))
->

26

-> (Pos 2.0 "q” 42)

* List type “Pos”, item 1 value type was not Real
* List type “Pos”, item 2 value type was not Real
(Pos 2.000000 “q~ 42)

-> (set-typecheck False)

<Null value>

-> (Pos 2.0 "q° 42)

(Pos 2.000000 ‘q~ 42)

->

Conveniently, higher-order values that contain numeric elements can be processed by the

same basic mathematical operations as the primitive types:

> (+479)

20

-> (+ (Pos 1.0 2.0 3.0) (Pos 4.0 6.0 8.0) (Pos -10.0 5.0 -9.0))
(Pos -5.000000 13.000000 2.000000)

-> (* (IntList 34 5 6 7 8) (IntList -2 -3 -4 -5))

(IntList -6 -12 -20 -30 7 8)

->

Strings of characters are modeled by a built-in higher-order type called String which con-
tains an arbitrary number of values of type Char. A shorthand method of expressing String

values is provided by Isis to save the work of typing out each individual character constant

in the list:

_> (String dol 'bl IBI ’ea rqr aur tir aoa lud zsr)

"obsequious”

-> "obsequious"

"obsequious"

->

Isis is a dynamically typed language, meaning that you do not have to declare types for
variables and procedure arguments. All type checking is done at run time. If the list value
type-checker is turned off, Isis will only check types when absolutely necessary-—for example,
to check if the procedure in a call is really a procedure. Internal primitive operations and C

functions linked into Isis also commonly check the types of their arguments and will report

errors accordingly.

27

3.3 Procedures

Unlike other scripting languages, Isis gives you the ability to define your own procedures
through the proc construct (similar to 1ambda in Scheme). Procedures can be recursive—
meaning they can contain calls to themselves. Procedures are then applied by entering the
procedure followed by its arguments, all enclosed in parentheses. Here is the definition and

an application of the factorial function:

-> (set fact (proc (a) (if (<= a 1) 1 (* a (fact (- a 1))))))
< Procedure >

-> (fact 10)

3628800

->

In the example above, the variable fact is bound to a value of type ‘procedure’. Procedures,
as well as all other data structures in Isis, are first-class data, meaning that they can
be passed to and veturned from other procedures. Here is a procedure which accepts a

procedure and returns new procedure. The new procedure applies that procedure to its

arguwruent and adds 42 to the result:

-> (set makeadd42

(proc (theproc)

(proc (thearg) (+ 42 (theproc thearg)))))

< Procedure >
~> (set factadd42 (makeadd42 fact))
< Procedure >
-> (factadd42 10)
3628842
->

If the procedure i3 not recursive, you do not have to name it by assighing it to a variable

in order to use it. For example, the following would suffice:

28

-> ((makeadd42 fact) 10)
3628842
-> (((proc (theproc)
(proc (thearg) (+ 42 (theproc thearg))))
fact)
10)
3628842
->

3.4 Interface to external functions and libraries

One of the most powerful features of Isis is that in addition to defining procedures inside the
script interpreter, you can also define your own C functions and use them in the interpreter
just as you would any other procedure. From the scripting language’s point of view, C
functions behave in exactly the same manner as scripted procedures. When you apply a
procedure, you might be calling a C function or a scripted procedure-—and you wou!d never
know the difference. In fact, all of the basic mathematical primitives and other operations

in Isis are implemented through this interface!

C functions can be written if a highly efficient routine is needed for some part of the program.
They can also be used to connect to externally developed C packages, like graphics and sound
libraries or user interface software. The structured video and audio packages described in

the next chapter make use of this interface.

Efficiency is often a concern in scripting languages that have the ability to link to external
functions. For various reasons, fundamental data types in some scripting languages are
specially designed at the bit level to be as small as possible. In other systems, such as Tcl,
internal script data is stored and processed in string form. The disadvantage of languages
of this sort is that the internal representation of data must be converted to and from normal
C types in order to link with C functions. This translation is often very costly, especially
if it involves converting between strings and numerical types. In Isis, however, all internal
script data is stored using standard C data types, thereby minimizing this conversion phase

for optimum efficiency when using external C functions.

29

Defining C functions for use in the interpreter is a fairly simple process. The arguments for
the C function are passed in a standard argc/argv format where each argument is a “value”
from the script interpreter. Special C macros are provided to manipulate and extract data
from this value format and also to build return values. Each function is registered with the
script interpreter so that it will become a part of the default top-level environment when

the interpreter is started up. Then it can be used inside Isis like any other procedure.

3.5 Structures and fields

Lists are an efficient way of storing ordered unnamed pieces of data. However there may be
situations where you might like to have something like a C structure for storing data. Isis
provides that through the Structure data type. A Structure is an unordered collection

of named fields, each of which contains a value.

When first created, a structure is completely empty—it contains no fields. Fields are then
added to an empty structure, each of which has a reference value which can be any Isis
value. This value acts as a name for the field so that you can retrieve it later. Once a field is
obtained from a structure, you can set or query its value. The reason structures and fields
are conceptually separate entities is to allow you to directly reference a particular field after
you've found it just once, rather than repeatedly search for it inside a structure (a process

which could require many value comparisons).

30

-> (set soundstrc (new-structure))
< Structure >

-> (add-field soundstrc 42)

< Field >

-> (add-field soundstrc “f°)

< Field >

-> (add-field soundstrc "pcsition")
< Field >

-> (soundstrc "position")
< Field >

-> (set-field (soundstrc "position") (Pos 3 2 1))

(Pos 321)

-> (set-field (soundstrc 42) True)

True

-> (set-field (soundstrc ‘f°) "perturbation")
"perturbation"

-> ((soundstrc “f£°))

"perturbation"

-> ((soundstrc 42))

True

-> ((soundstrc "position"))
(Pos 321)

->

3.6 Timelines

In addition to simple lists and structures, there is a third innovative data storage possibility
available in Isis called a Timeline. When you first create a timeline, it is completely empty.
You then place values at any real-numbered point, or time, on the timeline. When you
enter each point’s value, you also indicate whether you want the value of the timeline to be
interpolated between that point and the point directly before it on the timeline. You can
specify either linear or cubic interpolation. The timeline therefore has a “value” at every

real-numbered point in time which can be retrieved dynamically!

The values in the timeline do not have to be numeric, nor do they have to be of the same

31

type. However, interpolation will only occur if the key points involved are of the same
type, and are numeric in some way. If a list type combines numeric and non-numeric types,
only the numeric parts will be interpolated. Timelines are wonderful for expressing time-
dependent quantities, but they can also be used to express spatial variances (or variances
in any other analogous domain). Explicit linear and cubic interpolation functions are also

provided so you can do interpolation outside of timelines if desired.

-> (set dave-position {new-timeline))
< Timeline >

-> (key dave-position 0.0 (Pos 2.0 4.0 6.0))

(Pos 2.000000 4.000000 6.000000)

-> (key dave-position 20.0 (Pos 10.0 42.0 85.0) linear)

(Pos 10.000000 42.000000 85.000000)

-> (key dave-position 30.0 (Pos -34.0 -40.1 -234.4) cubic)
(Pos -34.000000 -40.100000 -234.400000)

-> (key dave-position 40.0 (Pos 23.3 354.3 123.4) cubic)

(Pos 23.300000 354.300000 123.400000)

-> (dave-position 10.0)

(Pos 6.000000 23.000000 45.500000)

-> (dave-position 4.6793)

(Pos 3.871720 12.890670 24.483235)

-> (dave-position 20.3)

(Pos 9.369685 41.024039 80.745221)

-> (dave-position 28.5)

(Pos -32.391944 -52.456888 -219.376075)
->

3.7 Data storage and memory management

Isis employs its own memory management system, thereby avoiding serious inefficiencies in
dynamic memory allocation that are present on many platforms and in other systems that
use the standard C or C++ memory allocation mechanisms. Isis allocates a certain number
of each kind of data structure used in the interpreter and maintains an array of pointers
into that block of structures. Highly optimized routines provide constant-time allocation

and deallocation of each type of structure for the interpreter. If the supply of one kind

32

of structure runs out, a new block of structures is allocated and their addresses are added
to the pointer array. In this design, memory fragmentation and garbage collection are not
issues. Memory statistics functions are available to keep track of how many of each kind of

structure are used and the maximum number used at any one time.

Another important optimization feature in Isis is that “lists” are not based on linked lists (as
they are in Scheme for example). Lists in Isis are formed with array-based data structures
to provide constant time access to any element in the list, greatly improving efficiency in
many situations. These arrays hold pointers to the elements in the list, not the elements
themselves, so the actual elements may be of different sizes. The only problem with this
method is that changing the number of elements in a list, through an “append” or “sublist”
operation for example, requires creating an array of the new size and copying the element
pointers to the new array. For small lists, there is no real degradation in performance
compared to a linked-list model, but for larger lists, there will be a slight drop in speed
when doing these operations. However, this usually an acceptable tradeoff since in the
majority of applications (especially multimedia applications), constant-time reference is

much more important than being able to dynamically modify the lengths of large lists.

33

Chapter 4

Structured audio and video

What is structured video? Traditional video is represented in terms of pixels, scanlines, and
frames. On the other hand, structured video, or object-based video, is represented in terms
of several component objects that are combined in some manner to produce the video scene.
These objects may be of many different kinds—two dimensional images or movies, three-
dimensional models, text, graphics, etc. They are manipulated and assembled together in
different ways over time to generate each frame of a presentation. Representing video in
this way tends to simplify greatly the problems of interactive and personalized delivery.
Similarly, the term structured audio refers to a representation for audio in terms of objects,
each of which is a piece of audio. Several audio objects are combined in some manner over

time to produce a full audio presentation.

Since the Isis scripting language has many useful features, such as the timeline construct
and the interface to C routines, packages of Isis functions could be developed to serve as an
authoring environment for highly interactive structured audio and video presentations. A

list of criteria for the success of this work follows:

e The artist’s hands should not be tied by forcing her to work with a particular model
of media presentation. Maximum expressivity is the highest priority. The system

should be general enough, especially at the levels of interactivity and personalization,

34

to adapt easily to any kind of application.

The author should be able to create continuous and highly complex user interaction
in a platform independent manner so that a wide variety of input devices could be
used. No window manager or graphical user environment should be assumed to be

present.

The system must be fast and support instant updates and on-the-fly modifications.
Isis is the perfect selection because of its interpretive nature, its array-based internal

structures, and its efficient C procedure call mechanism.

The core package of Isis functions should be platform-independent so that the same
script could be run on any delivery machine. On the other hand, the low-level audio
and video processing routines underlying the system should be tailored to take advan-

tage of any special hardware capabilities of each platform, such as parallel processing.

The system should abstract out a small set of key elements of structured audio and
video presentations. Scripts should never contain any low-level platform-specific de-

tails.

Many media types must be supported, including two- and three- dimensional still
and animated graphics, text, and multi-track audio. Standard file formats should be

readable by the system.

The system should be able to run in real time on platforms where it is possible (such

as the Cheops processing system).

Three packages have been developed for Isis with these aims in mind—one for structured

video, the second for structured audio, and the last for user interfaces. There are three

conceptual layers to the system (see Figure 4.1). At the highest level is the platform-

independent Isis script interpreter. Each package is then accessed in Isis merely by calling

various built-in Isis functions. These functions are also machine-independent, so it is possi-

ble to write a single script that will run on any platform. It is then the job of each package

35

to use machine-specific routines and libraries to deliver the presentation as effectively as

possible on the given machine.

4.1 Structured Video

The model of the structured video package consists of seven different kinds of abstract enti-
ties: objects, engines, actors, cameras, environments, windows, and effects (see Figure 4.2).
Essentially, consider yourself as the camera, the other people and things in the production
as the actors, and the details of how you perceive those people and things as the environ-
ment. The window describes how what the camera sees will be translated to a window on
a video screen. An arbitrary number of effects can be attached to each actor or window to
describe special transformations that you want applied to these entities. Objects hold the
actual graphics data used by actors. The engine can loosely be thought of as the translator
from the virtual world of the presentation to the output device in the real world. Using the
information stored in a certain camera, an environment, one or more actors, a window, and
all associated effects, the engine does all the work to build frames of a presentation. You
can have more than one engine in a presentation, each of which can share actors, cameras,
etc., with any of the other engines. This gives you the power to control several presentations

in many different windows simultaneously.

A set of built-in Isis functions will allow you to create instances of these seven entities and
modify parameters inside each of them to alter their states in some way. Functions are
also available for debugging and controlling timers that can be used for synchronization.
A typical script will begin by calling initialization functions and creating all the needed
entities. To output a each frame of a presentation, the script need only set the appropriate
parameters inside each entity to desired values (possibly taking into account timers or user
input) and then call a function to actually draw the frame. If this “update and draw”

routine is performed repeatedly, it is possible to achieve essentially real-time output!

The following sections describe the seven entities and their parameters in greater detail. For

36

Your
Script

Graphics

1
L]
1
[}
|
|
X Data
: ¢
]
I
]
|
Structured | | Video
Video .| Delivery |— = Video
Package | System Presentation
[}
)
]
]
'
]
L}
Isi User ! Interf
- Interface : ntertace User
Interpreter Package ! Controller Interface
:
[}
}
[}
]
|
Structured X Audio
Audio ; Delivery Audio
Package E System Presentation
: T
[}
}
[}
}
! Sound
X Data
:
1
Platform independent <——> Platform specific

Figure 4.1: The layout of the Isis interactive structured audio and video system.

37

Window

Effect
Actor Object
Camera Actor Object
Environment Actor Object
Effect | | Effect

Figure 4.2: The framework of the structured video package. This is just one possible ar-
rangement of entities.

more information about the specifics of the system (such as the types and default values of

parameters), please see the structured video reference manual in Appendix B.

4.1.1 Objects

Each actor must point to an object, which is an entity that refers to actual graphics data,
such as an image, a movie, a three-dimensional model, a font, etc. More than one actor
can use the same cbject simultaneously, but each actor can only point to a single object at
a time. Only raw graphics data (or information about where it is located) is stored in the

object. Information about how that data gets rendered is part of the actor.

The parameters that can be set in the object are:

e Source filename: The filename or URL where the graphics data may be found. URL
support may or may not be present depending on the machine. The format of the

data is inferred from its filename or extension.

38

o Internal name: Can be anything as it is only used in printing debugging information

about the object, not in any processing.

e Class name: Used to group certain objects in order to aid the caching mechanism
in the delivery system. For example, if there are several objects which are used as
backgrounds but only one is ever used at any one time, these objects should be given
the same class name, perhaps something like "background". The same should be

done for other groups of objects, each group with its own unique class name.

4.1.2 Engines

The top-level entity in any presentation is the engine. Parameters inside the engine point
to a certain window, camera, environment, and a list of actors that should be processed
by the engine. There are also parameters for controlling some high-level engine behaviors.

Here is the full list:

e Window: The window entity to which to render.

e Environment: The video environment entity to use in rendering.
e Camera: The camera entity to use in rendering.

e Actors: Zero or more actor entities for this engine to render.

e Clearing flag: Indicates whether or not to clear the output buffer after building each
frame. In certain presentations, clearing may not be necessary and can save a little

time, or clearing may not be desired for artistic reasons.

e Depth clearing flag: Indicates whether or not to clear the output depth buffer after

building each frame.

2 Render in order flag: Indicates whether or not to render the actors in the same order

they were specified for this engine. On certain platforms, you may be able to take

39

advantage of parallelism by switching off this flag, but in other situations, it may be

necessary to render actors in a certain order.

e Qutput descriptor: A name for the output of this engine that will be used as a title
for the output window if the delivery system supports named windows. It could also

be used for other purposes.

4.1.3 Windows

A window entity specifies how the view obtained by the virtual camera will translate to a

window on the output screen. There are 3 parameters the script writer can modify:

e Location: The location of the window on a larger screen.
e Size: The horizontal and vertical size of the window in pixels.

e Effects: A list of special effects entities to be applied to the window (such as brightness

or color filters).

4.1.4 Cameras

The camera represents the details about a virtual “viewer” in a three dimensional space.

The parameters function much like a camera in the computer graphics world:

View reference point

View plane normal

View up vector

Eye distance

Viewport

40

View up vector

A

\

Actual viewing direction

View reference
point

View plane normal View plane

Eve distance

Center ¢f
projection

Figure 4.3: Elements of the virtual camera.

The view reference point and view plane normal determine a plane in space called the view
plane. The center of projection is located eye distance units away from the view reference
point in the direction of the view plane normal. (Note that the view plane normal points

toward the viewer—see Figure 4.3.)

An arbitrary point in the three-dimensional space is projected onto the view plane by
finding the intersection of the view plane with the line that passes through both the center
of projection and that point. The entire three-dimensional scene is mapped onto the two-

dimensional view plane in this manner.

The portion of this view plane that is visible in the output window is called the viewport.
You first specify the direction to be considered as “up” as the view up vector. This vector

points in the positive y direction on the view plane. Then, the viewport is specified by

41

APositive y directicn on view plane
(view up vector)

(xmax, ymax)

]

View reference
point

n) = Positive x direction

on view plane

jm ml

View plane
(viewed head-on)

£

(xmin, ymiv)

(View plane normal pointing out of page)

Figure 4.4: Elements of the viewport.

considering the view reference point to be the origin on the view plane and then giving a

minimum and maximum x and y extent for the sides of the viewport (see Figure 4.4).

All of the distances and dimensions needed for the camera parameters are specified in world
units. Whether the world units are millimeters or miles depends on thc units of the objects
in the presentation. If the objects are three-dimensional models, the same units that were
used when those objects were originally created are the units that should be used for the
camera. If the objects are two-dimensional images or movies, some file formats will allow
the creator to specify a pixel-to-world scale factor for the images which will indicate the
proper units to use. If no scale factor is specified, then the pixel size is assumed to be the

same as the world size (a 1:1 pixel-to-world scale factor).

42

4.1.5 Environments

The video environment would contain information about how the actors in the scene are
perceived by the camera. For instance, it would store information about the location and
intensity of lights in a scene. There is a similar “environment” entity in the structured
audio package which holds information about the acoustics of the three-dimensional audio
space. In the current version of the structured videc package, support for lights and other

environment factors is not present.

4.1.6 Actors

All of tne other people and things in a production are the actors. Each actor has these

parameters available to be modified:

e Object: The video object where the graphics data for the actor resides.

Frame: The temporal frame number of the object to use (if more than one is available).

View: A spatial “view” number of the object to use (if more than one is available).

Visibility: Opaqueness of the actor.

Positioning mode: A flag controlling the positioning mode of the actor. If the actor is
in 3D mode, you can position and rotate the actor anywhere in the three-dimensional
virtual world, and the actor will be scaled and rotated properly depending on the
current camera pose when the frame is plotted. If the actor is the simpler 2D posi-
tioning mode, you can only place the actor at a certain pixel position in the current

window—the current camera and environment are ignored.

e Position: The position of the object’s hotpoint. By default, this point is the center of

the object, but some file formats allow for user-specified hotpoints.

e Rotation: The rotation vector for the actor. Rotation occurs about the hotpoint of

the object.

43

e Scale: A scale multiplier for the actor’s units.

e Depth flag: Indicates whether or not to use the depth buffer of the actor’s object if it

is available.

o Z-buffer flag: Determines if the actor will be Z-buffered into the output window (as

opposed to simply overwriting the window with the rendered actor).

o Alpha flag: Indicates whether or not to use the alpha buffer of the actor’s object if it

is available.

e Blending flag: Determines whether to perform high-quality alpha blending when
transferring the actor to the output window (as opposed to treating the alpha channel

as if it were binary).

-+ Effects: A list of special effects entities to be applied to the actor before compositing

it in the output frame.

4.1.7 Effects

Effects are entities that describe a wide variety of special transformations that could be ap-
plied locally (to the graphics data in one particular actor) or globally (to the entire contents
of a window)—just like “special effects” in the film industry. Some examples of special effects
transformations are: filtering (brightness, color, sharpening, blurring), remapping (scaling,
rotating, warping), edge sensation, line detection, pixelation, anti-aliasing, noise addition,
noise removal—the list is almost endless. There are separate parameters available to modify
for each type of effect. The goal is to embody as many highly-configurable “primitive” spe-
cial effects in the package as possible, the combination of which could produce just about
any effect that is desired. Not all machines may be able to apply all the primitive special

effects—each specific platform would have to do the best it can with the routines available.

44

Speaker Speaker Speaker

Effect
Engine
Voice Object
Listener Voice Object
Environment Volice Object
Effect Effect

Figure 4.5: The framework of the structured audio package. This is just one possible ar-
rangement of entities.

4.2 Structured Audio

The structured audio package lets you create a three-dimensional environment for the play-
back of sounds. You can place any number of sounds and a single listener anywhere in
a virtual space and modify playback and acoustical characteristics in order to achieve a
desired effect. The results are rendered on a set of speakers surrounding the real listener in

the physical area where the presentation will take place.

The model of the structured audio package is analogous to that of the structured video
package, consisting of seven kinds of abstract entities: objects, engines, voices, listeners,

environments, speakers, and effects (see Figure 4.5).

As with structured video, consider yourself as the listener, the other people and things that
make noise in the production as the voices, and the details of how you perceive those people
and things as the environment. The speakers describe how what the listener hears will be
translated to the speakers in your room. Any number of effects can be attached to each

voice or speaker to indicate special filtering or other transformations that you want applied

45

to these entities. Objects hold the actual audio data played by voices. The engine is the
translator from the virtual world of the presentation to the output devices in the real world.
Using the information stored in a certain listener, an environment, one or more voices, one
or more speakers, and all associated effects, the engine does all the work to build the mixed
audio for presentation. You can create more than one engine in a single session, each of
which can share voices, listeners, etc., with any of the other engines. This gives you the

power to control several presentations using many different sets of speakers simultaneously.

There is a set of Isis functions which allows you to create instances of these seven entities
and modify parameters inside each to alter their states. Debugging and timing functions
are also available, just as in the structured video package. Scripts begin by initializing and
creating all the needed entities. In order to actually output audio, the script needs to set the
appropriate parameters to desired values (taking into account timers and user interaction)
and call a function to render the audio with those settings. The audio plays continuously,
but if this “update and render” routine is performed repeatedly, it is possible to achieve

essentially real-time feedback for changes.

The sections that follow elaborate on the seven audio entities and the parameters available
in each. Appendix C contains a reference manual for the structured audio system in which

all the specifics may be found.

4.2.1 Objects

Each voice must point to an object, which is an entity that refers to actual audio data,
such as a sound effect or a piece of music. More than one voice can use the same object
simultaneously, but each voice can only point to a single object at a time. Only raw audio
data (or information about where it is located) is stored in the object. Information about

how that data gets rendered is part of the voice.

There are only two parameters in an object which you may set:

46

e Source filename: The filename or URL where the audio data may be found. URL
support may or may not be present depending on the machine. The format of the

data is inferred from its filename or extension.

e Internal name: Can be anything as it is only used in printing debugging information

about the object, not in any processing.

4.2.2 Engines

Like the structured video package, the top-level entity in an audio presentation is the engine.

The parameters are:

o Speakers: The speakers to which to render audio.

e Environment: The audio environment entity to use in processing.

Listener: The listener entity to use in processing.

e Voices: Zero or more voice entities for this engine to render.

Output descriptor: A name for the output of this engine.

4.2.3 Speakers

A speaker entity specifies where the physical speakers are placed with respect to the lis-
tener in your presentation room. This information is needed in order to render the correct
directional mix of the audio for each speaker. There are only two parameters you can

modify:

e Effects: A list of audio effects entities to be applied to the output of the speaker.

47

Positive Y direction
A

Listener faces
negative Z direction

Listener placed
at origin

Positive Z direction Positive X direction

Figure 4.6: The coordinate system of the structured audio physical presentation space.

e Position: The position of the speaker in the physical presentation space, given in
a coordinate system where the physical listener is at the origin and is facing in the
negative Z direction. The positive X axis points to the right of the listener, the positive

Y axis points upward, and the positive Z axis points backwards (see Figure 4.6).

4.2.4 Listeners

The listener represents the details about a virtual “hearing” entity in a three dimensional
space. The parameters function much like an extremely simple camera in the computer

graphics world:

e Position: Position of the virtual listener in a rectangular solid “room” with its origin
at the exact center. (The dimensions of the room are specified in the environment

entity).
e Normal vector: Vector pointing the opposite direction that the listener is facing.

e Up vector: Vector pointing in the direction considered “up.”

48

4.2.5 Environments

The audio environment contains information about how the voices in the scene will be
perceived by the listener. For instance, the environment stores information about the
geometry and acoustical properties of the virtual “room” where the actior is taking place.
In the current version of the package, this room is considered to be a rectangular solid in

shape. Here are the parameters:

e Dimensions: The dimensions of the rectangular solid room.
e Reflection coefficients: Coefficients for reflection for each of the six walls of the room.

o Mazimum number of reflections: The maximum number of virtual “bounces” a sound
can make in the room. The listener will only hear virtual sound sources that have
reflected off the walls less than this many times. Setting this number high increases
the realism of the audio reproduction and, consequently, the amount of processing

required.

e Reverberation constant: Amount of reverb to apply to sounds in the room.

4.2.6 Vocices

All of the noises emitted by the people and things in your production are modeled by the

voices. Each voice has these parameters available to be modified:

Object: The audio object where the sound data for this actor resides.

Entry time: The place within the sound object to begin playing from.

Start time: Specifies the exact time to begin playing the sound on this voice. The

current time can be queried or set using other functions in the package.

End time: Specifies the exact time to stop playing the sound.

49

Position: The position of the voice in the virtual “room” as described before.

Mazimum depth: A distance above which virtual sources of this voice will not be

heard—useful for turning off processing for a voice when it is beyond a certain distance.

Gain: Gain to apply to the sound.

Loop: A flag indicating whether or not to loop the sound back to the start if it plays

past its end.

Effects: A list of special effects entities to be applied to this voice before mixing it

into the composite output.

4.2.7 Effects

Audio effects work just like video effects—they describe a wide variety of possible trans-
formations that could be applied locally (to a particular voice) or globally (to the entire
composite audio mix for a particular speaker or engine). Examples of audio effects which
might be applied are: high-pass or low-pass filtering, noise addition or removal, pitch ad-
justment, etc. Each has its own parameters which could be modified to configure the effect.
Not all machines would be able to apply all possible effects—each platform would create

the presentation to the best of its ability.

4.3 User Interfaces

The structured audio and video packages for Isis allow one to author complex presentations
that incorporate a wide variety of media forms. However, presentations of this kind in many
cases could be much more compelling if they allowed the viewer or listener to interact in
some way. Some kind of interface into Isis would be needed to provide input that could be

used to alter the media delivery.

The user interface package for Isis enables the creation of a standard user interface that will

50

work on any delivery platform, from common workstations and operating systems to exper-
imental audio and video processing hardware. The problem with designing a standard user
interface system is that not all machines will offer the same input possibilities as the oth-
ers. Some systems may manage a windowing system that supports things like buttons and
icons, but many times, especially with experimental machines, none of these conveniences

are present, and different and sometimes odd input devices must be used instead.

The Isis user interface package solves this problem by making the least number of as-
sumptions possible about the specific capabilities of various platforms. Windows, buttons,
scrollbars, menus, etc., are all (happily) assumed to be nonexistent. Event processing also
is assumed not to be present. The operation of the package is governed by the simplest

possible model of interaction.

The user interface package lets you create and manipulate two different kinds of entities:
interfaces and inputs. An interface is nothing more than a collection of related inputs.
An input is an abstract notion of a polled “input device” which can receive data of only
5 different kinds: boolean, integer number, real number, character, or string. Each input

device can be configured in different ways to limit the possible range of acquired values.

Each input that is created and configured in a script is tied to an input device on the specific
platform on which Isis is running. How that input device is realized depends on what input
possibilities are available on that platform. For example, an integer input configured to
have a certain maximum and minimum value might be rendered as a scroll bar inside some
kind of graphical user interface, or, on more primitive systems, it might be tied to a certain

knob in a physical knob box connected to the computer.

A typical script requiring a user interface will begin by calling initialization functions and
creating and configuring all the needed interfaces and inputs. Then, to obtain input values,
the script need only call a function that checks the value of a particular input entity.

Appendix D contains a reference manual for the user interface package.

51

4.4 Implementation on the Cheops processor

Currently, Isis and the three packages described in the previous sections are operational
on the MIT Media Laboratory’s Cheops image processing system, a data-flow computer
optimized for real-time processing and display of video [BW95]. In Cheops, several basic,
computationally intensive operations (such as image filtering, spatial remapping, motion
estimation, etc.) are embodied in specialized hardware. Cheops’ high-bandwidth transfer
capability (up to 120MB per second), dynamic parallelization of processing [She92], and
large memory store (up to 4 gigabytes) make it the perfect platform for real-time interactive

structured audio and video experiments.

The Isis structured video package builds upon elements of previous prototype structured
video systems on Cheops [Gra95] [Cha95] [BGW94|. Since Cheops is still an evolving
machine, certain aspects of the complete package are not yet present. Only two-dimensional
objects may be loaded into the system due to the fact that Cheops is not currently optimized
for rendering three-dimensional media types. For the same reason, environment factors,
such as virtual lights, are also not supported. Objects may, however, contain an alpha or
depth channel, and z-buffer processing is enabled. This allows the author to realistically
simulate three-dimensionality using only two-dimensional building blocks. Since there is
a very limited number of primitive graphics transformations available in hardware at this

time, support for effects entities is also temporarily unavailable.

The structured audio package on Cheops connects to the host Alpha workstation and uses
a special sound server designed to work with the AudioFile system [Ing95]. This server
supports all the aspects of the ideal package described previously except for effects entities
which are currently unimplemented. Only raw 44.1 KHz sound files can be loaded and a

maximum of four sounds may be played simultaneously.

The Cheops user interface package connects to an external device containing eight knobs.
Each knob can be configured with a certain maximum, minimum, and step value. All input

types are supported except for strings.

52

The entire system on Cheops has been functioning exceptionally for several months and has
been used in building several innovative applications. For reference, Appendix E contains a

detailed summary of the features and oddities of the Cheops versions of all three packages.

4.5 Applications

In order to determine the success or failure of this part of the work, a broad range of
applications have been produced using Isis and the structured audio and video packages. A
system for personalizing weather information was created [Eva96) in which the user selects
several cities and regions in the United States for which she is interested in knowing the
current and forecast weather. An external program then connects to weather information
centers on the internet, retrieves the desired information, and outputs an Isis script that
can be executed on Cheops to display the personalized weather report. Playout consists of
animated maps and graphics to visualize the data, and the viewer can move immediately

to certain kinds of information for certain times and places.

The system has also been used to author a narrative that uses story perspective as a model
for interaction. This production incorporates continuous interactivity with aspects of play-
out personalization to optimally convey a complex story world to the experiencer. Three-
dimensional and two-dimensional graphics objects and several audio streams are mixed in

real time. This production is explained in greater detail in the next chapter.

Several other applications have been developed, including a glorified pong-style video game
that incorporates elements of the interactive narrative described above. Many video-only

and audio-only projects have also been completed to test various aspects of the system.

The fact that it has been possible to fully implement such a wide variety of applications
demonstrates the system’s power of adapting to many different uses. In many ways, its
design was partially driven by the wide-ranging needs of the applications that were to

be developed. The user interface package is general enough to support most any kind

53

of interactivity, whether it be passive or active, continuous or intermittent, or a complex

combination of these.

The design of the structured audio package allows the author to simulate very simple play-
back conditions or create complicated three-dimensional audio environments with a mini-
mum of effort. The author need not be an expert in acoustics to achieve a desired effect.
Although not all its features have been implemented on Cheops, the structured video pack-
age also allows for a high degree of expressivity. Many different kinds of media objects
can be manipulated in either a two- or three-dimensional presentation environment. The
current implementation still lacks in some areas. A larger library of visual transformations
is needed in order to support transparency, blending, and feedback loops. In the future,
lighting, shading, and texturing will need to be supported as well. Otherwise, the sys-
tem has been quite adequate for applications ranging from data visualization to interactive

storytelling to arcade-style games.

The Isis language itself has been the perfect base on which to build the interactive media
packages described in this chapter. Since it is a complete programming language, it is
possible to express virtually any algorithm or process that might be needed. The timeline
storage mechanism is an extremely valuable tool for expressing time- and space-variant data.
Its general simplicity of syntax allows most anyone, especially those who are not computer
scientists, to learn and comprehend the basics of the language in a reduced amount of time
compared to other multimedia scripting languages. No understanding of object-oriented or
event-based programming is necessary. The platform-independence of the interpreter and

function packages assures that porting the system to other architectures will be fairly easy.

54

Chapter 5

An interactive narrative

Computers have long been used extensively for information storage and retrieval, as well
as for entertainment. Advances in technology for dynamically mixing different kinds of
media were applied initially to these areas to the point where today we can create beautiful
informational kiosks and incredible action video games. But it is only recently that some
non-computer-scientists have realized that this technology also holds great potential in the
creation of interactive pieces of art. Much attention has been devoted to the specific area

of storytelling, unfortunately often with less than meaningful results.

Take, for example, some recent experiments with so-called “interactive movies” which in-
volved attaching a small joystick with three buttons to every seat in a movie theater. Au-
dience members were presented with at most three choices at certain key points in a movie
that allowed them to collectively decide which direction the plot would take in the story. It
is easy to see why experiments like this were dismal failures. Of course, some members of
the audience would feel frustrated because their choices could be overruled by the majority,
and, in these early trials, less than meaningful stories were delivered by less than skilled
actors. But even if the best actors in the world were acting out the most amazing story ever

conceived, there are still much deeper problems with this and similar models of interaction.

People watch films and television shows, go to theatrical plays, read books, etc., to experi-

55

ence and learn from and be emotionally moved by a story. In most traditional productions,
these elements are invoked precisely by experiencing a specific line of events and actions
occurting in a certain environment with certain kinds of characters. All of these intrinsic
components of a story are referred to as the narrative. Allowing the experiencer to control
aspects of the narrative greatly alters (and usually detracts from) any meaning or impact
that might have been part of the original story idea. On the other hand, the narration
refers to how the story is told or presented, involving things like the way actors deliver
their lines, the design of the scenery and lighting, the editing style, the musical score, etc.
These presentation elements set up the entire mood and atmosphere for a story, allowing its
creator to emphasize or deemphasize certain things and to maximize its impact. Allowing
the experiencer to control the narration is allowing the entire feel of the story world to

change or possibly be compromised.

Considering these simple observations, it seems clear that any successful venture in inter-
active storytelling is going to have to break completely from the rules of traditional forms
and enter a universe of its own, rather than slap gimmicks or bells and whistles onto old
ideas. Very few artists have been able to go beyond the horizon to this new realm and

create compelling content.

With this in mind, the Interactive Cinema ..~ Television of Tomorrow groups at the MIT
Media Lab set out to break from past lines of research and create a completely new kind
of interactive story experience. We decided early that we wanted to achieve certain basic

goals:

o The story should be short and simple, yet also gripping and meaningful. Shortness is
desired for two reasons—because there is only a limited amount of memory avau.'le
on delivery platforms that can be used to store the media we intend to use, and

because in many cases there is a certain feeling of beauty that accompanies simplicity.

e The narrative in the production will be held constant. No modification of the actual

story will be allowed. The interaction will consist of changing aspects of the narration

56

of the story in order to present a different subjective point of view on the same events.

e For simplicity, the viewer should take a third person perapective, not the part of an
actual character in the story. She should also have the ability to move around spatially

in the virtual scene.

e Interactivity should be continuous and response to it should be immediate, yet the
presentation also should be able to play out in a meaningful manner if no interaction

is given.

e The user interface should be as simple and intuitive as possible and provide constraints

and visual feedback so that the viewer never gets “lost.”

e The playout of the production should not be governed merely by separate pre-ordained
sequences of shots and sounds. There should enough parameters, many of which might
be interpolated, to make the story space large and provide for a virtually infinite

number of possible playouts.

e The experience should be one-on-one in nature. Multiple-viewer theater-like situations
should be avoided. At the same time, the production should never feel like or have
the goal-oriented nature of a game, beyond simply invoking a desire to explore and

understand the story world.

e The production should incorporate aspects of personalization to slightly alter the

delivery based on viewing conditions or information about the viewer.

5.1 The story

The story for our production is based on the student film The Yellow Wallpaper created
by Tony Romain at Boston University in 1995. This film, in turn, is based on the short
story by the same name written by Charlotte Ferkins Gilman. Scenes of a present-day
woman writing this story are interwoven with the world of the character she is creating in

the past. The film revolves around her struggle to touch and understand this parallel world

57

in the past while at the same time dealing with an abusive husband in the present who is

completely oblivious to what is happening inside her mind.

This story was perfect for our purposes because of its simple yet powerful conflict between
the woman and the man, offering two extremely opposing points of view on the same world.
Since brevity was an important issue in our production, we condensed the narrative down
to a single very dramatic moment that conveys all the emotions of the entire story. In
our short version, the woman (Kathy) is sitting at a desk in an empty attic in her house,
hammering away at a typewriter. Her husband (John) arrives home downstairs and we hear
his harsh voice penetrate the room, calling angrily to his wife. She does not answer. John
walks in the room and proceeds to make several abusive comments. She ignores him—not
purposely, but because she is so engrossed in her inner world that she barely recognizes his
existence. He walks over to a woman’s dress form in the corner of the attic, grabs a dirty
rag that is sitting on top of it, and attempts to get her attention once more. Unsuccessful
and frustrated, he throws the rag to the floor and storms out of the room, leaving her
alone again. Kathy perceives these events, but only on the edge of her consciousness and
in a much different light. She is more entranced by images of the story she is creating.
For example, instead of grabbing a rag off of the mannequin, she sees John grabbing a

handkerchief from the hand of the character she is writing about.

The purpose of making this story interactive was to explore issues concerning the nature
of reality and perception. Our goal was not to allow the experiencer to change the actual
narrative—instead, the main interaction in the production is based on changing aspects of
the narration in order to convey a different subjective point of view on the same events.
This interaction is motivated by the experiencer’s desire to enter the minds of the char-
acters and explore their differing perceptions of the same world. By modeling these two
points of view as two eztremes in a “point of view” space, it is also possible to interpolate
parameters and generate versions of the playout that blend each point of view to different
extents. As a secondary point of interaction, the viewer may also change her spatial position
and orientation in the virtual attic where the action takes place, but only along a certain

constrained path in order to always keep the viewer pointed generally toward the action.

58

The production is also personalized to provide slightly altered editing and shot composition

depending on the size of the display window.

5.2 The scene

Knowing that the Cheops processor was going to be the primary delivery platform for the
final presentation, it was necessary to obtain the media objects in a very specific way in order
to optimize its performance. Cheops does not have the ability to render three-dimensional
textured objects in real time. Therefore, since it is almost impossible to generate an accurate
and realistic model of the structure of a human being, let alone its movements and gestures,

we knew we would have to shoot real live actors.

Where and how we would shoot the actors was another issue. Since we wanted to give
the viewer the ability to roam around the attic, at least to a certain restricted degree, it
would be necessary to shoot the action from several different angles. To maximize realism,
we could have shot the action in a real attic with several cameras, but that would restrict
the viewer’s motion to those angles only, of which there might very few. It would also
hamper onr ability to apply transformations or effects to specific elements of the scene.
Therefore, we opted for the structured video approach in which a three-dimensional model
of an attic would be created that could be rendered from any viewpoint, giving us the
ability to synthesize camera angles. The actors would be then shot against a blue screen
from several calibrated cameras angles simultaneously and then scaled and composited into

the appropriate location in the rendered scene in real time during playout.

In order for this approach to be successful, some kind of realistic representation for the
attic needed to be captured. Utilizing recent results in the generation of three-dimensional
models from uncalibrated two-dimensional camera views, we were able to create a complete
model of the attic with high accuracy. This process is described in detail in [BeB95]. Any
number of ordinary photographs of a scene can be used as the raw data for this process. We

used eight photographs of a room at the actual house where the film version of The Yellow

59

Figure 5.1: The original eight photographs used to generate the three-dimensional model of
the attic.

60

Figure 8.2: Wireframe and teztured images of the attic model.

61

Wallpaper was produced (see Figure 5.1).

By detecting long lines in each image and finding the vanishing points of sets of parallel lines
in perspective, it is possible to calibrate the cameras with which the original photographs
were taken and map the image information onto planar polygonal surfaces in three dimen-
sions. By combining the information from several camera angles, a full textured model of
the scene can be produced. Areas of the scene that were visible in more than one photograph
can be blended together virtually seamlessly and can enhance resolution in those areas. One

rendering of the final three-dimensional model of our attic is shown in Figure 5.2.

5.3 The shoot

Once the model of the attic was finished, the next job was to shoot the actors against a
blue screen as if they were performing inside of this virtual set. To facilitate viewing the
action from different viewpoints, we shot the scene simultaneously from several angles. In
our previous production, The Museum, we only used three cameras mounted at eye level.
These angles did provide fair coverage of about one hemisphere of the scene, but they did not
give us the opportunity to move the virtual camera up or down for more dramatic effects.
Therefore, we chose a five camera set-up for the Wallpaper production—three at eye level
and two mounted at higher angles. Shooting was done with Betacam SP cameras, all of
which were connected to a single time code generator to allow for simultaneous recording

and to aid in synchronization during post-production.

Specially-marked cubes were placed on the set once final camera positions were determined
(see Figure 5.5). These cubes enabled the calibration of the five studio cameras in order to
accurately project the positions of the actors into the virtual attic as they walked around

the stage.

Each actor was filmed separately from the rest to make the chroma-key segmentation process

easier. If the actors were shot together, they would have to be separated not only froin the

62

Figure 5.3: The completely empty blue-screen studio.

63

Figure 5.4: Cameras mounted high and low.

64

Figure 5.5: Specially marked cubes are placed on the set for camera calibration.

65

Figure 5.6: The s-ene was rchearsed with all actors on stage, but then cach actor was
actually shot separately to simplify segmentation problems.

66

Figure 5.7: After hours of calibrating and shooting and re-calibrating and re-shooting the
master shot and several close-ups, our director (with his hands over his face) was more than
a little worn out.

67

blue screen but from themselves as well, which is a much more difficult problem. Simple
blue screen segmentation, on the other hand, is a fairly simple process which can be easily
automated. Audio was captured using both a boom and a wireless microphone and was

recorded on separate tracks on one of the cameras.

After the master shot was completed, several uncalibrated close-ups were recorded with the
idea that they would be useful to enhance the final presentation in key places. Shooting
these close-ups with fewer cameras and without the same calibration of the master shot
limits the amount of spatial movement around the virtual attic that would be possible
during the times they are shown. We determined that movement during these shots was
not necessary for this production and that it would be more trouble than it was worth to
attempt to correlate the calibration of the master shot with that for each of the close-ups.
It is also more difficult to achieve a clear three-point perspective (necessary for calibration)

as the focal distance of the camera gets larger, as was needed for some of these shots.

5.4 Post-processing

Post-processing consisted of several steps. First, all the necessary video was digitized,
de-interlaced, median-filtered, and temporally subsampled. Raw RGB component image
sequences at 10 frames per second were obtained from this process. This frame rate was
chosen to cut down on the amount of disk space needed to store everything and because
we determined that the Isis structured video system on the Cheops processor would at best
only be able to generate approximately 10 frames of output per second for a complicated

presentation.

Next, the actors in the video were extracted from the blue background using a digital
chroma-key process, producing a fourth transparency (alpha) channel in addition to the
three component color channels. Once segmented, it was possible to crop each frame of the
video so that extraneous blue regions were thrown away and all that was left was a smaller

rectangle tightly bounded around the human figure in the image (sce Figure 5.8). This step

68

i

it

Figure 5.8: Five views of John as captured simultaneously by the five studio cameras, and
the alpha channels obtained from the chroma-key segmentation process.

69

also greatly reduces the needed storage space. Special heuristics and human intervention
were used to make sure that unneeded objects in the frame (such as the boom microphone)
would be ignored by the part of the process that creates bounding boxes around the items

of interest.

In an Isis script, when an actor is placed at a particular position in the three-dimensional
space, what part of the object is placed at that point? Is it the head, the fee., the torso, or
something else? Each object needs at least on~ positioning point, or hotpoir.* which defines
what part of the object is placed at the specified position in space. Therefore, the next
post-processing step was to determine a logical hotpcint for the figure in eveiy frame of
the cropped video. The bottom of the actor’s feet was an easy point to locate using some
simple heuristics. Then, by projecting these hotpoints back onto the physical floor of the
blua-screen stage (using the camera calibration information), it was possible to determine
exactly where the actor should be placed in the virtual attic scene at everv ¢cint in time. A
scale factor was assigred to indicate the actual world dimensions of the object in each frame

so that the actors appear to be tneir natural size when compositud into the final scene.

The 2udio for the production was also digitized into a raw 44.1 KHz format and brcken up
into smuller “bites” that represented a single phrase or sentence of speech, thereby providing
the ability to later modify the timing of each audio clip (if parts of the playout are expanded

or shrunk in time).

5.5 The script

Once all the graphical and auditory media objects were in the proper format for use by
the Isis delivery system, the next step was to write the actual Isis script that would deliver
this interactive presentation. Several problems needed to be addressed: How could we
restrict the spatial movement of the viewer? How would the presentation ch age to present
different subjective points of view? How could we manage the master shot and close-ups in

a manner that could change for different perspectives or display conditions? The approach

70

taken was to create a small set of high-level presentation variables that would affect playout
in different ways, each of which could be represented by a single number. Some or all of

these variables then would be placed under the control of the viewer.

e (Camera pose: We decided it would be best to restrict the viewer’s motion to a specific
path in the attic instead of letting her roan freely and possibly get lost and miss action.
Therefore, a single number can represent the viewer’s “position” along this predefined
path of camera parameters, as opposed to the more than 10 separate numbers that
would be needed for full camera freedom. The path used was specially chosen to pass

very near the camera angles that were originally captured on the blue-screen stage.

o Closeupivity: We needed a parameter that would express whether the playout should
contain more or less close-ups—a variable that could be controlled by knowing the
size of the output screen. The higher the value, the more close-ups that would be
likely to be cut in at various points in the presentatior. The viewer would not have

the ability to move spatially during a close-up.

e Story perspective: Another variable was needed to express what subjective point of
view of the story should be presented. Its value ranges from 0 to 9, with 0 meaning
John’s perspective and 9 meaning Kathy’s perspective. Any value between these two
extremes represents different mixtures of the two perspectives. This parameter then
would affect various aspects of the narration, such as the selection and placement of

close-ups and backgrounds, ambient sounds, room acoustics, etc.

e Scene time: This fourth variable was needed to hold the “current time” of the pre-

sentation. It could be controlled interactively or, more likely, by an internal timer.

The timeline construct in Isis proved invaluable for expressing the camera path and the
playout of the presentation over time and over the different story perspectives. The spatial
positior variable indexes into a timeline (acting as a “path” line) with specific camera
parameters at various points, five of which are shown in Figure 5.9. Cubic interpolation

was requested to synthesize camera angles between these key points. These parameters

71

Figure 5.9: The composite scene taken from five virtual camera angles near those of the fioe
original studio cameras.

Figure 5.10: This is a synthesized camera angle of the composite scene in that it does not
correspond to any angle captured by one of the five studio cameras. This particular angle is
about halfway between the reul angles captured by the two high-mounted cameras.

were used to pre-render and store several views of the three-dimensional model of the attic
which are recalled and used as backgrounds before the characters are composited into the
frame. Since the actors were shot from a limited number of angles, the resulting composited
output might look slightly odd if the virtual camera is far from any real captured angle.
As long as the camera stays within a certain “distance” of one of the real angles, this effect
can usually go unnoticed (see Figure 5.10). The script determines which actor view is the

most appropriate for the current camera pose.

The other three system variables are used to create a three-dimensional story spoce to
determine exactly what should be showing on the screen for a given scene time, story
perspective, and closeupivity setting. Nested timelines greaily simplify the creation of this
space inside of the Isis interpreter. At every point in the space, indication is given of whether
or not. a close-up should be shown, and if it should, a frame number of a particular close-up

is specified along with a background to use behind it. Other aspects of the video could be

73

Figure 5.11: The difference in shot seleetion based on display size at one moment during
playback:.

controlled also, such as brightness or color tone, but the playback system does not currently

support. modifications to these attributes.

For example, at one particular point near the beginning of the scene, the viewer may see
the master shot or a close-up of Kathy typing, depending on the size of the output window

(see Figure 5.11).

More interestingly, near the middle of the scene, you might see John grabbing the rag off of
the dress form in a dark gray corner of the room, or you might see the same action super-
imposed over a bright clond background, or you might see John grabbing a handkerchief
from the hand of a third mysterions character, all depending on the current setting of the

story perspective variable (see Figure 5.12).

The virtual acoustics of the attic are smoothly interpolated between two extremes, as are

the volumes of the anbient sounds in the attic. A small room with no echo or reverberation

71

Figure 5.12: The difference in shot composition based on story perspective.

is at one extreme (John’s perspective), while a much larger and softer room with a lot of

reverberation is at the cther extreme (Kathy’s perspective).

Appendix F contains an abbreviated version of the Isis script that executes the Wallpaper

presentation, along with some comments about how it works.

5.6 The results

The final production running on the Cheops processor is surprisingly compelling, despite
the fact that the entire experience is only 75 seconds long and that relatively little and
highly imperfect video material is used. The presentation runs between 3 and 8 frames per
second depending on the complexity of the scene, but surprisingly, many viewers have said
that the “strobe” effect invoked by this frame rate actually adds to the intensity of the

story.

The story perspective interaction is a complete success. The narration space created in the
script gives a very cold, abusive, clausterphobic tone to the scene as perceived by John.
Backgrounds are full of solid grays. The typewriter is loud and piercing, and a harsh wind
sound is heard in the background. The acoustics are tuned to make everything seem very
close by. Kathy’s point of view is completely different however. Her world is open and free,
almost as if she is not in the attic at all. Colorful cloud images are used for backgrounds
in several places. The sound of the typewriter is gone, and the wind is still present, but
it is more distant and is heard along with a peaceful sound of chimes. The acoustics are
modified to make the room sound extremely large and contain more intense echoes and
reverberation. Kathy’s world is also inhabited by the character she is writing about, and

consequently we see short clips of this third entity in various places.

Other aspects of the interaction, however, are less successful. The ability to move around
the attic spatially is a technical achievement, but, at least in this production, there is no

motivation to actually do so. One idea for improvement is to write the script such that the

76

subjective story perspective would also be affecied somehow by the experiencer’s position
in the attic. At the moment though, the spatial movement interaction serves no particular

purpose beyond simply demonstrating that it is possible.

The closeupivity variable turns out to have a different effect than originally planned. This
variable, controlled by the size of the output window, is successful in regulating how many
close-ups are shown during playout. The problem is that, in several cases, the master shot
coverage is poor and it is very important to see certain close-ups, regardless of the display
size, in order to enter the characters’ minds and understand what is happening. When
these close-ups are not shown, the experiencer is not able to fully empathize with either

character, and the story consequently loses much of its power.

The user interface leaves much to be desired. We had to settle for the only input device
available on Cheops—a box containing eight knobs. The story perspective, spatial position,
and window size are each controlled by a separate knob. There is no visual feedback for
where the knob is positioned between its maximum and minimum or for its sensitivity. A
small corner graphic was later created to give some visual feedback of the current story

perspective setting.

Some difficulties could have been avoided with more careful planning. The five cameras used
did not reproduce colors identically (even after some were professionally tuned), resulting
in visible shading differences between the various views of the actors and problems in the
chroma-key segmentation process. The actress playing Kathy was unfortunately wearing
tan colored pants that reflected much of the blue background, causing holes to appear in

her alpha channel.

Other corners had to be cut to reduce frame generation time. We had to limit the number
of on-stage actors to 3 or 4 in order to get an acceptable frame rate in some cases, and
computationally intensive alpha blending was not performed, resulting in some rough edges

on the boundaries between the actors and the attic background.

7

The audio processing system only allowed a maximum of three sounds to play simultane-
ously, which presented interesting challenges in trying to mix the speech of both characters
with the ambient sounds (wind and chimes) and other sound effects (the typewriter). Oth-
erwise, the three-dimensional audio system provided exactly the effects we desired for this

production.

There were many places where a needed close-up was not available and had to be left out
or replaced by another. It also would have been amazing to change brightness and hue
dynamically during some shots or perform blending of two objects, but currently these

things are beyond the capabilities of the playback syster.

Since Cheops does not yet have hardware support for rendering textured objects in a three-
dimensional environment, it was impossible to cast shadows of the actors as they walked
around the attic. Creating realistic shadows would be possible only if the actors were all
completely three-dimensional models and all the lighting characteristics of the scene were
programmed into the system. Also, Cheops is only capable of scaling two-dimensional
objects to certain sizes (where the numerator and denominator of the scale factor are both
integers less than or equal to 7), which resulted in some noticeable aliasing of the sizes of

the actors as they moved around the room.

On the whole, despite these various problems, the entire presentation is an incredible im-
provement, both technically and artistically, over the previous silent production, The Mu-
seum, which was an utterly boring experience performed by non-actors that incorporated

no meaningful point of interaction.

78

Chapter 6

Future directions

6.1 Improving Isis

There are a great deal of opportunities to expand on the work described in this thesis at all
levels. For instance, there are many improvements that could be made to the Isis language.
The internal operation of the interpreter was designed carefully to be as proressing-efficient
as possible, but there is always room for refinement, especially in memory management. Isis
is already a full pregramming environment, but some additional language constructs would
be desirable, such a3 the ability to make local recursive definitions (similar to letrec i
Scheme). One caution—many good languages and systems have often lost their edge as a
result of being overly cluttered with extra and often unnecessary features and improvements.
It is important to recognize that one of Isis’s chief advantages is the fact that it is a small

and simple language.

6.2 Enhancing structured audio and video

Other areas open to augmentation are the structured audio and viceo packages for Isis.

The current implementation of these packages needs to be improved on the Cheops pro-

79

cessor. More media manipulation possibilities are needed badly, such as custom filters,
transparency effects, surface texturing, shadow generation, etc. The scale factor aliasing
and alpha blending problems on Cheops must be resolved as well. Other input devices

besides the infamous knob box should be available.

The entire system should be implemented on architectures other than Cheops in order to
expand the potential base of users and playback platforms. At the same time, more effort
should be focussed on special-purpose and experimental hardware rather than ordinary

general-purpose personal computers and workstations.

6.3 Increasing the potential for personalization

A recent project in the Television of Tomorrow group used structured video as a tool for
personalized data visualization, specifically for weather information [Eva96]. The system
collects, among other things, a list of cities and states that the user is interested in, and then
it generates an Isis script that produces an customized interactive “weather report” in which
the user can jump immediately to information that she needs for specific times and places.
A system like this would greatly benefit from being able to store the user’s preferences
or common habits in order to create an optimized presentation when the system is next
used. A simple standard file storage and retrieval package for Isis would provide the needed

functionality.

To go further, the system could automatically read a “personality profile” at start-up and
alter the media deliver in some way to best serve a particular user. For example, if the
profile lists the user as having bad vision, all text and maps could be displayed in a magnified
format. Or if the person has parents who live in in San Francisco, the system could always
provide more detailed information about that region. A standard format for recording
personal statistics and traits could be developed so that it could be retrieved and used by

any application.

80

6.4 Expanding beyond point and click

An ongoing problem with multimedia applications is that they seem to be perpetually
stuck inside of a single video screen. But Isis would also be the perfect env.ronment for
controlling productions that break free of these confines. Much more attention needs to be
concentrated on experimental sensing and display devices. The mouse and the keyboard
need to be thrown away completely, in favor of more interesting instruments like touch-free
spatial sensors [Z95]. The entire field of interactive media is also aching for innovative
output devices that go beyond simply displaying two dimensional images. Most work is
still centered on visual and auditory forms, but there is very little effort, for example, on

mechanisms that could interactively deliver tactile sensations.

Elegant and standard control interfaces for these kinds of devices could be built for Isis. An
Isis package for creating networked media environments would also be highly desirable—
large interactive installation pieces could be managed by several Isis processes running on
different machines, all capable of communicating and cooperating with each other using a

simple protocol.

6.5 Experimenting with storytelling

The interactive version of The Yellow Wallpaper only scratches the surfac.. of what could
bc done in the realm of storytelling. The current state of processing and storage technol-
ogy socmewhat limits the ambitiousness of projects, but these obstacles are quickly being
overcome. Artists must free themselves from traditional media forms and not be afraid to
experiment with unusual narrative structures. There are all kinds of unexplored models of
interaction that involve altering aspects of narration, such as lighting, shot composition,
editing, acoustics, etc. There are also many forms that involve modifying the narrative
itself and its various components. At the same time, authors must always question the

appropriateness of interactivity in their works—is there a motivation to interact and is the

81

point of interaction meaningful, or is it just a gimmick? All in all, the opportunities for

telling compelling stories in an entirely new way are endless.

6.6 Building new authoring tools

In order for experimentation to progress in a timely manner, new and better tools are needed
to assist the artist in creating breakthrough pieces. Contrary to popular belief, Macromedia
Director is not likely to be the solve-everything authoring tool that everyone wants—in fact
there most certainly will not be a single tool that will be best for every kind of application.
It is more likely that a large set of specialized authoring tools will exist, each suited to a
particular kind of content and form of delivery. For example, there may be one authoring
tool which is specially suited to creatiing applications like the Wallpaper production in which
the point of interaction is a changing story perspective. Such tools could have the ultimate
goal of outputting an Isis script that would deliver the production on a particular machine.
(One such tool is described in [Tam96].) It would even be advantageons to build high-level

authoring tools inside of Isis to support incremental updates and instant previews.

6.7 Final remarks

This thesis has adaressed, at several levels, some of the problems in the authoring and de-
livery of interactive and personalized media. At the lowest level, an intuitive and extensiblc
scripting environment (Isis) was designed to serve as a base for these kinds of applications.
Special features of the language, such as the timeline storage construct and the external
function call interface, greatly simplify many aspects of multimedia development. At a
slightly higher level, an architecture-neutral system for creating dynamic structured andio
and video productions has been implemented to operate under this scripting environment.
These prototype tools emphasize expressivity and creativity, allowing authors to build com-
plex real-time presentations by creating and controlling simple abstract components such

as actors, cameras, windows, and special effects. At the highest level, important artistic

82

issues were highlighted through the construction of a structured video narrative using story

perspective as a model for interaction.

If there was a single goal throughout this work, it was to offer some innovative ideas and
solutions in the ongoing quest to bridge the gap between the artist and the latest interactive
media technology. Perhaps the one sure thing that was discovered is that the potential for

exciting «nd meaningful projects in this field is virtually unlimited.

83

Appendix A

Isis Reference Manual & Tutorial

A.1 Introduction

Isis, named after che ancient Egyptian goddess of fortility, is a high-level interpretive pro-
gramming language which has an efficient and graceful system for interfacing with external
libraries of code. Isis can be used as a stand-alone programming environment, or it can
function as an interface language to packages of C functions that do specialized operations
from networking and file access to graphics and sound. For example, the kinds of data
struciuren available in Isis and its overall desig mak. it suitable for use as an efficient.
scripting language for structured aua:) and video and other multi-media applications. This
document does not describe areas wlere the language is applied—this is only a reference
"or the language itself.

Isis is another entry in a growing list of systerns that serve to connect a high-level, platform-
independent language with lower-level, nossibly platform-dependent code libraries. Why
should you use Isis as opposed to cne of the other alternatives? Here are some of the
advantages of Isis:

e Isis is an extensible programming language. If there s not a function available to do
what you need, you can write :* 1n the ianguage yourself, or you can w.ite the function
in C for added efficiency and use it iu Isis as you. would any other {un~tion.

e The syntax of [sis ir easy to learn ang uso. Isis has a syntax similar to that of Scheme,
but do not be fouled—it is not Scieme. The langucge core of Isis is small compared
to thac of Scheine and other lar:uages—providing a managcable set of primitive
expressions and daia types and allowing you to create your own higher-order entities
from these basics.

34

e Isis is not string-based. Many popular string-based scripting languages, like TCL
and Perl for example, spend much of their time converting values (especially numeric
values) between their string form and a form suitable for internal processing. In Isis,
this conversion is only done once at the very beginning as a script or a program is
being read.

e Isis uses standard C data types for internal storage of values. Some other systems
design their own data types at the bit level. In the .ase of Dtypes for example, the
fundamental data types are designed to be as small as possible for network transmis-
sion. However, these special data types must be converted to and from normal C data
types whenever a function from an external C library is used. This conversion phase
is minimized in Isis.

e Isis is written completely in ANSI standard C, allowing it to be compiled and executed
on any platform that has a standard C compiler. Isis also employs its own memory
management system thereby avoiding serious inefficiencies in dynamic memory allo-
cation that are present on many platforms and in other systems that use the standard
C or C++ memory allocation mechanisms.

e Data structures in Isis are not based on linked lists (as they are in Scheme for exam-
ple). “Lists” in Isis (as you wii! hear about later) are formed with array-based data
structures so that you have constant time access to any element in the list, greatly
improving efficiency in many situations. (Actuaily these arrays hold pointers to the
elements in the list, not the elements \hemselves, so the actual elements may be dif-
ferent sizes). The only problem with th.s method is thay changing the number of
elements in a list, through an “append” or a “sublist” operation for example, requires
creating an array of the new size and copying the element pointers to the new arr: .
However, this is an acceptable traduvoff since in the majority of applications, constant
time refeience to list items is rauch more important than being able to dynamically
modify the lengths of iarge lists.

A.2 The interpreter

The interpreter for this language is a read-evaluate-print 1 p. It reads an expression
from your terminal or from a file, evaluates th- t expression (possibly producing many side-
effects), and then prints the resuliing value on your terminal. If you are reading expressions
from a file, then the printing of values is suppressed.

The interpreter is invoked usually with the isis command, although it may be different
on some platforms —please read any specific information about Isis on your system for
more information. Typing this command will enter you into the read-eval-print loop of the
language and you may begin typing expressions to be evaluated. If you type this command

followed by a filename, then expressions will be read from that file instead of your terminal,
and the interpreter will exit when the file has been completely processed.

As you type expressions, you may press return as many times as you like while in the middle
of an expression. As soon as you close all parentheses that you opened, the expression will
be evaluated. In addition, any text following the comment character # on a single line will
be ignored.

The “Scheme mode” in the Emacs text editor is good for writing and editing script files
for this language. You can configure Emacs to automatically enter Scheme mode when you
open a file with a certain extension on the filename, like “.isis”, by putting the following
line in your .emacs file in your home directory:

(setq auto-mode-alist
(append “(("\\.isis$" . scheme-mode)) auto-mode-alist))

A.3 Expressions, values, and types

It is important to understand the terminology of language interpreters. Something that you
enter in the interpreter or that is read from a file is called an ezpression. The interpreter
will evaluate that ezpression and return a value. Every value has a corresponding type
associated with it, like ‘integer’ or ‘boolean’.

The simplest kind of expression is a constant expression. For example if you typed the
number 42 in the interpreter and pressed return, you would see this:

-> 42
42
->

In this case, you typed the ezpression 42, which evaluated to the value 42 which is of type
Int (an integer).

There are several primitive types available in the language. Each has a name, which is a
way of specifying that type in the language. By convention, all type specifiers have the first
letter capitalized. Here is a list of the primitive types and their names. Also listed 1s an
example of the way a value of that type might be printed.

86

Value Type Specifier The way it is printed

integer Int 42

real number Real 42.000000
character Char ‘q”

boolean Bool True
procedure Pron < Procedure >
memory address Address 0x4000bb90
structure Structure < Structure >
field Field < Field >
timeline Timeline < Timeline >
type Type Real

For brevity, the type of the value is not usually not printed along with the value itself. The
way a value is printed gives indication of its type. Here are the rules:

Any number printed without a decimal point is of type Int.

Any number printed with a decimal point is of type Real.

A character inside single quotes is a value of type Char.

For booleans, there are only two possible values, and they are printed True and False.

A value of type Proc :s printed as < Procedure > or < C function >. The difference
is that the former denotes that the procedure was defined in the scripting language,
and the latter denotes that the procedure is a C function that is external to the
interpreter. From the scripting language’s point of view, these two kinds of procedures
are exactly equivalent.

A value of type Address is pointer to some location in the computer’s memory. It
will always be printed in hexadecimal form preceded by 0x. There is no specification
of what is being pointed to. (In C this is just a (void *) pointer).

We will examine structures, fields, and timelines later, but their values are printed
simply as < Structure >, < Field >, and < Timeline > because these types denote
entities which can store a great deal of data, and to print all of it every time would
be very inefficient.

Finally, even types themselves form a type, called Type naturally! For example, if
you enter any of the type specifiers into the script interpreter, they will be evaluated
to their corresponding types. A value of type Type is just printed as the type name
itself.

87

A.4 Constant expressions

Constant expressions are expressions that specify constants of the various primitive types.
We have already seen how to specify an constant of type Int—simply type the aumber
without a decimal point. To spceify a constant of type Real, there must be a decimal point
in the number. A Char constant is expressed as a character between single quotes. A Bool
constant is expressed as either True or False. Values of type Type are specified by entering
the type name.

We will see later how to define procedures, structures, fields, and timelines. You cannot
specify an Address constant. Values of type Address will only ever be returned from and
used in C functions. It could be dangerous to allow the user to specify addresses manually.

There is also a special expression Null which, when evaluated, produces a <Null value>—
a value which is the absence of a value. Many operations return a null value if there is
nothing else really appropriate to return.

Here are some examples of constant expressions and corresponding values:

88

-> 42.0
42.000000
-> -32.5
-32.500000
-> 0.0
0.000000
-> ‘r’
‘re

-> ‘z°
‘g

-> True
True

-> False
False

-> Real
Real

-> Char
Char

-> Type
Type

=-> Null

<Null value>

->

There are special character constants corresponding to control characters. These special
characters are entered with a backslash preceding the character. There are also pre-defined
script variables set to these characters for casy reference. You can use cither the literal
constant or the variable to refer to these characters. The following is a list of the recognized
special characters:

89

Character constant Pre-set script variakble

“\a“ alert
‘\b~ backspace
‘\f~ formfeed
“\n* newline
‘\r~ return
‘At~ tab

‘\v” vtab

N squote
\"- dquote
A\ backslash

A.5 User-definable higher-order types

You can define your own types in the lanyuage by combining primitive or previously-defined
types into a list. This is done via the newtype construct.

For exampie, if you enter this:

-> (newtype (Pos Int Int Int))
<Null value>
->

You have just defined a ncw type named Pos. Now to specify a value of that type, you
simply enter something like this:

-> (Pos 10 3 42)
(Pos 10 3 42)
->

This is how you specify values of type Pos. The way the value is printed is actually very
similar to the way you typed it. Types like Pou can be generally called list types or higher-
order types since they are collections of other types. Internally, these values are stored in
array-based data structures for fast access.

Sometimes when you define a new type, you may not want to restrict its elements to be
specific types. You might want to allow one or more of its elements to be any type. You
can do this by using the Unk specifier in place of specific types in your call to newtype, like
this:

90

-> (newtype (Strange Int Unk Bool))
<Null value>

-> (Strange 5 °‘q” False)

(Strange 5 ‘q” False)

-> (Strange 42 10.10 True)

(Strange 42 10.100000 True)

->

The Unk specifier used above says that the second item of a Strange value can be of any
type. The first and third items mus* always be Int and Bool, respectively. Only the second
item’s type is unrestricted.

The Unk specifier can be used just like any other typc in calls to newtype. Currently, there
is no way to restrict an element to be only in a certain set of types, but this ability may
come in a future version of Isis.

In forming a list, if the types of the values do not match those in the definition of the
list type, you will get errors. However, the language will allow you to keep and use the
incorrectly formed type. You can also turn this type-checking completely off if it annoys
you, but it is a good way to make sure your values are being correctly formed. Below is
what will happen if you try to make a Pos from 2 reals, a character, and a boolean, instead
of 3 integers:

-> (Pos 3.2 6.0 “c” True)

* List type "Pos”, item O value type was not Int
* List type “Pos”, item 1 vaiue type was not Int
* List type “Pos”, item 2 value type was not Int
* List type “Pos”, value has too many items (4)
(Pos 3.200000 5.000000 “c’ True)

->

Errors in the interpreter will always be printed preceded by asterisks *.

You can also specify list types with an arbitrary number of items. For example:

-> (newtype (Poslist Pos ...))

<Null value>

-> (Poslist (Pos 3 4 5) (Pos 1 42 6) (Pos -3 0 42))

(Poslist (Pos 3 45) (Pos 1426) (Pos -3042))
-> (Poslist)

(Poslist)

->

”

This defines a type Poslig*. The “...” means there will be an arbitrary number of values

91

of the last type in the list. In this case, the last (and only) type in the list is Pos, so we
have defined a type which is a list of an arbitrary number of Pos values (includiug possibly
zero values).

You can “repeat” the last N items in the list like this by putting a number right after the
“...” with no space, like this:

-> (newtype (Weirdo Char Bool Int Real ...3))

<Null value>

-> (Weirdo °q” True 4 5.0 False 10 -3.4 True -1 -42.0)

(Weirdo °q” True 4 5.000000 False 10 -3.400000 True -1 -42.000000)
->

This defines type Weirdo—a Char followed by as many sequences of Bool Int Real as you
like (even zero).

You can also define a type to be equivalent to a previously defined type by entering:

-> (newtype Vec Pos)
<Mull value>

-> (Vec 1 2 3)
(Vec123)

->

This defines the type Vec to be the same as type Fos.

Some frequently used list types are built in. Here is a list of them along with how they
would be defined manually if they were not built-in:

List type name How it is defined

List (newtype (List Unk ...))

IntList (newtype (IntList Int ...))
Reallist {newtype (RealList Real ...))
BoollList (newtype (BoolList Bool ...))
AddrList (newtype (AddrList Address ...))
String (newtype (String Char ...))

Again, these types are already defined, so you do not need to define them yourself. T'ype
List is simply an arbitrary length list of values of any type. The others are lisis of values
of specific types. Here are a couple examples:

92

-> (List 45.3 “e” (Pos 1 2 3) True)

(List 45.300000 ‘e” (Pos 1 2 3) True)
-> (IntList 34 45 56)

(IntList 34 45 56)

-> (BoolList True False False True)

(BoolList True False False True)

-> (BoollList)

(BoollList)

->

To specify String values, you could type something like (String “h” “e” ‘1° “1° “0~),
but typing out each individua. cnaracter conld get tedious. Therefore there is a SHORT
CUT to specifying String values—just type the string between double quotes. The inter-
preter will automatically put the characters into a list of type String. Also, the interpreter
will print out any value of type String as a string between double quotes, just like you
would type it in. This provides a convenient way to specify strings but to still have them
stored in the list based structures so vou can take advantage of all the list modification
routines to be discussed later.

-> (String “h” ‘e’ “1° ‘1° “07)
"hello"

-> 'hello"

"hello"”

A.6 Variables

You can set your own variables to any value using set. Here are some examples:

-> (set a 42)

42

-> (set goodpos (Pos 1 2 3))
(Pos123)

-> a

42

-> goodpos

(Pos123)

-> (set dumdum (Pos a 34 a))
(Pos 42 34 42)

->

93

A.7 Other expressions

A.7.1 if expression

(if cond-ezxp then-ezp [else-exp))

This works like the classic if statement—if the cond-ezp evaluates to a “true” value, then
the result of evaluating the then-ezp is returned. Otherwise the result of the else-exp is
returned. Whether or not a value is true depends on its type. If it is a Bool, then it is
only true if its value is True. If it is a number, address, or character, any non-zero value
is considered true. A <Null value> is considered false, as is any other null pointer that,
might be encountered.

You raay omit the else part of the statement if you wish—Isis will assume it to be Null.

Only one of either the then-er r the else-exp (if it exists) is ever evaluated.

A.7.2 cond expression

(cond (cond-ezp value-exp) (cond-ezp value-ezp) ...)

The cond-ezps are evaluated in sequence until one of them evaluates to & “true” value, and
then the corresponding value-ezp is evaluated and its value is returned. Only the value-ezp
corresponding to the first true condition is evaluated—the rest are left untouched. Also,
it there are remaining cond-ezps after finding the first true one, they are left untouched
as well. A default condition of True can be used as the last cond-ezp to specify a default
aciion.

A.7.3 while expression

(while cond-ezp body-ezp)

In this case, the body-ezp is continuaily evaluated as long as the cond-ezp evaluates to a
true value. The value of the entire while expression is the value of the cond-ezp that caused
the loop to stop.

94

A.7.4 switch expression

(switch switch-exp (case-exp value-exp) (case-czp value-ezp) ...)

The switch-ezp is evaluated, and its value is compared in sequence to the values of the
case-ezps. If the two values match, the corresponding value of the value-exp is returned. If
they do not match, the v ue-ezp is not evaluated. If no match is found, a <Null Value>
is the result.

A.7.5 begin expression

(begin ezp exp exp ...)

Each expression is evaluated in sequence. The value of the final expression is returned.

A.7.6 let expression

(let [(variable-name ezxp) (variable-name ezp) ... | body-ezp)

The let expression sets up a local environment in which each variable-name is bound to
the value of its corresponding ezp. The variable names may be the same as other variables
in the parent environment, but when you refer to a duplicated variable name inside the let
expression, you will be referring to the local variable, not the one in the parent environment.
All other variable names will refer to variables in the parent environment. The body-czp is
evaluated within the scope of this »:w enviionment, and its value is returned.

Examples of these expressions in use are found later.

A.8 Procedure application and built-in procedures

Syntax:

(exp exp ezp ...)

This is a simple model of procedure application. The first expression is evaluated. If its

value is a procedure, then the rest of the expressions #re evaluated, and then the procedure
i applied to those values. For example, to apply the built-in procedure +, try the following:

-> (+ 3 4 42)
49
->

There are tons of built-in procadures, each of which is described below:

AB81 +, -, x, /, %

These procedures each take a variable number of arguments and apply the corresponding
mathematical operations in sequence to the values. % is the modulo operator. You can
perform these operations on a mixture of Real and Int values, or even lists containing Real
and Int items! Note: in each case, the result of the application will be the same type as
the first argument given.

-> (+ (Pos 3 4 5) (Pos 54 -25 11))
(Pos 57 -21 16)

-> (+ 3.4 2 6.5)

11.900000

-> (+ 3 4.5 6.7)

13

->

A.8.2 abs, sin, cos, tan, asin, acos, atan2, sinh, cosh, tanh, exp, log,
logl10, pow, sqrt, ceil, floor, deg->rad, rad->deg

These procedures all perform the same operations as the standard C functions by the same
name. deg->rad and rad->deg are the only non-standard ones—they perform degree to
radian conversion. The arguments can be Int or Real.

-> (cos (deg->rad 30))

0.866025

-> (sin (deg->rad 30))

0.500000

-> (rad->deg (atan2 (/ (sqrt 2) 2) (/ (sqrt 2) 2)))
45.000000

->

96

A83 =, I=, ©

These functions check equality ot inequality of 2 values of any type. Result is either True
or False. <> is the same as !=.

A.84 <, <=, >, >=

These inequality operations only work on numbers (Int or Real), not lists. Result is either
True or False again.

A.8.5 and, nand, or, nor, not

These perform the specified logical operations on a variable number of argumeats.

A.8.6 ref, head, tail

These return a specific item in a list. (ref k list) returns the k’th item in the list.
(head 1ist) returns the first item in the list. (tail list) returns the last item in the
list.

SHORT CUT: As a short cut to (ref k list), you can use the syntax (list k). This
looks like a procedure application, but since the first item is a list and not a procedure, the
interprcter knows to perform the list reference operation. Here’s an example:

-> (set nicepos (Pos 3 5 7))
(Pos 357)

-> (ref 1 nicepos)

5

-> (nicepos 1)

5

->

A.8.7 length

(length list) returns the number of items in the list.

97

A.8.8 insert-before, insert-after, head-insert, tail-insert

These functions insert items into a list. (insert-before k val list) inseris the value
before the k’th item in the list. (insert-after k val list) inserts the value after the
k’th item in the list. (head-insert val list) inserts the value at the beginning of the
list. (tail-insert val list) inserts the value at the end of the list.

A.8.9 append

This function appends 2 or more lists together. The resulting list is the type of the first
argument.

A.8.10 sublist, first, last, allbutfirst, allbutlast

These functions operate on a list value and all return a specific part of that list argument.
(sublist n m list) returns the part of list between the m’th and the n’th item, inclusive.
(first k 1list) returns the first k items in the list. (last k list) returns the last
k items in the list. (allbutfirst k list) returns all but the first k items in the list.
(allbutlast k li<t) returns all but the last k items in the list. Indexing starts at 0 in
all list operators.

Examples of some list operations:

98

-> (set niceplaces (Poslist (Pos 3 4 6) (Pos 1 -2 -3)))

(Poslist (Pos 346) (Pos1-2-3))

-> (length niceplaces)

2

-> (niceplaces 0)

(Pos 346)

-> (length (niceplaces 0))

3

-> (set niceplaces (tail-insert (Pos -42 -43 -44) niceplaces))
(Poslist (Pos 346) (Pos1-2-3) (Pos -42 -43 -44))
-> (sublist 1 2 niceplaces)

(Poslist (Pos 1 -2 -3) (Pos -42 -43 -44))

-> (head (allbutfirst 2 niceplaces))

(Pos -42 -43 -44)

-> (tail (head (allbutfirst 2 niceplaces)))

-44

->

=> (Tength "hello")

5

-> (set worldstr "world")

"world"

-> (set blahstr (append "hello " worldstr))
"hello world"

-> (sublist 3 7 blahstr)

lllo woll

-> (append (first 4 blahstr) (allbutfirst 5 blahstr))
"hell world"

->

A.8.11 seed-random, random

These functions control the random number generator. The pre-defined script variable
rand-max is the highest random number that will ever be generated. Call seed-random
with any number you like. Then call random with no arguments to get a random integer
between 0 and rand-max. Call random with one number to get a random integer between
0 and that number (inclusive). Call it with 2 numbers to get an integer between those two
numbers (inclusive).

99

-> rand-max
32767

-> (seed-random 42)
42

-> (random)
19081

-> (random 10)

5

-> (random 42 69)
55

->

A.8.12 print, display

These functions print things. Each takes as many arguments as you like. The arguments are
printed in the sequence entered. The print function prints only String and Char values,
without their corresponding double and single quotes. The display function displays any
value in the same fashion that the interpreter would print it—Strings and Chars will
have surrounding quotes. Newlines must be explicitly entered in print, but a newline is
automatically placed at the end of a call to display.

-> (print "The museum movie" newline "in Structovision" newline)
The museum movie

in Structovision

<Null value>

-> (begin (print "The value of the day is ") (display (Pos 3 2 4)))
The value of the day is (Pos 3 2 4)

<Null value>

-> (print "This is a string printed with ‘print”.\n")

This is a string printed with “print~.

<Null value>

-> (display "This is a string printed with “display’.\n")

"This is a string printed with “display”’.

"

<Null value>

->

A.8.13 1load, run, interactive, stdin, done, exit, quit, end

(done), (exit), (quit), and (end) all have the same effect of indicating the end of the
script file or the end of the interactive session.

100

(load filename) or (run filename) reads the script specified by the filename which must
be of type String. Items in the file are read and evaluated just as if you had typed them
yourself. When the end of file is reached, control is returned back to where the call was

made.

(interactive) causes the interpreter to read info from the standard input. It can be used
in a script that is being read from a file to cause the input to switch temporarily to the
terminal. When the interactive session is ended by a (done), (exit), (quit), and (end),
control is returned back to the script being read and processing there continues.

(stdin) switches the input file of the interpreter from whatever it was to the standard
input, thereby ignoring the rest of a file that was being read at the time.

A.8.14 istype

(istype <type> <item>) returns True if the item evaluates to a value of the specified
type, and False otberwise. It only performs a type query—it does not check if the value is
correctly formed (done by the typecheck function described later).

A.8.15 env, types

(env) prints information about every binding in the top level environment of the interpreter.
(types) prints information about all of the types that have been defined in the interpreter
up to that point.

A.8.16 print-values, set-typecheck, typecheck

(print-values False) turns off the printing of values in the read-eval-print loop. Passing
True turns it on again. Similarly, (set-typecheck False) turns off list value type checking
and passing True will turn it on again.

(typecheck <item>) typechecks the item’s value against the original type definitions and
prints any errors in the formation of the value.

101

A.8.17 cast

This rarely-used function can be used to cast values of one type to another type. It takes 2
arguments—first the type to cast to, and then the value to be cast. The cast is performed
if it is possible. Int can be cast to Real and Real can be cast to Int. List values can be
cast to any equivalent list type. Real and Int can be cast to and from Bool. Any other
casts may result in an error.

-> (cast Int 4.5)

4

-> (cast Real 42)
42.000000

-> (cast Vec (Pos 3 5 7))
(Vec 357)

-> (cast Bool 123)
True

-> (cast Bool 0.0)
False

-> (cast Int Falge)
0

-> (cast Real True)
1.000000

->

A.9 Procedure definition

You can define your own procedures using the following syntax:
(proc (formals) body-ezp)

The formals are the arguments for the procedure. The body-ezp is the expression that will
be evaluated within the scope of the environment the procedure is defined in, plus the formal
parameter bindings. The result of the evaluation is returned as the result of the procedure
application.

102

-> (set add2 (proc (x) (+ x 2)))
< Procedure >

-> add2

< Procedure >

-> (add2 42)

44

->

You can create recursive procedures if they are defined at the top level environment (not
within a let expression). For example, here is a recursive factorial fuuction:

-> (set fact (proc (a) (if (<= a 1) 1 (* a (fact (- a 1))))))
< Procedure >

-> (fact 10)

3628800

->

A.10 C functions

One of the most powerful features of this language is that in addition to defining procedures
inside the script interpreter, you can also define your own C functions and use them in the
interpreter just as you would any other procedure. From the scripting language’s point
of view, applications of those C functions work in exactly the same way as applications
of script procedures. When you apply procedures in your scripts, you might be calling C
functions or script procedures—and you would never know the difference. In fact, all of the
primitives described above are implemented as C functions.

C functions can be written if a highly efficient routine is needed for some part of the program.
They can also be used to interface this language with externally developed C packages, like
graphics and sound libraries or user interface software. The structured video and sound
package for this language is being developed using the C function interface.

Defining C functions for use in the interpreter is a fairly simple process. The arguments to
your C function are passed in a standard argc/argv format where each argument is a “value”
from the script interpreter. You will need to translate the interpreter’s value format to your
own integers or characters or whatever else you use. Special C macros are provided to make
this very easy. You then prepare a “value” to be returned to the interpreter. Finally, you
register the function with the script interpreter so that it will become a part of the default
top-level environment when the interpreter is started up. Then you can use it like any other
procedure!

Another document describes this process in more detail.

103

A.11 Structures

So far you have seen how you can store data in lists. Lists are an efficient way of storing
ordered unnamed pieces of data. However there may be situations where you might like to
have something like a C structure for storing data. This language provides that through
the Structure data type. A Structure is an unordered collection of named fields, each of
which contains a value.

You create a structure with new-structure, like this:

-> (set soundstrc (mew-structure))
< Structure >
->

This newly-created structure is completely empty. It has no fields yet. You create fields
inside the structure by using the add-field procedure. In order to find the field later, you
must give each new field a “reference value” which can be any Isis value you like. This value
acts as a name for the field.

-> (add-field soundstrc 42)

< Field >

-> (add-field soundstrc “f-)

< Field >

-> (add-field soundstrc "position")
< Field >

->

Now this structure contains 3 fields with reference values 42, “£°, and "position". You
obtain access to the fields by using the return value of add-field, or with the get-field
function, which attempts to find the field corresponding to a particular refererce value inside
a structure. If a field with that reference exists, it is returned in a value of iype Field. You
can then use this field in the set-field function to set the value of the field, or you can
use it in the fieldval function which gets the value of the field.

-> (set sound-filename-field (get-field soundstrc “f~°))

< Field >

-> (set-field sound-filename-field "/mas/garden/eeny/soundfile")
"/mas/garden/eeny/scundfile"

-> (fieldval sound-filename-field)

"/mas/garden/eeny/soundfile"

->

There are two convenient SHORT CUTS to mention here. Instead of typing

104

(get-field structure refval), you can type simply (structure refval). This looks
like a procedure application, but the first item in the application is a structure instead of a
procedure, so the interpreter treats this as a call to get-field. Similarly, instead of typing
(fieldval field), you can type just (field), and this will return the value of the field
just as if you were calling fieldval.

-> (set-field (soundstrc "position") (Pos 3 2 1))
(Pos 321)

-> ((soundstrc "position"))

(Pos 321)

->

The reason structures and fields are conceptually separate entities is to allow you to reference
a particular field directly after you've found it just once, rather than repeatedly calling
get-field (an operation which could require many value comparisons to find the desired
field).

A.12 Timelines

Finally, we have arrived at one of the most useful innovations of this language. In addition to
simple lists types and structures, there is a third kind of data structure called a Timeline.
When you first create a timeline, it is completely empty. You then place values at any
real-numbered point, or time, on the timeline. When you enter each point’s value, you
also specify whether you want the value of the timeline to be interpolated between that
point and the point directly before it on the timeline. You can specify either linear or cubic
interpolation. The timeline therefore has a “value” at every real-numbered point in time!

For the purposes of the following examples, let’s define a new type called RPos which will
be a list of 3 real numbers instead of 3 integers.

-> (newtype (RPos Real Real Real))
<Null value>
->

To create a timeline, use the new-timeline function. This function will accept one argument
which will be used as the default value of the timeline in case there is no information for a
particular part of the timeline.

-> (set dave-position (new-timeline (RPos 0.0 0.0 0.0)))
< Timeline >
->

105

To insert values at key points on the timeline, use the key function. It takes 3 or 4 ar-
guments. The first is the timeline itself, the second is the real-numbered time you want
to insert at, the third is the value you wish to insert there, and the fourth is an optional
interpolation flag.

The times specified in timeline operators can be Ints or Reals (they are converted auto-
matically to Reals internally).

There are two built-in script variables: 1inear and cubic, which can serve as the interpo-
lation flag. The interpolation flag says how you would like the value of the timeline to be
interpolated between this point on the timeline and the key point directly before it on the
timeline. The earlier key point may be defined at any time—the order in which you insert
points in the timeline has no effect on its interpretation.

If you do not want interpolation, leave out the optional argument. In that case, the value
of the timeline between the time being inserted at and the earlier key point will be just be
held at the value of the earlier key point.

You find the value of the timeline at a certain time by calling the keyval function. It takes
the timeline as the first argument, and the time for which you want the value as the second
argument.

-> (key dave-position O (RPos 2.0 4.0 6.0))

(RPos 2.000000 4.000000 6.000000)

-> (key dave-position 20 (RPos 10.0 42.0 85.0) linear)
(RPos 10.000000 42.000000 85.000000)

-> (key dave-position 25 (RPos 0.0 68.0 70.0) linear)
(RPos 0.000000 68.000000 70.000000)

-> (keyval dave-position 10)

(RPos 6.000000 23.000000 45.500000)

-> (keyval dave-position 4.6793)

(RPos 3.871720 12.890670 24.483235)

-> (keyval dave-position -42)

(RPos 0.000000 0.0000000 0.0000000)

->

Notice that asking for the value at time -42 results in the default value of the timeline.

You can delete key points from the timeline using the delkey function which will delete the
closest key point less than or equal to the given time. It also returns the value that was
deleted:

106

-> (delkey dave-position 27)
(RPos 0.000000 68.000000 70.000000)
->

When cubic interpolation is used, there must be at least 2 key points before and after the
time you want the value for in order for cubic interpolation to be possible. There is no
wraparound in determining the points to use in the interpolation.

There is another convenient SHORT CUT here. Instead of entering

(keyval timeline time), you can just enter (timeline time). The interpreter recog-
nizes that the first item in this application is a timeline, and therefore treats it as a call to
keyval.

-> (key dave-position 30.0 (RPos -34.0 -40.1 -234.4) cubic)
(RPos -34.000000 -40.100000 -234.400000)

-> (key dave-position 40.0 (RPos 23.3 354.3 123.4) cubic)

(RPos 23.300000 354.300000 123.400000)

-> (dave-position 20.3)

(RPos 9.369685 41.024039 80.745221)

-> (dave-position 28.5)

(RPos -32.391944 -52.456888 -219.376075)

->

The values in the timeline do not have to be numeric, nor do they have to be of the same
type. However, interpolation will only occur if the key points involved are of the same type,
and are numeric in some way. If a list type combines numeric and non-numeric types, only
the numeric parts will be interpolated. No example of this is given, so please try it yourself
to see if it works!

Two special functions are provided to help deal with timelines. They are key-prev and
key-next. Calling (key-prev timeline time) will return the highest time of a key point
on the timeline which is less than the specified time. (key-next timeline time) will
return the lowest time of a key point on the timeline which is greater than the specified
time. If you call key-prev with a time less than or equal to the lowest defined key time in
the timeline, the return value will be the highest defined key time in the timeline. Similarly,
if you call key-next at the highest point in the timeline, you will be returned the lowest
point. This gives you a way to traverse all the defined key points on a timeline should you
need to.

107

-> (key-prev dave-position 34)
30.000000

-> (key-next dave-position 34)
40.000000

-> (key-next dave-position 100)
0.000000

-> (key-prev dave-position 20)
0.000000

-> (key-prev dave-position 0)
40.000000

->

Also, explicit linear and cubic interpolation functions are provided so you can do inter-
polation outside of timelines if you like. The functions are linear-interpolate and
cubic-interpolate. The first argument of each is a Real between 0.0 and 1.0 specifying
the location between the two values for which the value is desired. linear-interpolate
takes 2 more arguments (the values to be interpolated), and cubic-interpolate takes 4
more (interpolation occurs between the 2 middle values). The type of the result will be the
same as the type of the value arguments.

-> (linear-interpolate .4 0.0 10.0)

4.000000

-> (cubic-interpolate .4 4.0 0.0 10.0 7.0)
3.616000

-> (cubic-interpolate .4 100.0 0.0 10.0 -300.0)
11.440000

->

Pretty cool eh?

108

A.13 More examples

A.13.1 Countdown

-> (let ({count 10))
(begin (while (> court 0)
(begin
(display count)
(set count (- count 1))))
(print "Detonation!" newline)))

[
o

= NN WO N0 ©

Detonation!
<Null value>
->

109

A.13.2 Fibonacci sequence

-> (set fibseq
(proc (k)
(let ((ct 0) (fibl 1) (fib2 0) (fibnow 2))
(begin
(display 1)
(vhile (< ct k)
(begin (set fibnow (+ fibi fib2))
(display fibnow)
(set fib2 fibl)
(set fibl fibnow)
(set ct (+ ct 1))))
Null))))
< Procedure >
-> (fibseq 20)

89
144
233
377
610
987
1597
2584
4181
6765
10946
<Null value>
->

110

A.13.3 Y combinator

-> (set y (proc (m) ((proc (future)
(m (proc (arg)
((future future) arg))))
(proc (future)
(m (proc (arg)
((future future) arg)))))))
< Procedure >

-> (set m
(proc (recfun)
(proc (x)
(if x
(* x (recfun (- x 1)))
1))))

< Procedure >

-> (set fact (y m))
< Procedure >

-> (fact 5)

120

->

111

Appendix B

Structured Video with Isis

B.1 Introduction

This document will explain how to create structured video presentations using the Isis
scripting language. You should first read the document Isis: A multi-purpose interpretive
scripting language which explains the details of the Isis language itself.

What is structured video? Traditional video is represented in terms of pixels, scanlines,
and frames. On the other hand, structured video, or object-oriented video, is represented
in terms of several component objects that arc combined in some manner to produce the
video scene. These objects may be of many different kinds—two dimensional images or
movies, three-dimensional models, text, graphics, etc. They are manipulated and assembled
together in different ways over time to generate each frame of a presentation. Representing
video in this way tends to greatly simplify the problems of interactive and personalized
delivery.

The package of Isis functions described in this document will allow you to express highly
interactive structured video presentations in a platform-independent manner. Since Isis is
an interpretive scripting language, you can view and change aspects of your presentation
instantly without having to recompile entire programs each time you make a small modifi-
cation. You will be able to use delivery systems on several different platforms to view and
interact with your production. Each platform will offer advantages over the others. For ex-
ample, Isis and the structured video package running on the Cheops processor will provide
real-time playback and interaction with fair image quality, whereas the system running on
an Alpha or other general purpose workstation will offer enhanced output quality but will
run at a much reduced frame rate with only intermittent interactivity.

112

Let’s begin with a general overview of the design of the system. There are 3 main segments.
At the highest level, there is the platform-independent Isis script interpreter. The structured
video package is then accessed in Isis merely by calling various built-in Isis functions. These
functions are also machine-independent, so it is possible for you to write a single script that
will run on any platform. It is then the job of the structured video package to use machine
specific routines and libraries to deliver your preseniation as effectively as possible on your

platform.

Your graphics data

i

. Structured
Your Isis Delive Your
) Video "= ,
Script Interpreter System Presentation
Package

Platform independent <——= Platform specific

The structured video package lets you create and manipulate six different kinds of abstract
entities: objects, engines, actors, cameras, environments, and windows.

Window
Engine
/ \ Actor Object
Camera Actor Object
Environment Actor Object

Essentially, consider yourself as the camera, the other people and things in the production as
the actors, and the details of how you perceive those people and things as the environment.
The window describes how what the camera sees will be translated to a window on your
screen. The engine can loosely be thought of as the translator from the virtual world of the

113

presentation to the output device in the real world. Using the information stored in a certain
camera, an environment, one or more actors, and a window, the engine does all the work to
build frames of a presentation. You can have more than one engine in a presentation, each
of which can share actors, cameras, etc., with any of the other engines. This gives you the
power to control several presentations in many different windows simultaneously.

Each actor must point to an object, which is an entity that refers to actual graphics data,
such as an image, a movie, a three-dimensional model, a font, etc. More than one actor
can use the same object simultaneously, but each actor can only point to a single object at
a time. Only raw graphics data (or information about where it is located) is stored in the
object. Information about how that data gets rendered is part of the actor.

The functions available to you in Isis allow you to create instances of these six kinds of
entities and modify parameters inside each of them. A typical script will begin by calling
initialization functions and creating all the needed entities. To output a each frame of a
presentation, the script need only set the appropriate parameters inside each entity to the
desired values (possibly taking into account user input) and then call a function to actually
draw the frame. If this “update and draw” routine is performed repeatedly, it is possible
to achieve essentially real-time output! The following sections of this manual will explain
this process in greater detail.

B.2 Running Isis and the Structured Video Package

In order to use the functions in the structured video package, you first have to check that
the version of Isis you are using is linked to the package. When you start Isis, you will see
something like this:

x Igis (version 2.0)

***% by Stefan Agamanolis
+++ Structured Video Package
=== Structured Audio Package
--- User Interface Package

->

If you don’t see “Structured Video Package” listed here, then you must use a different
version of Isis. Ask your friendly Isis software maintainer where to find the correct version.

Next, you must load the file structured-av.isis which should be located in the same
place as the Isis interpreter program, or in a directory where standard Isis scripts are
stored. Although not required, this file contains helpful type definitions that will simplify

114

using the structured video system. Make sure to specify the entire pathname if necessary.
Otherwise, if the file structured-av.isis is in your current directory, you can simply type:

-> (load "structured-av.isis")

Reading from script “structured-av.isis~’...
13 items processed

<Null value>

->

For reference, this file makes the following type definitions:

structured-av.isis
Helpful type definitions structured audio and video scripts

(newtype
(newtype
(newtype

(newtype
(newtype

(newtype
(newtype

(newtype
(newtype

(newtype

(newtype
(newtype

(Pos Real Real Real))
(Vec Real Real Real))
(Dim Real Real Real))

(Loc Int Int))
(Size Int Int))

(Vec4 Real Real Real Real))
(Matrix4 Vec4 Vec4 Vecd4 Vec4)) # each vector is a ROW

(Rect Int Int Int Int))
(RealRect Real Real Real Real))

(View Vec Vec Vec Real RealRect))

(Poslist Pos ...))
(Viewlist View ...))

B.3 Initializing and controlling system state

(initialize-video-system)
(start-video-system)
(stop-video-system)
(reset-video-system)
(terminate-video-system)

The first package function you must call in any script that uses structured video is
initialize-video-system. This function should only ever be called once. Then, before

1156

outputting any frames from any engine, you must call start-video-system which will open
any windows that you have created and prepare them for output. stop-video-system will
close any open windows but does not destroy them—they can be reopened with another
call to start-video-system. reset-video-system allows you to re-initialize the systemn
to the same state as when the system was first initialized. terminate-video-system will
stop all video output, close all windows, and shut down any external processes associated
with the delivery system. It should only ever be called once, usually at the very end of a
script.

-> (initialize-video-system)
<Null value>

-> (start-video-system)
<Null value>

->

B.4 Creating structured video entities

(new-video-engine)

(new-window)

(new-camera)

(new-video-environment)

(new-actor)

(new-video-object data-filename internal-name class-name)

These functions will create new structured video entities. Each returns a value of type
Address which you will use to refer to the entity later, so you should always be sure to
store it (usually by assigning it to a variable).

-> (set myengine (new-video-engine))
0x402d4000

-> (set winl (new-window))
0x402d4020

-> (set envl (new-video-environment))
0x402d44040

-> (set caml (new-camera))
0x402d4060

-> (set actl (new-actor))
0x402d4080

->

Three String arguments are required by new-video-object:

116

e data-filename should be the filename or URL where the graphics data may be found.
URL support may or may not be present on your system. The format of the data is
inferred from its filename or extension.

e internal-name can be whatever you like as it is only used in printing debugging
information about the object, not in any processing.

e class-name is used to group certain objects in order to aid the caching mechanism
in the delivery system. For example, if there are several objects which are used as
backgrounds but only one is ever used at any one time, then you should give these
objecte the same class name, perhaps something like *background”. Do the same for
other groups of objects, giving each group a unique class name.

-> (set roomlobj

(new-video-object "/grad/stefan/rooml.rgb" "Room 1" "background"))
0x402d40a0
-> (set room2obj

(new-video-object "/grad/stefan/room2.rgb" "Room 2" “"backgrovnd"))
0x402d40c0
-> (set personobj

(new-video-object "/grad/stefan/person.rgba" "Person" "foreground"))
0x402d40e0
->

B.5 Updating parameters

(vid-update entity parameter value parameter value ...)

There are several parameters inside each structured video entity, each of which has a value
that you may change to alter the state of that entity in some way. The parameters are given
default values when the entity is first created. It is your job to set these parameters appro-
priately before calling the function that plots a frame. The way you set these parameters is
by calling the vid-update function. This function accepts a variable number of arguments.
The first argument must be the entity you wish to set parameters within. Then you pass a
parameter specifier followed by the value you wish to give that parameter. You may pass
as many parameters and corresponding values in a single call as you like. The examples in
the following sections should make this process clear.

117

B.5.1 Engines

The top-level entity in any presentation is the engine. Parameters inside the engine point
to a certain window, camera, environment, and a list of actors that should be processed
by this engine. There are also parameters for controlling some high-level engine behaviors.
Here is the list:

Parameter Specifier Value Type Default Value Description

vid-window Address Null The window for this engine to output to
vid-environment Address Null The video environment to use in this engine
vid-camera Address Null The camera to use in this engine

vid-actors AddrList (AddrList) The actors to render in this engine (default is none)
vid-clear Bool True Clear the plot buffer after building each frame?
vid-clear-depth Bool True Clear the depth buffer after building each frame?
vid-render-in-order Bool True Render actors in order given in list above?
vid-output-descriptor String "o A name for the output of this engine

Before you attempt to plot any frames from an engine, you must assign values to at least
the first 4 parameters in the list above (window, environment, camera, and actors). The
actors must be listed in an AddrList. In order for anything to show up in your output
window, you must specify at least one actor.

In certain presentations, plot buffer clearing may not be necessary and can save a little time,
or clearing may not be desired for artistic reasons. The vid-clear and vid-clear-depth
parameters control whether the display and Z buffers are cleared before plotting each frame.

The vid-render-in-order parameter controls whether or not the actors are rendered in
the same order they were placed in the list you gave for the vid-a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>