The Director’s Composite Eyeglass

By:
Phil Barker
May 6, 1994

Supervisor:

Glorianna Davenport

Abstract:

The Director’s Composite Eyeglass performs a digital compositing function of
two video images, using a blue screen key to matte the foreground image over
the background. It is a chroma-key device implemented in digital hardware.
There is a live video feed from which a frame can be captured into memory for
use as a background image. This image is then composited with a foreground
image, which is shot against a blue screen background. The device filters out
the blue screen area from the live foreground image and replaces it with the
underlying background image from the frame buffer. The Director’s
Composite Eyeglass uses modern, special and general purpose hardware to

successfully implement this compositing function.

Table of Contents:

Overview

System Description
2.1 Video Input/Output Unit
2.1.1 Video Format
2.1.2 Video Digitization
2.1.3 Dig'itized Video Encoding
2.2 Digitizer/Encoder Initializer
2.2.1 Micro Controlled Unit
2.2.2 Micro Code Program
2.3 Frame Buffer
2.3.1 Memory
2.3.2 Buffer Control
2.4 Compositing
2.4.1 Muxing
2.4.2 Mux Control

Testing and Debugging

3.1 Micro Controlled Unit Testing
3.2 Video Systems Testing

3.3 Muxing Testing

3.4 Frame Buffer Testing

Conclusion

1 & v W

20
21
23
27
28
32
37
38
38

41
42
42
43
43

45

5 Extensions 46

Appéndices 48
Appendix A -- Logic Diagrams 48
Appendix B -- Micro Code 56
Appendix C -- Buffer Control Code 70
Appendix D -- Composite Control Code 90

Appendix E -- Acknowledgments 105

0 ~31 O A b W D

List of Figures:

System Block Diagram

Video Format Diagram

I2C Bus Signal Format

22190 Microprocessor Interface Format
Memory Block Diagram

Vertical State FSM

Read/Write FSM

Compositing Block Diagram

12
16
27
34
35
37

$© 00 -3 & A s W N =

List of Tables:

Syncing Signals

12C Bus Signals

22190 Microprocessor Interface Signals
22190 Microprocessor Interface Values
22190 Control Registers and Values
Port Definitions

6811 Instructions Used

Frame Buffer Signals

Buffer Control Signals

10
15
17
19
24
25
30

34

1 Overview:

The goal of this project is to produce a portable, digital compositing device
that can be used by directors to preview a scene or a shot in the field from the
comfort of his studio. One of the high cost items on film production is the
time it takes to design a shot for complex compositing on location. At best,
directors have only cartoon story boards from which to visualize the scene
that they are trying to capture on film. With a device such as the Director’s
Composite Eyeglass (DCE), directors will be able to visualize these scenes
with far more clarity. This has the potential for curbing cost overruns. The
device will also help the director extend his creative mind into his medium.
No longer bound by static story boards, the director can arrange more
interesting shots in an animatic "rehearsal" and discover whether or not they

have potential in final production.

The Director’s Composite Eyeglass implements a digital compositing device
which can capture a background image from a live video feed, e.g. a video
camera, and then form a digital composite between that image and a
foreground image shot against a blue screen. It does so with high quality,
modern hardware that will produce a quality image for the directm: to work
from. This design and concept are built with the intention of extending the

" capabilities to add even more utility in the future.

Video Compositing has been around for a long time in television production
studios as well as in film production. Compositng allows a selection of a

foreground image to be placed over a background. One of its most common

1

functions is to perform a blue screen composite between a foreground image
and a background. This is typically done by filtering out the blue screen
portion of the foregrouhd image and replacing it with the background image.
Thus, the background shows through the blue screen areas of the foreground
image on the ocutput image. This technique has been used by directors for
some time. Its uses have varied from special effects in movies, known as a
cinema matte, to doing the television weather report with the weather man

standing in front of a series of pictures or maps, known as a TV chroma key.

2 System Description:

The system can be broken into four component subsystems: video input and
output, system initialization, video frame buffer, and composite
implementation. The block diagram for the system is shown in figure 1. The
video input and output unit is responsible for taking NTSC video, the
standard format for video in the USA, and converting that signal into digital
data. It then is responsible for taking digital video data and re-encoding it
into NTSC video format. The frame buffer is needed to store a frame of
digitized video from the video input section. This stored image can then be
used for the background in the video compositing. The user is able to tell the
frame buffer when to grab a frame and can thus control what the background
'image will be in the composite. The composite section is responsible for
looking at the digitized video and then deciding whether to send the
foreground pixel or the background pixel to the encoder for conversion back to
an analog video signal. The user can set switches to determine the color that
the composite section keys from. There is also an override on the composite
so that the user can either look at the live video undisturbed, or, the user can
look at the stored background image undisturbed. System initialization is
needed for the digitizer and the encoder. Both of these sections contain
control registers that must be written so as the provide the digitizer and
encoder with information about the input and output desired. The system
initializer subsystem is done with a micro controlled unit that runs a micro

code program.

The DCE has a simple user interface. The user need only suppl& the input

3

video signal and then connect the output to whatever display device is
available. A frame can be captured by pushing the load button on the DCE.
A switch will allow the user to view the captured image, or live video from the
input source, or, the user can view the composite of the live video source and
the captured frame. The blue screen key used in making the composite can
be adjusted by rotating a knob and selecting the portion of the key to be
adjusted. In this way; the user can select a key that is suitable to the blue

screen conditions that he presents to the DCE.

Digitizer 4_ NTSC Video Input

<
l Frame Buffer

Composite
Load i
Color 1cro-
Reset —#| Controlled
Key/ Unit
Live/]
Preview
Encoder
NTSC Video
Output

Figure 1 -- System Block Diagram 4

2.1 Video Input/Output Unit:

The video input/output unit consists of a video digitizer and a digital video
encoder. The digitizer takes the video signal from a video camera or other
NTSC video source and then digitizes it into 24 bit Red - Green - Blue - (RGB)
digital video data. It also uses its initialization information and the sub
carrier of the video signal to produce a system pixel clock of 12.27MHz, a
double frequency clock of 24.54MHz, a vertical sync signal, a horizontal sync
signal, and a field identification signal. The video encoder takes the RGB
digital video data and the syncing signals and clock signals to produce a
NTSC video output. The encoder uses its initialization information to form
proper sub carrier frequency and phase for the output video signal. It also
uses this information to build a color lookup table (CLUT) from which each
color represented by the RGB data is mapped for encoding back into analog

video.

2.1.1 Video Format:

The digitizer and encoder used in this project operate with NTSC standard
video. This is the standard video format for the USA and several other
countries around the world. In general, video signals carry information about

the picture that is present and the scanning speed of the source and monitor.

The video signal has active video portions and non-active portions. The non-
active portions, or blanking periods, describe when the scanning beam is
moving from the end of a line to the beginning, and, when the beam moves -
from the bottom of the scan field to the top again. These blanking periods are
described by syncing signals. The horizontal sync describes when the
blanking period from the end of a line to the beginning of the next. The
vertical sync describes when the scan beam is moving from the bottom of the
scan field to the top. The total resolution of a frame of video is 640x480
pixels. NTSC sends 60 frames per second of active video. This translates
into a 64psec time on a line of video. NTSC is also an interlaced standard.
That is, every other line is in one of two fields. The field allows for better

locking onto the video signal for the monitoring device.

FIELD | AND 3

VERTICAL BLANKING INTERVAL

PRE-EQUALIZING | VERTICALSYNC __|_ POST-EQUALIZING __| s
*— PULSE INTERVAL 1™ PULSE INTERVAL | PULSE INTERVAL AR G
: M M
1

JH- + |
4 5 6 7 I 8 ! 9 —ere—} 1 20—

EE~ete—5§ 55 58 EE EE EE—~1~UBB UBB BB-et VY- VY

e L L L ey | —
HEl b))

VVSYNCQ\

H \(
[I—— e

Figure 2 -- Video Format Diagram 6

2.1.2 Video Digitization:

The digitizing unit consists of a SONY SBX1762-01 24 bit RGB video input
module. This is a non-monolithic module of chips on a small printed circuit
board. Its design allows for extreme ease of use. Some applications can
simply plug in the module and turn it on. The SONY meodule decodes a
composite NTSC video signal into RGB format and digitizes each component
into 8 bit digital video data for a total of 24 bits of digital video data. It
samples this data at a rate of 12.27MHz providing 640 pixels per horizontal

line.

" The SONY module needs a +5V power supply for both the analog and digital
portions of the module. These power supplies can be brought to the module
from separate sources, or, they can be from the same source and de-coupled at
the module itself. This project runs from only one +5V power supply, so, the
analog and digital power is de-coupled, via a ferrite bead around the leads to
the analog power, at the module. There is a similar design for the grounds of
the module. The digitizer requires that there be a clean anélog ground. This
is a requirement forced by the nature of digitization, which works by a
voltage comparison. The clean ground is necessary to provide for an even
base of comparison. Like the +5V power, the grounds must be separated
either at the power source or at the module. This project de-couples the
~ grounds at the module with ferrite beads around the analog ground leads.
The SONY module also requires a +12V power supply for the analog portions
of the module. This is also provided by the single power supply for the

working components.

The SONY module has a video input on one pin. This input is internally
terminated with a 75Q resistor. This allows video to be taken directly to the
module from the video line, without extra termination. The module also
contains an output enable line. This is tied to ground so that the module is
always ready and able to output digital video data. A complete logic diagram

for this and all other units can be found in Appendix A.

The SONY module outputs several signals along with the digital video data.
The digital video data is 24 bit RGB data. This allows for a total of 224
(approximately 16 million) colors from the digitizer. This is enough
information to accurately reproduce the image that was digitized. Digital

data is clocked out of the module on a 12.27MHz clock signal.

The clock is another signal that the module outputs. The main pixel clock is
used to run the rest of the hardware for the memory and the composite. It is
a 12.27MHz clock. The SONY module also outputs a 24.54MHz double pixel
“rate clock. This is used only by the encoder to help with its internal
operations. Both of the clock signals are inverted so as to allow them to drive

several more devices than is possible for the SONY to drive alone.

The SONY module also outputs several syncing signals that are used as cues
the rest of the hardware as to when video events are occurring. A table of
these signals can be found in table 1. Such events include when the video
signal is in a blanking period and what field a current line is in. The syncing

signals are a horizontal sync (hsync), a vertical sync (vsync), a composite sync

(csync) which is a combination of the hsync and vsyne, a field signal, and the
video sub carrier signal. The video sub carrier and csync are not used by this
project. The hsyne, vsync, and field signal are used by various components of
this project for control functions and to help with the encoding of the digital
data back into a composite NTSC signal. Hsync is, however, inverted'so as to
comply with the standard description of an hsync, which is a low pulse at the

end of an active video line.

Table 1: Syncing Signals

Name Description

horizontal sync (hsync) describes the end of a line of active video
vertical sync (vsync) describes then end of a frame of video

composite syne (csync) contains both vertical and horizontal sync
information

field signal describes whether a line of video is in the even field
or the odd field of the interlaced frame

video sub carrier this is a stripped video sub carrier from the actual

NTSC signal

The SONY module’s digitization process can be modified. It is possible to

initialize the module so that it will output different picture levels,

9

sharpness, hue, or saturation. These effects will allow the DCE to be tuned
so that the digitizer and encoder work better together to produce a higher
quality output image. The SONY module allows for this initialization via an
I2C bus. This is a serial communications system involving three address
lines (A2, Al, A0), a serial data line (SDA), and a serial clock line (SCL). A
table of these signals can be found in table 2.

Table 2: I12C Bus Signals

Name Input/Qutput Description

A2 Input the high address bit for slave addressing

Al Input the next most significant bit for slave
addressing

A0 Input the low bit for slave addressing

SDA Input/Output the data line for serial communications

SCL Input the clock line for serial communications

The I2C bus works by placing data on the SDA line and then pulsing a high
signal on the SCL line. A diagram of these signals for the SONY module can
be found in figure 3. The SONY module requires a start condition to take
place on the SDA and SCL lines. After the start condition, a slave address is
sent. This consists of 8 bits of data pulsed out on the SDA line with clock

10

pulses on the SCL line for each bit. The slave address contains a section that
tells the SONY module that it is receiving an address and then a section that
tells it which module on the IZC bus is to take the following information. This
is necessary as the I2C bus is designed to be a communication medium
between more than just two modules. Since there is only one receiver on the
bus (that is the SONY module), its address bits, A2 - A0, are tied to ground
and the address sent in the slave address byte is address zero or the address

assigned to the SONY module by the address bits.

Following the slave address byte is an acknowledgment signal. This is sent
over the SDA line from the SONY module to the initialization hardware. It ié
received when the initialization hardware clocks the SCL line. This
acknowledgment bit must be sent and received after every data byte that is
sent to the SONY module. The next data byte is a subaddress. It describes
which control register address on the module to start reading data into. This
byte is sent with the address of the average picture level (APL) register. The
next byte is the average picture level which is set at mid level, a value of 32.
The subaddress automatically increments after the data byte so that the next
byte sent is also a data byte and not a new address byte. The next address is
sharpness control (SHP). This is also set at mid level, a value of 32. Next is
the saturation (SAT) register. This is set to about 150% saturation, a value of
54. Finglly is the hue (HUE) register. This is set to about +.2 degrees, or a

value of 25.

The final step in initializing the SONY module is the stop condition on the

11

SDA and SCL lines. These corrections are necessary for good quality video
reproduction. Without them, the encoder will not produce an accurate color

map for encoding digital 'data into NTSC video.

a7 -
Vol 0 o | a2 | A | a0 | ®° | ace

w) LTI T T T
o/ N A XX\ e

HiorLow Z

Figure 3 -- I2C Bus Signal Format
2.1.3 Digitized Video Encoding:

The video encoding unit consists of a TMC22190 (22190) encoding chip, a
74F574 TTL chip, and some analog circuitry. The 22190 converts digital
video data, in a variety of formats, to a NTSC standard or PAL standard
signal with a ‘modulated color sub carrier. The 22190 requires syncing
signals and digital data along with a specific initialization sequence to

perform this conversion.

The 22190 requires a +5V power supply for both an analog system and the
digital system. In a similar manner to the SONY module, this power can be
separated at the power soﬁrce or at the chip. Since this project runs from a
single +5V pbwer supply, the power for the analog section and the digital
section is separated at the chip via ferrite beads around the analog power

lines. There are also separate grounds for the digital system and the analog

12

system. These are also separated at the chip via ferrite beads around the
analog ground lines. The cleanliness of the power at this chip is very
important. It is even more so than at the SONY module as the SONY has
some power clean up on board. The 22190 requires bypassing of the power
supply at the chip. Several 0.001uF capacitors are soldered in between the
power and ground pins on the chip. The entire power supply is bypassed at
the board connection with larger capacitors in the 470pF range. This gives a

clean power supply to the chip regardless of other activity on the board.

Proper encoding requires that there is a clean set of reference voltages for the
comparison of digital data into an analog signal. There are three pins on the
22190 that are responsible for providing the references to the chip for proper
encoding. A combination of analog circuitry provides a 1.235V reference at
the Vref pin, a 0.1uF capacitor for de-coupling at the COMP pin, and a
ground reference at Rref. Encoded video is sent out over the composite video
output. This output is connected directly to the transmission medium and is
" terminated at the 22190 with a 75Q resistor. Appendix A contains a full set

of logic diagrams for this and all other units.

The 22190 requires two clock signals for operation. It needs a double pixel
rate clock. For the purpose of using square pixel NTSC format, the pixel rate
is 12.27MHz. So, the double pixel rate clock is 24.54MHz. This operates the
internal state machines that are responsible for controlling the conversion
process. The 22190 also requires the pixel clock described above. This is
necessary for clocking pixels into the chip via the PD port. Both of these
clocks are provided by the SONY digitizing module. They are tak;n from the

13

inverted clock signals from that module.

Syncing signals are required in any attempt to convert digital video data back
into analog form. The 22190 requires a vertical syncing signal and a
horizontal syncing signal. These two signals are generated by the SONY
module. The hsync from that module is inverted to conform to standards for
video, which is a low pulse at the end of an active line of video. Both the
hsync and the vsync are delayed by the 74F574 chip. This chip is clocked
with the pixel clock so as to effectively delay the syncing signals by one pixel
of where they would be after coming out of the SONY module. This allows for
a one pixel latency in the rest of the board. This latency is induced by the
compositing hardware. The result is that the syncing signals now coincide

with the rest of the pixel data.

The 22190 also has a variety of other pins that help out with, or control, other
functions in the chip. The KEY pin is used to specify that the 22190 should
accept digital video data across the PD port rather than the CVBS bus. It
unties the chip from its companion digitizer which is not used by the DCE
project. The KEY is tied to ground for this purpose. There is also the PDC
pin which is setup as an output during the initialization for the 22190. Itis
meant to be used as a frame buffer direction control. However, the DCE
leaves it unconnected and controls the frame buffer through other means.
There are several JTAG video test pins which are not in use when the chip is
actually performing video conversions. These are also tied to ground.
Finally, there are the BYPASS\ and OL pins. These are all grounded. The
BYPASS\ is grounded for proper CLUT operation. The OL pins are grounded
so as to shut off the 22190’s internal overlay operation. The 22190 is

14

designed to perform a compositing function of a sort using an overlay
technique. This overlay option is not used by the DCE and 1s therefore shut
off.

An initialization is also required for the 22190 to operate correctly. Since it is
a fully programmable chip which can encode for any kind of video desired, it
must be told which video to encode for. Values for the sub carrier phase and
| frequency must be entered and the chip must be told whether to encode PAL
or NTSC levels for the output video. It must also be told what format the
digital video data is in and how it is being sent to the chip. Finally, a CLUT
must be loaded so that the colors that the digital video data represents can be

correctly converted to the corresponding analog signal.

Table 3: 22190 Microprocessor Interface Signals

Name Input/Qutput Description

Al and A0 Input address lines for the 22190 interface

RESET\ Input hardware reset which halts all internal
operations

R/W\ Input read or write line

CS\ Input chip clock line

D[7:0] Input/Output data bus

15

A standard microprocessor interface is provided on the 22190 for
initialization. It supports two address lines (Al and A0), a reset line
(RESET\), a read/write line (R/W\), a processor clock line (CS\), and an 8 bit
data bus (D[7:0]). A table of these signals can be found in table 3. Operation
relies on both edges of CS\. The falling edge clocks in the values of the Al,
A0, and R/W\ lines. This allows the data to be directed at an address
register or an actual control register. It also directs the 22190 to either read
or write a value. A table of values for these signals is found in table 4. The
actual value comes across D[7:0]. This data is clocked in on the rising edge of
CS\. An additional falling edge is needed to clock the last value all the way
through to its working register. This is usually accomplished by a successive

series of operations. Figure 4 describes this format.

i lowncs

OO AKX £
XK KXXRRXXRL X
OOURXXXAX— XXXXAR

]

Figure 4 -- 22190 Microprocessor Interface Format 16

Table 4: 22190 Microprocessor Interface Values

Description

g
’—l
oS
o

load D[7:0] into control register pointer

" read control register pointer on D[7:0]
load D[7:0] into CLUT address register
read CLUT address register on D[7:0]
write D[7:0] to addressed.control register
read addressed control register on D[7:0]
write D[7:0] to addressed CLUT location
read addressed CLUT location on D[7:0]

HOHO!—*OI—‘OE
L~

(g S S o S oo B e S o [e
e OO e e O O

Initializing the 22190 for operation in the DCE requires first a low signal on
the RESET\ line. This stops the internal state machines and puts the rest of
the chip on standby. It is now possible to change the internal registers that
control the format and operation of the 22190. First the address of the first
control register is loaded into the control register pointer. Then all of the
values are written into the control registers. The control register pointer
automatically increments with each rising edge of CS\ during a data write or
read. This facilitates writing the control registers. A table of addresses and

values for the control registers can be found in table 5.

- After the control registers are all written with the appropriate values the

CLUT address register is loaded with the first CLUT address. The CLUT is

17

then filled with all of the values for the red, green , and blue digital colors.
The values used in the DCE are not altered from the digital video data sent
by the SONY module. Therefore, the values put into the CLUT equal the
address of the CLUT, i.e. red 0 is mapped to 0. Each CLUT address has three
bytes associated with it. This allows the table for the red, green, and blue to
be loaded without the need for readdressing. But, they must be loaded for
each address accessed. After the loading of the CLUT RESET\ is brought
high and the encoder begins operation by locking onto the first field that it

finds.

18

Table 5: 22190 Control Registers and Values

Na A s88(i
Global Control 00
Format Control 01
Interface Control 02
Test Control 03
Layering Control 04
Hsync Tip Length 10
Breezeway Length 11
Burst Length 12
Color Back Porch Length 13
Extended Color Back 14
Active Video 15
Active Video Start 16
Active Video End 17
MSB Reg. 18
Front Porch Length 19
EQ Pulse Low Length 1A
EQ Pulse High Length 1B
Vertical Low Length 1C
Vertical High Length 1D
Color Bar Length 1E
Sub Carrier Freq. byte 4 20
Sub Carrier Freq. byte 3 21
Sub Carrier Freq. byte 2 22
Sub Carrier Freq. byte 1 23
Video Phase Offset 1 24
Video Phase Offset 2 25
Burst Phase Offset 1 26
Burst Phase Offset 2 27

H

Va

in
01

10

2C

02
40

3A
07
1F
OF
23
8B
05
77
65
12
1C
6A
4C
3A
52
AB
AA
AA
4A
00
00
00
20

Descripti

select NTSC and -
no software reset
select layering,

24 bit RGB, no test
and slave mode
select enable sync
input signals, PDC
master, time base
disable test mode
select enable KEY
pin, and no layer-
ing mode

hsync tip length
breezeway length
color burst length
back porch

8 L.SB

8 LSB

8 LSB

8 LSB

MSB of 14,15,16,17
front porch

low length

high length

low length

high length

color bar length
LSB byte

next LSB byte
next L.SB byte
MSB byte

LSB byte

MSB byte

LSB byte

MSB byte

19

2.2 Digitizer/Encoder Initializer:

Initialization is done with a micro controlled unit (MCU) which is attached to
the micfoprocessor interface of the 22190 as well as to the I2C bus of the
SONY module. A single program runs, at power up or reset to the micro
controlled unit, which carries out the initialization detailed in previous
sections. The micro controlled unit then stays in a single étate for the rest of

the running time of the DCE.

20

2.2.1 Micro Controlled Unit:

The micro controlled unit is implemented using a Motorola XC68HC811E2
Micro Controller (6811), two 74F574 register files, a Maxim MAX233 RS-232
receiver, and some analog circuitry. Complete logic diagrams for this and all
other units can be found in Appendix A. The 6811 also requires a program to
be burned into its on board EEPROM memory. This is necessary as it has no
other support memory or storage device for the program. The program is
- thus developed on an outside platform and then sent to the 6811 after
assembly. This project used the asll assembler from Motorola to assemble
the micro code program from source and the dl program to download the
program into the EEPROM on the 6811. Both of these programs are
available in a standard form for a DECStation, or from Randy Sargent at the
MIT Media Lab, who has made minor modifications. Both of these programs
require a DECStation to run and a free serial port on that computer for

attachment to the DCE.

" The 6811 is powered only by a +5V power supply. This is the same power
supply for the rest of the project. The 6811 does not have the extreme power
cleanliness problems that the digitizer and encoder have. So power to the
chip needs only minimal bypassing. The ground is also that of the rest of the
project. The 6811 also needs a clock to run. It runs from an 8.0MH:z
fundamental crystal. This controls the internal state machines and forms a

2MHz clock that is used to signal output events.

The 6811 has an on board digitizer which must be set up with reference

21

voltages for proper chip operation. Reset circuitry is needed to keep the 6811
from activating until the power supply has come up to a proper +5V value.
This just consists of a capacitor and resister with a rise time greater than the
+5V range up of the power supply. Also, across the reset circuit is the reset
switch which will shunt the power to the chipl when activated. This reset
circuit is connected to the RESET pin on the 6811. This allows the chip to be
reset and its program re-run without cycling the power. This is more for a

testing purpose when the chip is programmed a variety of times and must be

cycled to run the new program.

There are four modes of operation for the 6811, The DCE project requires
only two of these modes. By fixing the MODE A pin to ground and then
putting a switch on MODE B, from ground and +5V the DCE can access these
two modes. The first mode is the standard single chip running mode. This
allows the 6811 to run with just itself and no support memory. This is the
normal mode of operation for the DCE project. The other mode is the -
bootstrap mode. This allows the 6811 to be programmed. When in this mode
the 6811 can be programmed over a serial line, This allows program

development for the initialization.

Serial communications between the programming station and the 6811 are
done through the serial line on the station and the MAX233 receiver. The
receiver gets the signal from the station and converts it to TTL levels of
voltage and this is put through to the 6811 via the port D interface.
- Communications between the 6811 and the 22190 and SONY module are

done through the port C and port B lines. These are a bi-directional and

22

output only ports, respectively, of 8 bits a piece. These are connected to the
74F574 registers. The registers are clocked by the 2MHz clock from the 6811.
This gives a glitch free output to the digitizer and encoder.

2.2.2 Micro Code Program:

The initialization sequence required by the 22190 and the SONY module
needs next to no feedback to the micro controlled unit. This allows the 6811
to be used primarily as an output assertion device. Thus, its data ports are
used simply to assert signals on the lines to the 22190 and to the SONY
module. The SONY module does have some feedback to the controller, the
acknowledge bits. This can be handled with the use of the bi-directional port
on the 6811. So, the bulk of the program is simply loading values onto the
- ports in the correct sequence. Table 6 contains information on which port

lines go to which microprocessor or I2C bus lines on the 22190 or SONY

module.

Only a small subset of 6811 micro instructions are needed to perform writes
to the ports. A table of the instructions used can be found in table 7. The
6811 operates on a load/store basis. Working registers are loaded with data
either from memory or from the program itself. This data is then stored in
locations that correspond to the ports. Data for the control lines and the data
lines are loaded into the B accumulator register and A accumulator. Clocking
the clock lines, either CS\ for the 22190 or SCL for the SONY module, is then

done as is appropriate.

23

Table 6: Port Definitions

Port Bit Number Unit Connection
C 7 22190 RESET\

C 6 22190 R/WA

C 5 22190 Al

C 4 22190 A0

C 3 N/A Unconnected
C 2 22190 CS\

C 1 SONY SDA

C 0 SONY SCL

B 7 22190 D7

B 6 22190 D6

B 5 22190 D5

B 4 22190 D4

B 3 22190 D3

B 2 22190 D2

B 1 22190 D1

B 0 22190 DO

However, before the ports are ready to accept writes out, there must be some

setup in the 6811 itself. Port C is bi-directional and must be set to be an

- output when the pins carry assertions. It must also be set back to an input

for certain port pins when the acknowledge bits from the SONY are received.

24

The stack in the 6811 must also be initialized. After this initialization of the
6811 the program that takes care of initializing the rest of the hardware

runs. A complete listing of the prdgram can be found in Appendix B.

Table 7: 6811 Instructions Used

Mnemonic Description

LDAA load accumulator A

LDAB load accumulator B

STAA store value in accumulator A
STAB store value in accumulator B
LDS load stack pointer

LDX load x register

LDY . | load y register

INCA increment A accumulator
INY increment y register

JSR jump to subroutine

CPY - compare y register

BLS branch if less than

BRA unconditional brahch

SEI disable interrupts

BSET set bits according to mask
CLI clear interrupts

RTS - return from subroutine

25

The first task done is to activate the reset on the 22190. The control registers
are then written in the order indicated in the encoder description section of
this paper. This is carried out by the 6811 by loading a value into
accumulator A aﬁd then jumping to a subroutine which performs the
necessary pulsing on CS\. This is repeated for each control register value.
The CLUT is then loaded into the 22190 as described in the encoder

description.

Next, the SONY module is initialized over the serial interface. The serial
interface is setup on two bits of port C on the 6811. These lines are pulsed on
and off with the description of the I2C bus interface. This is done one bit at é
time as is the nature of serial line communications. There are some other
minor details to the workings of the program. Interrupt vectors must be
written so that if the processor works incorrectly or receives internal
interrupts it has a place to jump to. These interrupts are not expected to be
occurring in this project. All of them have been sent to a procedure which
branches to itself tying up the processor indefinitely. This is very easy to spbt
when debugging the program so it is a logical choice. Along with the
interrupts, the reset vector must be set to the beginning of the program.
There are also points in the program which tell the assembler where to place
code. These origins are necessary so that the assembler know to place the
program into the EEPROM of the 6811 and not into volatile memory where it

will be lost at power down.

26

2.3 Frame Buffer:

The frame buffer consists of a large FIFO memory structure and a controller
to capture a video frame. It also consists of a switch to tell the controller
when to load a frame into the memory vs. when to play back to the contents
of the frame buffer. The FIFO is a number of memory chips that are all
independently FIFO chips wired in such a way as to provide one large FIFO
structure. The controller is programmable logic and alerts the FIFO
structure how to capture a frame. The FIFO structure used is a two bank

memory. Figure 5 is a block diagram of the frame buffer system.

Controller Load
Wa Ra Wb Rb
Vreset
Yy Vv
Bank A Bank B
Digital Video Out
Digital Video In

Figure 5 -- Memory Block Diagram
27

2.3.1 Memory:

The memory used is TMS4C1050DC-40N (1050) FIFO memory chips wired in
such a way as to provide a full frame buffer. FIFO stands for First In, First
Out and describes a memory where the first item written info the memory
will be the first item read out of the memory. This eliminates the need for a
counter that covers the address space for an entire frame, cutting down both
on design complexity and the number of components. With enough FIFO
memory the controller need only tell the memory to read or write when theré
is active video. The memory structure is able to increment to the next
available space in the memory. Only the write and read pointers need to be
reset by the controller. The FIFO does not provide random access memory,
but, it is not needed in the context of the DCE. Since a frame is read or
written from beginning to end each time the memory is accessed and has no

other access pattern, the FIFQ is a good solution to the problem of frame

storage.

The 1050 is not in itself big enough to hold an entire frame of video. Each
1050 stores 262,264 4 bit words. Immediately, it is noticed that the chip does
not store a large enough word for a frame of video. Since the DCE works with
24 bit video, the frame buffer must store a 24 bit word. The second problem
is that the video frame used in the DCE is 640x480 pixels. This is a total of
307,200 pixels. The FIFO must hold 307,200 24 bit words for an entire frame

of video.

Using two banks of 6 1050s a bank allows enough memory space for a frame

28

on video. Appendix A contains complete wiring diagrams for the memory as
well as for all other units. The total memory capacity of the FIFO structure
with two banks is 524,528 24 bit words which is enough to capture an entire
frame of video. The scheme for using this memory is to alternate on a line by
line basis between the two banks when writing or reading a frame of video.
Thus each bank holds half of the video frame or 153,600 24 bit words. This

fits inside of one bank of memory.

The operation of the memory maintains that on a load signal at a vertical
blanking period the memory will start a write operation for an entire frame.
This entails writing one line to one bank and then writing one line to the next
bank, and so on until the end of the frame. The two banks have their
corresponding bit inputs tied together to the SONY digital video data outputs
allowing easy access to the video data. When no load signal is present during
the vertical blanking period the two banks read out their data in a similar
fashion to the way they were loaded, one line per bank at a time. The reads
and writes are controlled to occur only during the active video portions of the
digital data from the SONY. This is due to the nature of video signals. On
occasion there will be lines that are only 639 pixels in length. The syncing
signals will describe the active video portions irregardless of the actual pixel
counts and thus will ensure that each line is displayed as it should be.
Otherwise, errors could occur in the playback of the frame buffer. The read
and write pointers are also reset to zero during the vertical blanking period.
This allows for the banks of memory to always be writing or reading over the

same space, ensuing proper recording and playback of a frame of video.

29

The operation of the 1050 invelves a clock to the write end of the buffer and a
clock to the read end of the buffer. It also has a read pointer reset, and a
write pointer reset, as well as, a read activation line and a write activation
line. Since the chips are always clocked with the pixel clock, as that is when
data is ready, both the read and write clocks are tied to the pixel clock. Both
read and write pointers are reset during the vertical blanking period.
Therefore, only one reset signal is needed and goes to both read reset and
write reset. The read and write activation lines are, of course, separate as a
frame will either be written or read but never both at the same time. Table 8

contains sighal definitions for the entire frame buffer.

Table 8: Frame Buffer Signals

Name Input/Output Pos./Neg, Description

Ra Input Pos. read assertion for bank a

Rb Input Pos. read assertion for bank b

Wa Input Pos. write assertion for bank a

Wb ' Input Pos. write assertion for bank b

Vreset Input Pos. reset for all address pointers
" SRCLK Input N/A clock for read section

SWCLK Input N/A clock for write section

1Y Input N/A input digital video data

MV Output N/A output digital video data

30

The frame buffer is wired with two banks of memory. Each bank has a
duplicate data entry format to the other, i.e. the same 24 bits of data go to
each bank. The controller thén decides and activates the appropriate bank
for the write operation. The outputs are also common as only one bank will

be read at a time. The output data lines are therefore tied together as well.

The 1050 memory has two timing requirements that must. be met in order to
ensure proper operation. The first is that the read and write pointers will
lose their address values after a finite amount of time with no activation on
either the read or write lines. After a one msec period with no activation of
the read line, the read pointer will not have a valid address, and, there is no
predicting which data will be read out of the buffer. There is similar behavior
on the write line, where a one msec period of no activation causes the write
pointer to become invalid, after which new writes to the buffer may be stored
in random locations about the memory. There is a simple avoidance to this
problem. When ever the buffer is clocked with the read or write line
activated, the read or write pointer is refreshed. If this occurs before the one
msec time period then they will be refreshed with the value that is current
and valid. Since the read pointer or the write pointer is in use whenever
there is active video, one of the two will be constantly refreshed throughout
the frame. This leaves no period of one msec of deactivation for the read or
write pointer. After one frame of no use, however, one msec will already have
passed and the pointer not active during the frame will no longer be valid.
But, the end of a frame is signified by a vertical blanking pericd. Rather than
storing blank video, the pointers are both reset to zero during this period.
The reset operation also refreshes the pointers and they are thus valid for the

next frame cycle. 31

The second timing problem for the 1050s is one of data readiness and
transition time from data output to a high impedance state. Since two banks
of memory are being used, the frame buffer output is coming from two
different sources. These two sources both sit on the same output bus to the
compositing hardware. It is important that they not try to drive data onto
the bus at the same time. Fortunately, the 1050 will only drive the bus when
data is being read out of the memory. The rest of the time its outputs will be
in a high impedance state. Since the frame buffer is read one line from a
bank and then alternates to the next bank, there is the entire horizontal
blanking period in which the active bank can shut off its outputs a1:1d the next
- bank can turn its outputs on. The horizontal blanking period is long enough

for this operation to occur.
2.3.2 Buffer Control:

The frame buffer involves a piece of control hardware for the FIFO memory.
This control is not extremely complex due to the nature of the FIFO memory.
Only read, write, and reset must be asserted by the controller. Addressing is
not an issue. The memory structure has more than enough room for the
entire frame of active video. It does not, however, have enough room for all of
the blanking periods as well. The buffer éontroller must therefore, only
capture the active video portions of the frame that is being written. Another
problem is that there may be lines if video where only 639 or even as many as

- 643 pixels come from the SONY. This is due to the analog

32

nature of video signals. It is up to the buffer control to count the same
amount for every active line that it encounters. This is necessary so as to

avoid improper looking video.

The solution to the problem is to key the controller off of some blanking
information and then count out the active line of video. Since this is a digital
operation, each line will be of the same length. Also, since the memory is
larger than the active video of a frame, extra writes can occur for every line,
ensuring capture of all of the information on that line. The controller is done
with some programmable logic. In this case ALTERA EPM5032
programmable logic is used. This is a 32 macro cell chip. The program that
is compiled to logic and then burnt into the device is written in the MAXII+

environment.

The code for the controller essentially consists of two differeht finite state
machines and several counters. The first state machine is responsible for
" determining the vertical state of the frame of video. A state diagram can be
seen in figure 6. By using the syncing information, vertical blanking, idle,
and active periods can be established for any frame. Table 9 contains a list of

the signals that are involved in the controller for the frame buffer.

The vertical state machine is used to determine when to increment or reset
the internal counters that keep track of line position. The internal line
counter is responsible for counting out the line of active video. The line
counter and the vertical state are used to calculate the cblank signal. This

tells the rest of the controller when there is active video vs. when there is a

33

blanking period. The hsync is also used when generating the cblank signal.
The cblank and the load signal are used in the other state machine in the

buffer controller. A state diagram for this machine can be found in figure 7.

end_of_field
lvsync

Figure 6 --
Vertical State FSM
end_of_blank

Table 9: Buffer Control Signals

Name Input/Output Pos./Neg. Description

hsync Input Neg. horizonté.l sync pulse train
vsync Input Neg. vertical sync pulse train
clkin Input N/A | pixel clock (12.27MHz)

load Input Pos. signal to load a frame
viield Input Neg. field identification from SONY
cblank Output Neg. composite blank pulse train
vreset Output Pos. reset signal for buffer

ra Output Pos. read line for bank a |

rb Output Pos. read line for bank b

wa Output Pos. write line for bank a\

wb QOutput Pos. write line for bank b 34

cblank & !load cblank & load

leblank chblank

cblank cblank

Figure 7 -- Read/Write FSM

The Read/Write FSM issues the signals to read or write bank a or b of the
frame buffer. It sits in a wait state until it is in an active video period. It
then travels along the other states. When in one of the non-wait states a
write or a read signal will be asserted, i.e. when in state Read B, rb will be

asserted and bank b will read out data on each clock cycle of SRCLK (the

pixel clock). Since it is only activated in the active portion of the _video, this

will activate the frame buffer only during active video.

35

The vreset signal is based off of the vfield signal. This occurs only in the
vertical blanking period. Thé field identification and the line counter are
used to assure that vreset is asserted at the end/beginning of every frame.
Thus the buffer resets both its write and read pointers every frame.

Complete code and report files for the controller can be found in Appendix C.

The ALTERA logic has fast propagation delays. It is fast enough that the
outputs change before hold times can be satisfied on the 1050 memories. To
solve this problem, clkin is a delayed version of the 12.27TMHz pixel clock that
the rest of the DCE runs on. The delay is 8nsec and is enough to satisfy the
hold time on the 1050 chips. This does not really add an aéynchronous
portion to the DCE, but, only slows down the ALTERA chip so that it appears

as if it has a longer propagation delay.

36

2.4 Compositing:

Compositing is done by muxing the frame buffer data and the live video data
on a pixel by pixel basis. The basis for the decision to use the live video or the
stored video is a blue screen key. Any pixel matching the color value range of
the blue screen key will be dropped and the stored image will be used instead.
This is the hardware that is responsible for the effect that the DCE is
designed for. The composite image that results from the keying process is a
blue screen composite where the foreground image is on the live video feed
and the background is the stored video frame. A diagram of the compositing

hardware is in figure 8.

Key/
Live/ Key
Preview Color
From From
Stored Live

Video Video

Control

Select ; MUX /

Video
for
Encoding

Figure 8 -- Compositing Block Diagram
37

2.4.1 Muxing:

The actual switching hardware for the DCE composite is a 24 bit 2:1 mux.
The live video image is in the A side of the mux and the stored video is in the
B side. Selection between the two comes from the mux control hardware.
The mux is implemented with six 4 bit 2:1 muxes. The 74F399 (399) is the
mux chosen for this project. Logic diagrams for this and all other units are
located in Appendix A. The 399 is a clocked mux so that the outputs only
change on the rising edge of a clock. The clock used for the 399s is the same

pixel clock for the rest of the project.

The operation of the mux requires that the pixels from both the frame buffer
and the live video feed be available along with the selection signal before the
rising edge of the clock. Since the frame buffer changes to the next pixel only
after the clock edge it will have the correct pixel available at the current clock
edge of the mux. The live video will have a pixel ready well in advance of the
clock edge, as the clock is coming from the SONY module and indicates that a
pixel is ready. The selection signal is also designed in the mux control section

to arrive in advance of the clock edge.
2.4.2 Mux Control:
The color space being used by the DCE is an RGB space. Proper chroma

keying is done in the I-Q color space where chrominance is best described.

However, due to the digitizer's use of RGB the DCE is restricted to either

38

RGB space or performing a complex transform to I-Q space. RGB space can
be thought of as a cube of color space with the axes being R, G, and B. This
space is viewable as a dimension of 3 - space. The blue screen lies along a
plane perpendicular to the farthest point on the blue axis. It also lies along
the plane perpendicular to the farthest point on the green axis. rI-‘he blue
screen lies along a small section of the red axis that is close to the origin, but,
not quite there. Thus, blue and green only need to be compared as greater
than orr equal to some comparison values in order to floor them to the
described planes (rather than simply comparing them as equal to the planes,
some ﬁoise is allowed by extending the range a little). The red is compared
against two values to determine if it falls between them. This process will
slice a volume from the RGB color space, and, inside of this volume is the blue

screen color with a noise buffer.

The muxes, are controlled by a single selection signal. This signal is produced
by the mux control hardware. The mux control is made up of several
switches and three 22v10 PALs. The 22v10s are programmed to compare the
top 4 bits of the blue, the top four bits of the green, and the top four bits of the
red digital data bytes. The comparison is between these 3 nibles (a nible is a
4 bit number) and four other comparison nibles. The 16 DIP switches change
16 of the PAL inputs between high and low digital signals. The blue and
green segments are tested to see if they are greater than or equal to their
comparison values. The red is compared against two values to see if it isin a
certain range, i.e. in between two numbers. This allows a volume of color
space that is against the blue plane and green plane and is sized as a

rectangle of varying dimensions to be selected as the key for creating the

39

composite. The result is a key signal that selects the A input to the mux if

the video falls outside the key, and, selects the B input if it does not.

Keying is controlled by a set of outside switches. One switch is the key
switch. The key switch, when turned to a high input, will direct the PALs to
generate a selection signal for the mux based on the inputs from the live
video and the DIP switch input, irregardless of other conditions. The other
switch alternates between high and low input also and switches viewing
modes. Given that the key switch is low so that keying is not occurring, if the
view switch is producing a low, then the live video will always be selected
f‘rom the mux. If it is high under similar conditions, then the stored image
will always be selected from the mux. Thus, a live image may be seen
undisturbed and a captured image may also be viewed undisturbed. The PAL

files for the mux control can be found in Appendix D.

40

3 Testing and Debugging:

Testing of the DCE was done in stages. As each new section was
implemented it was tested, not only to see if it functioned itself, but, also to
check that it did not interfere with any other systems on the DCE. Testing
started with the micro controlled unit as the video systems will not work
without the initialization that takes place via the MCU. Once the ability to
load a program and the knowledge that the programs ran as expected, testing
went on to the video systems. The encoder was tested first as it could be
configured to output a test pattern. The digitizer was then added and tested
on the system as a whole. The mux was tested next with a set selection to the
live video. After this the frame buffer was added and tested. The mux
control was then changed to allow keying and the whole system tested. A fine
tuning was also needed for the values that the digitizer uses for hue and
saturation. This was done once the rest of the hardware was in place so that
any power fluctuations could be compensated for after the power system was

fully loaded.

41

3.1 Micro Controlled Unit Testing:

The testing here waslquick and not difficult. Using a design for the 6811
implementation that is well known and used in several other projects saved a
lot of time from being spent worrying about correct design. The design was
not in question, only the wiring of that design. The wiring was done carefully
so that no errors occurred. The only item found in the debugging of this unit
was that the outputs can glitch, so the addition of 74F574 registers to calm
the glitches was made. The dl program indicated that there was no problem
getting the program down loaded to the 6811. Using a digital logic analyzer
(DLA) the running of the program could be verified by looking at the outputs .
" on the ports. The use of the DLA also allowed for discovery of errors in the
initialization program. Also, the DLA allowed discovery of a faulty 6811 chip

which was replaced for a working component.
3.2 Video Systems Testing:

The video systems came next. First a 22090 was put in piace and tested. A
test program forced the 22090 to emit its own color bar test pattern. This
worked, but, a faulty design in the chip prevented other operations from
occurring. The 22090, an older version of the 22190, was then traded out for
the newer 22190 which is used in the DCE. Once the color bar test pattern
was verified on the 22190 it was possible to verify the initialization program
from the 6811 as operating properly. It also verified the wiring of the ports
" on the 6811 to the 74F574s and then to the 22190. The SONY module was
then added and video sent to the 22190. This showed that the Ci.UT on the

42

922190 was not loading correctly. It also demonstrated that the BYPASS\ pin
of the 22190 is not working as stated in the documentation. This is another
case of design error on the part of the Raytheon/TRW semiconductor division.
After fixing the CLUT loading procedure in the 6811 program, it became
apparent that the hue and saturation of the SONY were not quite correct.
This leads to the tuning process that occurred at the end of the project.
However, the operation of the components involved in the video unit was

verified.
3.3 Muxing Testing:

The mux was tested first without the control system in place. The selection
line was tied to ground to force the pass through of the live video. During
this test it was discovered that the sync signals needed to be delayed for the
delay incurred by the muxes. Past that, the muxing section did not effect the

rest of the system operation.
3.4 Frame Buffer Testing:

Testing of the frame buffer took a little more time than the rest of the
systems. The frame buffer has a complex control system that lends itself well
to simulation. The control was simulated and verified in that way. The
frame buffer, however, still had an error in it. The vreset signal from the
control was not being generated correctly. Thus, the pointers in the memory
were being reset every line, and not every frame as intended. This led to

vertical striping as the frame buffer repeatedly played out a singlé\line for all

43

480 lines of the frame. Once this was fixed the frame buffer functioned, but,
had a problem with flickering. This was due to a field lock problem in the
controller. This was fixed and the frame buffer began to function correctly.
This was also verified through the mux, again with a hard switch to select the
live feed or the stored image. Compositing was then added to the PAL files
and tested showing that the device was functionally correct. The PALs were
also tuned at this point to the actual blue screen values. Tuning continued at

this point on the hue and saturation of the SONY module.

44

4 Conclusion:

The DCE was implemented reasonably well with a high degree of quality in
the output image. It successfully implemented a blue screen compositing
function. The experience from design and debugging the device is necessary
and good for upcoming projects. Extensions to this project, discussed in the

next section, describe future directions for the DCE project.

45

5 Extensions:

The DCE is not yet a finished project. There are several directions that the
basic platform developed here can go in. Right now the background image
must taken from the live video feed. The DCE could be made to load an
image from a computer over the serial line interface or an added parallel port.
The imagery for the background could also be made to come from a CD-ROM
drive with a photo disk (although several photo CD players have video
outputs that can easily be plugged into the live video line for the purpose of
grabbing a frame). There is also the possibility of storing a series of frames
for a moving background image that would simply replay several seconds or
more of video. There is also the reverse composite idea where the stored
image is the foreground and the background comes from the live feed. There
is also the possibility of storing two images and then keying between the two.

Any of these options is worthy of investigation for future versions of the DCE

project.

The current version also has more work ahead of it. It still has ground loop
problems which interfere with the video quality. It is also not very portable
and could be scaled down in size and given a portable, battery operated power
supply. Power consumption on the current board averages at 6W. The
breakdown of the power consumption between subsystems is: 0.344W for the
digitizer, 0.1W fof the encoder, 2.1W for the entire frame buffer section,
0.22W for the muxing section, 2.7W for the PAL logic, and 0.625W for the
ALTERA control logic. Before the device can be put into a portable format

and run from a battery, work must be done to decrease the power

46

consumption in the PAL logic and the frame buffer memory. Size of the
device will also effect portability. Currently the device is approximately 70
square inches. With surface mount technology and a printed circuit board
with components on both sides of the board, it should be possible to reduce
the device size to 25 inches squared. This not only makes the actual device
smaller, but, surface mount components burn less power. Thus, the device
gets extra benefits from the power side. Reduction of power consumption
using surface mount technology and a little redesign of the power hungry
systems will result in a viable device for battery operated use. A starting
place for work on the frame buffer is to investigate the use of 18 bit color.
This could prove to have good enough quality, while reducing the number of
" memory chips by two. This would drop the power consumption by 0.35W to
5.65W total. '

The DCE also could be hooked up to some LCD goggles for viewing purposes
and a pen camera used as the live feed. This could yield a totally portable
system. The power supply system also needs work so that the power is more
evenly applied to the circuit, and cleaner. This will add to the video quality.
The DCE also needs to be put into some kind of EMF cage to isolate it from

ambient noise. Again, this will add to the final picture quality.

47

Appendix A -- Logic Diagrams

aniq Al

2]
i
q o -
g 10-¢9ZIXas UIA ;
7 ze
0¢ Le O +
>l o€
usalb Al BC ww mm A
ez L2 ¥
52 92 A
5 2rz 52 g
9 I
£ ve :
9z £Z
iz zz
e & {_Ivas
<16+ 02 1105
=218} 61
Ll g8l
pas Al 39 o
[
st 91
v 51
et vt
. el
=L ! zZl
=101 Ll
<516 0l
8 6
ov|; o
LY
=3B 512 :
BAll LE
PH 5 S
eAUPAL =€ 14
aAuaplad > {2 £
mTw i alnpo Buizmbiq oepiA ANOS
0

0602601

UsLs

9INPON IndINQ 08PIA

0dd

I Gd
¢ ad

£ dd

¥ Gd |55

£L
e —

9adfy

L ad
8 ad

aNiq AQ

uaalb AQ

6 Qdk3

0l ad

L adf—

¢l dd

aAUPH

£l ad
vl ad

_nﬂ_ls_ﬁ\,

AAAIAAAT

§1 dd

91 ad

41 ad
81 dd

61 ad

0¢ dd
¢ dd

< o N — S

2z ad s

i A

€< ad

>mv_m|—

VONASAA

pai Ad

o |
383856

|

S

\ONASHA

AWd =
AT

njoo -
et f ot | e

vLis

\SO

\Wm/df

13834

0a

ﬁlﬂﬂ‘(ﬁww—o

\ONASAD B

\ONASHO [
0 SEAD[:
| SAAOL:
2 SaAOf;
€ S8AD

[o:zHisng now

XeXoo1o

0
:

0S8 Gin_w
sng jo4uon v26S =
D oy
o ¢
iv] 1d r
80 9a =
<O sd 7
O ¥a 5
29 £d <
D AF 57]£0d
00 oa $T199d
3 2H50d
tr]7od
=HEOd
“Hzod
tH1od
v.ls ———{00d
D o7 Te l9d
0 ey ZH98d
s8d
© s 5¢{r8d
0 sq B 6e[€8<
¥O va | o7]%8d
€0 ea B Tv|-8d
20 za k& 7v|08d
D OE —vuis
00 oa f M
m bl

HUN P8|0JIU0D0IDIN

A
G
+

\HI'/YAQOW
AgqisA/8A0N
\OHI

\OHIX
\13s3d
TW1IX
N\VANE]

SSA

PPA

DAE'E = EECXVIN
. 2 1]
vie’e - -
T
< wu_H_ A
2 S
M ¥
| @)
£F |||==..* =
KT E LI
ﬁm 4t
= - 295 13834
1z Uit
= $-
SUNL'Z
A
g
+
4dg|
z
61 ﬁ i
3T
[T WO L] ZHWO'8
g 4dg|
T
T _ ﬁ i
T

uls M-
40| I

o

S’
£

r

+uH>

ang AW

anig Al

NOP-DQ0S0 1 OVPSWL

0a
1a

za

" €d

LiHeng MOHS
HOMS

HlsH

MLSH

]

M

3858

usaIg AW

4

1

NO¥-D00S0LIPSWL

od

1a

ed

£d
HOHS
HOMS
HISH
MISH
H

M

0 H =snig

8883

£ 1

NOY-OQ0S0LDYSNL

0a
ia
cd

£d

Loreng wyoyg
YOMS

HisH

MISH

H

M

3853

L [B [=

F Rk R EE R
— | —

NOY-000501LOPSHL

0a
1a
¢a
£d
AMS
AHOMS
HisH
MISH

0 07 anid

3853

(22 L Bt £

en] enfe=o] vy <h

!

3853

00
10
20
€0

00
1o

20
€0

oD
tO
0
€0

usaIn Al pad Al | | 1ese1p
PaH AW
NOP-DQ0S01 JVSWL NO¥-DQ0S01 OVSHL
oal: oak—s WO
Te 1a
S T g
2}z 2df—g
eaf; =r{00 £QE—
LIH usiD MOHS 710 LIHPeH MOHS|H
i (Nemmiey aeE—1
yisH
misu 6 musdp—1 3
h_.. S ﬁ o
1 1
NOV-JQ0S0TOVS WL NOV-DU0S0 I OPS WL
oo %
eafr =00 €0f—
0H ueelD MOHS | H :% 0HPaY MOHS H
MOMS MOMS
3 [i}} £
H1SH €0 H1SH _
musH £ 1 6 musH - i 1
. h cT ﬁ T
1 i
NOv-DG0G0T OFSNL NOF-DGO0S0IOVSHL
0af; 00—
1a 1a
2k 20—
£a f—f’ —r{co eql—p
HOTURRID HoWS INE 0 LOTPH WSk i 1
HOMS 1 20 MOMS
© d 01 3
H1SH ? 21€0 HLSH b H
: MLSH |7
' v
.ﬁo Mf= |
I NOP-DA0S0IDPSNL
0a
S
cld—z
eq {00 |
Q0 UsIY HOHS H o 00TPeY Mousky H
MOMS 20 HOMS
i 3
y1sy €0 H1ISH
musHfr! 3 6 misHf d
HiT \ 8 *
M _\H M l

eALapIeId>

.ﬂ NG+
+

M

MO

L D

B>

peo

ar

AG+

SALDAT D

20ce0s0NWd3
N2 ND
S{PIenA nz,oﬁHH
FHpenseser pemesaifr
sripenieser pensesaifr
8lnontesas poatesasfil
m peAlesal pPoOAIossl m|_
12 N NS S
i 0A J0A 7 osa1
ez qm paalasal N aml A
em pansosas - —
1 8S0IA
.|wm w. w_:m_no T_ <
77 peoj - U0 z MOOTO
37 JUASA 2UAsSY T
r]] @AUPH

[03U0S) JByng swelq

109195

U

0 09 0
v v ov——
5] 0 ZON 5 Z
z|od M 5 Z] 0 M o 7] 0d M c
7 1a eV bt 110 eV b A +a ev | -
m# € mm LA m# €d mm LA 7] €4 _.m LA
c 2 S S ¢
29 s 28 by et pr—2
€8 |y €8 Iy €8 |y
X0 &= m < X0 &z
=) S I oS
66€ 66¢€ _ 66¢F
] F_
4 9 ¥
ov ov ov
£ g £ I <5 T
S A I y M o -
7104 eVIm L 7100 gV 794 S)
71 +a £y T 7110 154 T 71 +d eY 3
o1] ¢4 08 1] ¢d 0g o1 ¢d og |—L
£d v g €a P oo £a Vg
1 1e [g1 19— o1 18 f—2
ot 2o s i
1 aniq Al T uaaib Al €l par Al
10 e 10 G 0 ¢z
enig AQ BS |7 usaib AQ =R pas AQ BS |
m m ﬂ niq AW ’ mm m uaalb AN mm ﬁ pal AW
on|g uaalK) ped
. 2
<] oD 10s Buixnpy

Mux Control

Select

Red High

O rOr-rOr-=0O

1))

+5V

= e e = bl il gl ~t} en| o] =])] 0o] T OV T e <+| e O — O hjoo) I~ &] T Y
—OOMOWTMm ON~OOHOMOWTM OAN~OOOMNOWTM
NN T T o ANANANON T v ol NN ™71 ™ o
™ ™ ~
> > >
(o] o o
o o [o or N
N EEREE S =N R REREE R = G m\or-oooso—-loﬂ
;] - — .—no-al-—A]]
oo
Q.=
X >
) .-
o>—
™~
O

&
HAde ‘ ‘ ‘ }688
\ 1 1 1 I i\l\l\i

! ! ! ! Or OO0 OO~ O O

OO O~ O

IV Blue
IV Red

IV Green

Blue Key
Red Low
Green Key

Appendix B -- Micro Code

%*****1\'**'k*******************‘k***

Memory controller for the FIFO for the
Director’s Composite Eyeglass

Phil Barker

Mar. 31, 1994 {from digitizing control, freezeframe by Wad)
Apr. 4, 1994 changed the cbhlank action for negative ‘assert

**%
TITLE "Memory Controller, Director’s Composite Eyeglass®;

DESIGN IS "memctl"
DEVICE IS "EPM5032DC"

BEGIN $resource assignment%
clkin @ 2 : INPUT;
hsync @ 1 : INPUT;
vsync @ 28 : INPUT;
load @ 27 : INPUT;
vfiield @ 16 : INPUT;
cblank @ 3 : OUTPUT;
vreset @ 4 s+ OUTPUT;
ra @ 26 : OUTPUT;
rb @ 25 : QUTPUT;
wa @ 24 : OUTPUT;
wbh @ 23 :+ OUTPUT;
END;

SUBDESIGN ‘memctl’
(

clkin : INPUT; %12.27 MHz pixel clock$%
VSYTC : INPUT; $vetical sync, active low%
hsync :+ INPUT; %horizontal sync, active low%
load :+ INPUT; %$load signal%
vfield : INPUT; $field signal%
vreset : OUTPUT; ¢read/write pointer reset%
cblank : OUTPUT; %fcomposite blanking signal, active low$
$procxclk : OUTPUT;$ gprocessor clock (pixclk/2)%
ra : : OUTPUT; %read bank a, active high%
rb : OUTPUT; 3read bank b, active high%
wa : QUTPUT; $write bank a, active high%
wh : OUTPUT; $write bank b, active high%
)
VARIABLE

clkbuf : SCLK:; $synchronous clock buffer%
hsync_sync : DFF;
real_hsync : DFF;
load_reg : DFF;
vertical : MACHINE OF BITS {(vstate[l..0])

WITH STATES (Vidle, Vblank, Vactive);
line_ctxr([7..0] : DFF;
end_of_blank : NODE;
end_of_field : NODE;
dot_ctr[9..0] : DFF;
start_active : NODE:;

end_active : NODE;

%toggle : DFF;%

cbhblank_reg : DFF;

vreset_reg : DFF;

ra_reg : DFF;

rb_reg : DFF;

wa_reg : DFF;

wb_reg : DFF;

read_write : MACHINE OF BITS (rstatef2..0])

WITH STATES (wait,reada,readb,writea,writeb);

BEGIN

clkbuf = clkin;
% toggle = !toggle;

toggle.clk = clkbuf;
procxclk = toggle;%

load_reg.clk = clkbuf;
load_reg.d = load & (vertical == Vblank);

%$additional syncing for the hsync$%

hsync_svyvnc.d = hsync;

real_hsync.d = !'hsync & hsync_sync;
hsync_sync.clk = clkbuf;
real_hsync.clk = clkbuf;

$vertical state machine$%
vertical.clk = clkbuf;
CASE (vertical}) IS

WHEN Vidle =>
IF {(!vsync) THEN
vertical = Vblank;
ELSE
vertical = Vidle;
END IF;

WHEN Vklank =>
IF (end_of_blank) THEN
vertical = Vactive;
ELSE
vertical = Vblank;
END IF;

WHEN Vactive =>
IF (!vsync) THEN
vertical = Vblank;
ELSIF {end_of_field) THEN
vertical = Vidle;

ELSE
vertical = Vactive;
END IF;
END CASE; %vertical%)
line_ctr([}.clk = clkbuf;
line_ctr([} = ((line_ctr[] + 1) & (vertical == Vblank)
& real_hsync & !end_of_blank) #
{line_ctr([] & (vertical == Vblank)} & !real_hsync) #
{((line_ctr([) + 1) & {vertical == Vactive) & real_hsync) #

(line_ctr{] & (vertical == Vactive) & !real_hsync);

end_of_blank
end_of_field

{line_ctr|[
{line_ctr|[

i

dot_ctr[]).clk = clkbuf;

dot_ctr[] = (dot_ctr[] + 1} & !'real_hsync;

start_active = {dot_ctr{] == 100};

end_active = (dot_ctr([] == 770);

cblank_reg = (start_active & !cblank _reg & {(vertical == Vactive)) #

(lend _active & !real_hsync & cblank_reg};
cbhblank_reg.clk = clkbuf;
cblank = cblank_reg;

read _write.clk = clkbuf;
CASE (read_write) IS

WHEN wait =>
IF (cblank & !load_reg) THEN
’ read_write = reada;

ELSIF {cblank & load_reg) THEN
read_write = writea;

ELSE
read_write = wait;

END IF:

WHEN reada =>
IF (c¢blank) THEN
read_write = readb;
ELSE
read_write = wait;
END IF;

WHEN readb =>
IF (cbhlank) THEN
read_write = reada;
ELSE
read_write = wait;
END IF;

WHEN writea =>
IF {c¢cblank) THEN
read_write = writeb;
ELSE
read_write = wait; .
END IF;

WHEN writeb =>
IF (cblank) THEN
read_write = writea;

ELSE
read_write = wailt;
END IF;
END CASE; %read_write% -~

vreset_reg = {(line_ctr[] == 2) & vfield;
vreset_reg.clk = clkbuf;
vreset = vreset_reg;
ra_reg = {(read_write == reada);

ra_reg.clk = clkbuf;

rb reg = {(read write == readb);
rb_reg.clk = clkbuf;
rb = rb_reg;

wa_reqg = (read_write == writea);
wa_reg.clk = clkbuf; *¢

wa = wa_reqg;

wh_reg = (read_write == writeb};

whb_reg.clk = clkbuf;
wb = wb_reg;

END;

Project Information d:\users\phil\memctl.rpt

MAX+plus II Compiler Report File
Version 4.01 2/07/94
Compiled: 04/13/94 20:37:32

x*x%%* Project compilation was successful
Memory Controller, Director’s Composite Eyeglass

** DEVICE SUMMARY **

Chip/ Input Cutput Bidir
POF Device Pins Pins Pins LCs
memctl EPM50332DC 5 6 0 32

User Pins: 5 6 0

Shareable
Expanders

3

% Utilized

100%

Preoject Information

*% PIN/LC/CHIP ASSIGNMENTS **

Actual

User Assignments
Assignments (Lf different) Node Name
memctl1l@3 cblank
memctla@z clkin
memct 1@l hsync
memct1@27 load
memct1@26 ra
memctl@25 rb
memctl@lée viield
memctl@4 vreset
memct1@28 vsync
memctl1@24 . wa

memct1@23 . wh

d:\users\phil\memctl.xrpt

Project Information d:\users\phil\memnctl.rpt

** STATE MACHINE ASSIGNMENTS **

vertical: MACHINE
OF BITS |
vstatel,
vstatel

)
WITH STATES {

vidle = B"00",
vblank = B"11",
Vactive = B"01"
Y
read _write: MACHINE
' OF BITS
rstate?,
rstatel,
rstate(
)
WITH STATES (
wait = B*000",
reada = B"001",
readb = B'011",
writea = B"01i0",
writeb = B"100"

Device-Specific Information: d:\users\phil\memctl.rpt
memctl '

xxx I ogic for device '‘memctl’ compiled without errors.

Device: EPM5032DC
Security: OFF

EPM5032DC
hsync -1 28|- wvsync
clkin -12 27|- load
cblank -13 26|- ra
vreset -14 . 25|~ rb
RESERVED -15 24| - wa
RESERVED -16 231- wb
vCcc -7 22|- VCC
GND -8 211- GND
RESERVED -19 20| - RESERVED
RESERVED -|10 19| - RESERVED
RESERVED -111 18| - RESERVED
RESERVED -(12 17| - RESERVED
. GND -113 16|- vfiield
GND -114 15|~ GND

N.C. = Not Connected.

vCe Dedicated power pin, which MUST be connected to VCC.

GND Dedicated ground pin or unused dedicated input, which MUST be connected to GNL
RESERVED = Unusgsed I/0 pin, which MUST be left unconnected.

Device-Specific Information: d:\users\phil\memctl.rpt
memctl ‘

% RESOURCE USAGE **

Shareable
Logic Array Block Logic Cells I1/0 Pins Expanders
A LC1 - LC32 32/32(100%) 6/16{(37%) 3/764(4%)
Total dedicated input pins used: 5/ 8 (62%)
Total I/0O pins used:) 6/ 16 (37%)
Total logic cells used: 32/ 32 (100%)
Total shareable expanders used: 3/ 64 (4%)
Total shareable expanders not available (n/a): 0/ 64 (0%)
Total input pins required: 5
Total output pins required: 6
Total bidirectional pins reguired: 0
Total logic cells required: 32
Total flipflops required: 32
Total shareable expanders in database: 3

synthesized logic cells: 0/ 32 {(0%)

Device-Specific Information: d:\users\phil\memctl.rpt
memctl .

** TINPUTS **

Shareable .
Expanders Fan-In
Pin LC LAB Primitive Total Shared n/a INP FBK Name
2 - - INPUT 0 0 0 0 0 clkin
1 - - INPUT 0 0 G 0 0 hsync
27 - - INPUT 0 0 0 0 0 load
16 - - INPUT 0 0 0 0 0 viield
28 - - INPUT 0 0 0 0 0 wvsync

Synthesized pin or logic cell
Synchronous flipflop :
Not gate push-back

+
o1

Device-Specific Information: d:\users\phil\memctl.rpt
memctl :

QUTPUTS **

Shareable
Expanders Fan-In
Pin ILC LAB Primitive Total Shared n/a INP FBK Name
3 1 A FF+ 0 0 0 0 13 c¢cblank
26 31 A FF+ 0 0 0 0] 3 ra
25 29 A FF+ 0 0 0 0 3 rb
4 3 A FF+ 0 0 0 1 8 vreset
24 27 A FF+ 0 0 0 0 3 wa
23 25 A FF+ 0 0 0 0 3 wb

Synthesized pin or logic cell
gynchronous flipflop
Not gate push-back

+
n o1

Device-Specific Information: d:\users\phil\memctl.rpt
memctl -

** BURIED LOGIC **

Shareable
Expanders Fan-In
Pin LC LAB Primitive " Total Shared n/a INP FBK Name
- 32 A DFF+ 0 0 0 0 1 dot_ctrl
- 30 A DFF+ 0 0 0 0 2 dot_ctrl
- 28 A DFF+ 0 0 0 0 3 dot_ctr2
- 26 A DFF+ 0 0 0 0 4 dot_ctr3
- 24 A DFF+ 0 0 0 0 5 dot_ctr4
- 22 A DFF+ 0 0 0 0 6 dot_ctr5
- 20 A DFF+ 0 0 0 0 7 dot_ctré
- 18 A DFF+ 0 0 0 0 8 dot_ctr7
- 16 A DFF+ 0 0 0] 0 9 dot_ctr8
- 14 A DFF+ 0 0] 0 0 10 dot_ctr?
- 12 A DFF+ 0 0 0 1 0 hsync_sync
- 10 A DFF+ 0 0 0 0 2 line_ctr0
- 8 ‘A DFF+ 0 0 0 0 3 line_ctrl
- 6 A DFF+ 1 1 0 0 10 line_ctr2
- 4 A DFF+ 0 0 0 0 5 1line_ctr3
- 2 A DFF+ 3 1 0 0 10 1line_ctr4
(20} 23 A DFF+ 0 0 0 0 7 line_ctr5
(19) 21 A DFF+ 0 0 0 0 8 line_ctrb
(18) 19 A DFF+ 0 0 0 0 9 line_ctr7
(17) 17 A DFF+ 0 0 0 1 2 load_reg
(12) 15 A DFF+ 0 0 0 1 1 real_hsync
(11} 13 A DFF+ 0 0 0 0 4 rstatel
(10) 11 A DFF+ 0 0 0 0 4 rstatel
(9) 9 A DFF+ 0 0o 0 0 3 rstate2
{6) 7 A DFF+ 0 0 0 1 9 wvstatel
(5) 5 A DFF+ 0 0 0 1 9 wvgtatel

gynthesized pin or logic cell
Synchronous flipflop
Not gate push-back

+
1 nn

Device-Specific Information:

memctl

d:\users\phil\memctl.rpt

** LOGIC CELL INTERCONNECTIONS **

o o e ———————————————~ LC1 cblank
e ———e—-eo -~ LC32 dot_ct
Fmm oo IC14 dot_ct

e ———_~ L,C12 hsync
fmm e mmmmm—— e emm e m e ——— [,C10 line_c

M m e ————~ LC4 line_ct
fmm——mmmm e ——————=— LC2 line_ct
fommmmmmmm—mmmmmme— e ————=——- L1,C23 1line_c

o e ————— LC21 line_c
fommmmm————mmm—em————————— LC19 line_c

- A WOW LN
| [FERER RS
kel ~ © o w0
o (LR)]
o AaQounuoa
o R I SR T S S ()
S e
M~ e OV D O A
AN A M
[CRGRERONONORONS]
432 334d4
[T Y I T T B
(I T O T I |
[T S O T T
[T T T T T
[
[T T T TS IO B
[T T R T B T
[T Y O T IR
[T T T T
[T T R T B (R >
(I T T T T
L TR T R I R S
S T T B
[T T R A
| I T I |
L T B
[
ol — = =
[|
1+ —— — — —
[
l +—— — — - —
!
do—— e ———

LC25 whb

+--- LC27 wa
+_.
I
|

+----- LC5 vstatel

O =N =D WO~

HoM MM H N
NN R NN NE s
HOULOLOULOUOU
g
HLOLLoO LoD
Q00000 Q00Q
UTTTOTYTT

_ctr8
ctr9
hsync_sync

dot
dot

ctr0
line_ctrl
ctrd
ctrb

line:ctrZ
line_ctr3
line_ctr?
load_reg

line:
line _ctré6

line
line

rb

real_ hsyne
rstatel
ratatel

o

1
1
|
i
!
1
|
1
1
|
1
1
|
1
1
1
|
©

@ - = = — — — - - = = = — = = — - - - - -

1
1
!
1
1
1
i
|
1
'
1
|
i
|
1
|
@

@ = = = = = = = = m = — - - - == - - -
@ — — = = = = = = = « = = = = = — - -
@ = — = = = = = = = = — = = — = = — -

I OO HID
QoI
Il GEa eI @ |
T OO |1

(PN T R
T OO 1111
(- I 0 R R B
(12T T TS TS O B
| AN v R Y K Y R I R |
YOO TS
AAANNNANAANNA
| I I N A

NO DW= O
AN NN NN A
pLLLuLLLLY
HAAAdd WA - A

1
'
I
I
]
I
[
o
@&

LCle -»> @ - -

1
|
|
1
1
1
1
ac)
1
1
§
|
1
1
1
!
!
|
1
1
!
|

[
LTI ®
fC R TR R CHE G R
OIS
(N
(I (I

1 ot

| R T H T

[T T A T
(I T T TR N N B
[N T T TS T B
[
LD
[R R R CHRCHRC TR
OIS
(il Ela P PR
@®ED 1
OIS D
[o: I« R Y I N B B |
@ 1

LC21 -» - - -

b

|

1

|
w
(]

|
™
w
m

!

i

|
[

rstate?
vreset
vstatel
vstatel
wa

LCS - -~ - — = — = = - = = = - - - - = =
LC3 ->»
LCc?7 ->
LCS ->
LC27 ->

1/ |
|

|

|

[R e
t

I ®® |
[
[
[

[RV
|
|
|
|
!
|
|

I @ m |

I @ |
|
i

LC25 =» - = = = = = = = = = = = - - - - - - - - - - - - - - ------]wb

Pin

2 t» - - m - e = = = = = = - - == - -« - = - - - - = - - - - - - - | clkin

1 > - - — = = - = = - -~ @- - - -+ =-----8------- -] hsync

27 > - - - = — = = = = - - - - - = - - - =@ - - - - - -~ - - - -] load

16 “> - m m e - m = e - — - - - e s = == == == = - = - @ - - - - | viield
I

28 o> - - - = — = = = = = = = = = vsync

The logic cell or pin is an input to the logic cell {(or LAB) through thg PTA.
The input pin or logic cell feeds the logic cell (or LAB) using direct interconn
The logic cell or pin is not an input to the logic cell (or LAB).

oo

Device-Specific Information:

memct 1l

** BEQUATIONS **

clkin
hsync
load
viield
vsync

. % cblank_reg =

chlank =
_EQOO01 =

3

#

% dot_ctr0
dot_ctxr0
_EQ002

% dot_ctrl
dot_ctrl =
_EQ003 =

#

% dot_ctr2
dot_ctr2
_EQO04

H =i 4

% dot_ctr3
dot_ctr3
_EQO005

dot_ctrd =
_EQO06 =

% dot_ctrb
dot_ctrb
_EQO07

*

% dot_ctré
dot_ctrb
_EQ008

INPUT;
INPUT;
INPUT;
INPUT;
INPUT;

_LCc001 from file "memctl.tdf" line €68, column 2 %
DFF{ _EQO0O1 ¢ cblank, GLOBAL(clkin), VCC, VCC);
icblank & !dot_ctr0 & !dot_ctrl & dot_ctr2 & idot_ctr3d &
l1dot_ctr4 & dot_ctrS & dot_ctré & !'dot_ctr7 & !dot_ctr8 &
tdot_ctr9 & vstatel & lystatel
cblank & !dot_ctr0 & dot_ctrl & 1dot_ctr2 & !dot_ctr3 &
Idot_ctr4 & !dot_ctr5 & tdot_ctré & !dot_ctr7 & dot_ctr8 &
dot_ctr9
cblank & real_hsync;
= _LC032 from file vmemctl.tdf" line 63, column 9 %
DFF(_EQO002 $ GND, GLOBAL(¢lkin}, VCC, VCC) ;
1dot_ctr0 & !real_hsync;

= _LC030 from file rmemctl.tdf" line 63, column 9 3%
DFF({ _EQ003 § GND, GLOBAL(clkin}, VCC, VCC) ;
ldot_ctr0 & dot_ctrl & 'real_hsync

dot_ctr® & !dot_ctrl & lreal_hsync;

= _Lc028 from file "memctl.tdf" line 63, column 9 %

DFF({ _EQ004 $ GND, GLOBAL(clkin). VCC, VCC) ;
dot_ctr0 & dot_ctrl & tdot_ctr2 & !real_hsync
tdot_ctrQ & dot_ctr2 & lreal_hsync

idot_ctrl & dot_ctr2 & lreal_hsync;

9 %
VCC) ;
'real_hsync

= _LC026 from file "memctl.tdf” line 63, column
DFF{ _EQ005 $ dot_ctr3, GLOBAL(clkin}), VCC,
dot_ctr0d & dot_ctrl & dot_ctr2 & !dot_ctr3 &
dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3

dot_ctr3 & real_hsync;
= _LC024 from file smemctl.tdf" line 63, column 9 %
DFF{ _EQ006 $ dot_ctrd4, GLOBAL(clkin), VCC, VCC};

dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctrd & tdot_ctrd &

freal_hsync

dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctr4
dot_ctrd & real_hsync;
= _Lc022 from file "memctl.tdf" line 63, column 9 %
DFF({ _EQ007 $ dot_ctr5, GLOBAL(clkin}, VCC, VCC);
dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctrd &

idot_ctr5 & !'real_hsync

dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctrd &
dot_cktxr5

dot_ctr5 & real_hsync; -

= _LC020 from file "memctl.tdf" line €3, column 9 %

DFF{ _EQ008 4§ dot_ctre, GLOBAL({ clkin}, VCC, VCC) ;

dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctrd &
dot_ctr5 & !'dot_ctré & treal_hsync

dot_ctr0 & dot_ctrl & dot_ctr2 &
dot_ctr5 & dot_ctré

dot_ctré & real_hsync;

dot_ctr3 & dot_ctréd &

d:\users\phil\memctl.

rpt

% dot_ctr7 = _LC018 from file "memctl.tdf" line 63, column 9 %

dot_ctr7 = DFF{ _EQ009 $§ dot_ctr7, GLOBAL({ <¢lkin), VvCcC, VCC);
_EQ009 = dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3d & dot_ctrd &
dot_ctxr5 & dot_ctré & !dot_ctr7 & !real hsync
dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctrd &
dot_ctr5 & dot_ctré & dot_ctr?
dot_ctr7 & real_hsync;
% dot_ctr8 = _LC016 from file 'memctl.cdf" line 63, column 9 %

dot_ctr8 = DFF(_EQ010 $ dot_ctr8, GLOBAL({ ¢lkin), VCC, VCC};

_EQ010 = dot_ctr0 & dot_ctrl & dot _ctr2 & dot_ctrl & dot_ctrd &
dot_ctrS & dot_ctré & dot_ctr7 & ldot_ctr8 & !real hsync
dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctr4 &
dot _ctr5 & dot_ctré & dot_ctr7 & dot_ctr8
dot_ctr8 & real_hsync;
% dot_ctr9 = _LC014 from file 'memctl.tdf" line 63, column 9 %
dot_ctr9 = DFF(_EQ011 § dot_ctr9, GLOBAL(clkin), VCC, VCC};
_EQ011 = dot_ctr0 & dot_ctrl & dot_ctr2 & dot_ctr3 & dot_ctrd &
dot_ctr5 & dot_ctré & dot_ctr? & dot_ctr8 & !dot_ctrd &
'real_hsync
dot_ctr0 & dot_ctrl & dot_ctr2 & dot _ctr3 & dot_ctrd &
dot_ctr5 & dot_ctré & dot _ctr7 & dot_ctr8 & dot_ctr?9
dot_ctr9 & real_hsync;
$ hsync_sync = _LC012 from file "memctl.tdf" line 52, column 2 %
hsync_sync = DFF(hsync $§ GND, GLOBAL(c¢lkin), VCC, VCC);
$ line_ctr0 = _LC010 from file 'memctl.tdf" iine 59, column 10 %
line_ctr0 = DFF{ _EQ012 $ GND, GLOBAL({ clkin), VCC, Vo) ;
_EQ012 = line_ctr0 & !real_hsync & vstatel

!line_ctr0 & real_hsync & vstatel;

$ line_ctrl = _LC008 from file "memctl.tdf” line 59, column 10 %
line_ctrl = DFF({ _EQ013 $ GND, GLOBAL(clkin)., VCC, VCC};

_EQO013 = !line_ctr0 & line_ctrl & real_hsync & vstatel
line_ctr0 & !line_ctrl & real_hsync & vstatel
line ctrl & !real_hsync & vstate0;
% line_ctr2 = _LC006 from file "memctl.tdf" line 59, column 10 %

line_ctr2 = DFF{ _EQO0l4 $ wvstateO, GLOBAL(clkin), VCC, VCQC);

_EQ014 = line_ctr0 & line_ctrl & Iline_ctr3 & line_ctr4d & !line_ctr5 &
trline_ctr6 & !line_ctr7 & real_hsync & vstated & vstatel
line ctr0 & line_ctrl & line_ctr2 & real_hsync & vstatel
'line ctr2 & vstate0 & _X001;
X001 = EXP(line_ctr0 & line_ctrl & real_hsync);
% line_ctr3 = _LC004 from file '"memctl.tdf" iine 59, column 10 %
line_ctr3 = DFF{ _EQO015 ¢ line_ctr3, GLOBAL{ clkin), VCC, VCC);
_EQO015 = 1line_ctr0 & line ctrl & line_ctr2 & !line_ctr3 & real_hsync &
vstatel
line_ctr0 & line_ctrl & line ctr2 & line ctr3 & real_hsync
line_ctr3 & !vstatel;
% line_ctr4 = _LCO02 from file "memctl.tdf" line 59, column 10 %
line_ctrd = DFF(_EQOl6 $ _EQ017, GLOBAL(clkin}, vce, VCC);
_EQ016 = !line_ctr2 & line_ctréd & vstatel & _X002 -
tline_ctr3 & line_ctrd & vstatel & _X003
line ctr4 & vstate0 & _X001;
X002 = EXP(!line_ctr3 & !line_ctr5> & 1line_ctr6 & !line_ctr7);
_X003 = EXP(!line_ctr2 & vstatel);
_EQ017 = line_ctr0 & 1line_ctrl & line_ctr2 & line_ctr3 & !line_ctrd &
real hsync & vstatel;
% line_ctrS = _LC023 from file "memctl.tdf" line 59, column 10 %
- - mmmi TANIO & 1ina ~F+E OTORAT. ~1kind . VOC. VCCh: .

_EQ018

% line_ctré
line_ctr6 =
_EQ019 =

#
#

% line_ctr7
line_ctr?7 =
_EQ020 =

#
#
% load _reg =

load reg
_EQo021

% ra_reg =
ra D
_EQ022

% rb_reg =
rb D
_EQ023

1nu

% real_hsync
real_hsync =
_EQo24 = !

% rgstatel =
rstated D
_EQ025

H 14

% rstatel =
rstatel D
_EQ026

HoH

% rstate2 =
rgtate2 =D
_EQ027 =
% vreset_reg
vreset = D
_EQoz28 = 1!

% vstatel =
vstatel D
_EQ029

H

% vstatel =

P VU | ™

line_ctr0 & line_ctrl & line ctr2 & line_ctr3 & line_ctrd

'line ctrh & real_hsync & vstatel

line_ctr0 & line_ctrl & 1line_ctr2 & line_ctr3 & line_ctr4

line_ctr5 & real_ _hsync
line_ctr5 & !vstatel;

= _LC021 from file "memctl.tdf" line 59, column 10 %
DFF{ _EQ019 $¢ line _ctr6, GLOBAL{ clkin}), VCC, VCC);

line_ctr0 & line_ctrl & line_ctr2 & line_ctr3 & line_ctr4d

line ctr5 & !line_ctr6 & real hsync & vstatel

line_ctr0 & line_ctrl & line_ctr2 & 1line_ctr3 & line_ctr4

line_ctr5 & 1line_ctré6 & real_ _hsync
line ctré & !vstate(;

= _LC019 from file "memctl.tdf" line 59, column 10 %
DFF{ _EQQ20 S line_ctr7, GLOBAL{ clkin}, VCC, VCC) ;

line_ctr0 & line_ctrl & line_ctr2 & line_ctr3 & line_ctr4 &
line_ctrS & line_ctr6 & !line_ctr7 & real_hsync & vstatel
line ctr0 & line_ctrl & line ctr2 & line_ctr3 & 1line_ctr4 &

line_ctrS & line_ctr6 & line_ctr7 & real _hsync
line_ctr7 & !vstatel; '

_LC0l17 from file "memctl.tdf" line 54, column 2 %

DEF(_EQ021 § GND, GLOBAL{ clkin), VCC, VCC};

load & vwvstatel & vstatel;

_1C031 from file "memctl.tdf" line 70, column 2 %
FF{ _EQ022 $ GND, GLOBAL{ clkin), vCC, VCC};
rstatel & !rstatel & !rstate2;

_1LC029 from file "memctl.tdf" line 71, column 2 %
FF{ _EQ023 § GND, GLOBAL({ clkin), VCC, VCC};
rstatel} & rstatel & !rstatel;

= _LCO015 from file "memctl.tdf" line 53, ceclumn 2 %
DFF{ _EQ024 § GND, GLOBAL{ clkin}, VCC, VCC) ;
hsync & hsync_sync;

_ 1013 from file "memctl.tdf" line 75, column 38 %
FF{ _EQ025 & GND, GLOBAL(clkin), VCC, VCC);
cbhblank & lload_reg & !rstatel & !rstate2
cblank & rstatel & !rstate2;

_LC011 from file "memctl.tdf" line 75, column 38 %
FF({ _EQ026 § GND, GLOBAL{ c¢lkin), VCC, VCC);
cblank & load_reg & !rstatel & !rstatel
cblank & !rstatel & !rstatel & rstate?l
cblank & rstateQ & !rstatel & !rstatel;

_LC009 from file "memctl.tdf" line 75, column 38 %
FF(_EQ027 $ GND, GLOBAL/(clkin), VCC, VCC};
cblank & !rstatel & rstatel & !rstateZ; ‘

= _LC003 from file "memctl.tdf" line 69, column 2 %
FF(_EQ028 $ GND, GLOBAL/{ clkin}, VCC, VCC) ;

line_ctr0 & line_ctrl & !line_ctr2 & !line_ctr3 & !line_ctr4 &

Iline_ctr5 & !line_ctré & !line_ctr7 & viield; -

_LC007 from file "memctl.tdf" line 56, column 36 %
FF({ _EQ029 § VCC, GLOBAL({ clkin), VCC, VCC);

line_ctr0 & line_ctrl & line_ctx2 & line_ctr3 & line_ctrd &

line_ctrS & line_ctré & line_ctr7 & !vstatel & vsync
vstatel & !vstatel & vsync;

_LC005 from file "memctl.tdf” line 56, column 36 %

- mAAYN M P —— AT ATDAT § ~1Llrand \iala A {alah I

_EQ030 = line_ctr0 & line_ctrl & !line_ctrZ & !line_ctr3 & line _ctr4 &
Iline_ctr5 & !line_ctr6 & !line_ctr7 & vstatel & wvstatel
!vstatel & !vsync; :
% wa_req = LC027 from file "memctl.tdf" line 72, column 2 %
wa = DFF({ _EQ031 $ GND, GLOBAL(clkin), VCC, VCC);:
_EQ031 = !rstate0 & rstatel & !rstate2;
. % wb_reg = _LC025 from file "memctl.tdf" line 73, column 2 %
DFF(_EQ032 $§ GND, GLOBAL({ clkin), VCC, VCC);

£
o
n i

_EQO032 Irstate0 & !rstatel & rstate2;

Project Information d:\users\phil\memctl.rpt
** COMPILATION SETTINGS & TIMES **

Processing Menu Ceommands

Design Doctor = off
Logic Synthesis:

Normal

Default Synthesis Style

Logic option settings in 'Normal’ style for 'MAX5000° family

minimization = full
soft_buffer_insertion = on
xor_synthesis = on
Other logic synthesis settings:
Automatic Global Clock = oft
Automatic Global Clear = off
Automatic Global Preset = off
Automatic Global Output Enable = off
Automatic Peripheral Registers = off

Default Timing Specifications: None

cut All Bidirectional Feedback Timing Paths = on

cut All Clear & Preset Timing Paths = on
Ignore Timing Assignments = on
Functional SNF Extractor = off
Linked SNF Extractor = off
Timing SNF Extractor = on
Optimize Timing SNF = off
Ignore Previous Fit = on
Automatic LCELL Insertion = off
Generate JEDEC Files = off
Total Recompile = off
Interface Menu Commands
EDIF Netlist Writer = off
Verilog Netlist Writer = off
VHDL Netlist Writer = off
Compilation Times
Compiler Netlist Extractor 00:00:02
Database Builder ' 00:00:06 -
Logic Synthesizer 00:00:13
Partitioner - . 00:00:02
Fitter 00:00:02
Timing SNF Extractor 00:00:01
Assembler 00:00:00

Total Time 00:00:26

Appendix C -- Buffer Control Code

‘k

Prototype Control File for 6811

This is to perform an initialization of the 22070 video
digitizer, and, the 22090 video encoder. It involves setting
up the control registers in the two chips as well as the

CLUT for the encoder.

*

*

*

*

*

*

*

*

* Phil Barker, Sep. 8, 1993

* Last Modified: Jan. 31, 1994

* Feb. 7, 1994

* Feb. 17, 1994

* Mar. 22, 1994 (after dumping the 22070)

* Mar. 23, 1994

* Mar. 28, 1994

* Mar. 29, 1994 (timing and subcarrier corrections)
* Apr. 11, 1994 (22190 adopted, change to 01 & 04)
* Apr. 13, 1994 (changed 01, clut function fixed)
* Apr. 14, 1994 (added I"2C bus for SONY)

*

*

*

*

-,

**

Significant Memory Addresses
Global variable, located in on-chip SRAM
STACK EQU SFF * Top of Stack location (top of internal SRAM

* Thege addresses are. code related, and are located in on-chip EEPROM

EEPROM EQU SF800 * Start of eeprom
INT_TBL EQU $FFCO * Interrupt Vector Table Location
RESET EQU SFFFE * Reset Vector location

* These are 68HC11 Internal Register Assignments
For ALL code, the X Index register contains REG_BASE

* -~ INDEX THESE WITH REG_BASE !

REG_BASE EQU $1000 *base address for the port registers
PIOC - EQU 302 *port ¢ control register

PORTC EQU 503 *port c data register

PORTB EQU 504 *port b data register

DDRC EQU 507 *port ¢ data direction register
TMSKZ EQU 524

PACTL EQU $26

» 6811 Register Defaults, for this system

SDA_Z EQU SFD * DDRC SET FOR SDA AS HIGH Z

DDR_OUT EQU SFF * DDRC Port C Direction Register set for out
TMSKZ2_DEF EQU 500 *+ don't really use it in this application
PACTL_DEF EQU 500 * again, not- really using it

PIOC_DEF EQU $00 * port C to normal output, else don't care

‘k*‘k*****************‘k***
*

* gome definitions for the 22090
* ,
*'k***'k***'k*'k'***

CSDA_BIT EQU 504 # The third control line is the DAC write

'***********'k*********1\'******'k**

*

* START OF CODE

*

*

* boot performs some 6811 initialization so that it can perform
* the initialization of the 22090 and the 22070

*
********************.***

ORG EEPROM
bhoot LDS #STACK *Initialize the stack pointer
LDX #REG_BASE *The X Index Reg always points to REG_BASE
LDAA #TMSK2_DEF
STAA TMSK2 , X *Tnitialize the Real Time Interrupt
LDAA #PACTL_DEF * (Probably don‘t care about value)
STAA PACTL, X *Handles initialization of RTI prescaler
LDAA $PIOC_DEF
STAA PIOC, X *ITnitialize the parallel port
LDAB #DDR_OUT
STAB DDRC, X *INIT. PORTC TO OUTPUT

‘k
*

* 22090 init of control registers

*

dac_init :
LDAB #S4F * FIRST CONTROL LINE TO PERFORM RESET
STAB PORTC, X * TRANSFER CONTROL TO PCRT C
LDAA #500 * FIRST ADDRESS IS $00
LDAB #S0F * READY TO LOAD FIRST
STAA PORTB, X * ADDRESS INTO PORTB
STAB PORTC, X * CONTROL INTQ PORT C
LDAB #50B * TSSUE CONTROL TO WRITE IN ADDRESS
STAB PORTC, X
LDAB #S0F
STAB PORTC, X
LDAB #S0B
STAB PORTC, X
LDAB #S2F
STAB PORTC, X
LDAA #3501 * DATA FOR REGISTER 00
JSR WRITE_DA * JUMP TO WRITE SUBROUTINE FOR THE DAC
LDAA #3510 _ * DATA FOR REGISTER 01(50)
JSR WRITE_DA
LDAA #52C * DATA FOR REGISTER 02
JSR . WRITE_DA
LDAA #5502 * DATA FOR REGISTER 03
JSR WRITE_DA -
LDAA #540 * DATA FOR REGISTER 04 (4E)
JSR WRITE_DA
LDAB #4528 * CONTROL TO FORCE THE LAST WRITE IN
STAB PORTC, X
LDAB #SO0F -
STAB PORTC, X
LDAA #5510 * LLOAD NEXT REGISTER ADDRESS AS S$10
STAA PORTB, X
LDAB #s50B * CONTROL TO WRITE NEW ADDRESS
STAB PORTC, X
LDAB $SOF
STAB PORTC, X
LDAR #s0B

oman pORTC W

LDAB #352F

STAB PORTC, X

LDAA #353A * DATA FOR REGISTER 10
JSR WRITE_DA

LDAA #3507 * DATA FOR REGISTER 11l
JSR WRITE_DA

LDAA #51F * DATA FOR REGISTER 12
JSR WRITE_DA

LDAA #S0F - * DATA FOR REGISTER 13
JSR WRITE_DA

LDAA #5213 * DATA FOR REGISTER 14
JSR WRITE_DA

LDAA #5688 * DATA FOR REGISTER 15
JSR WRITE_DA

LDAA #505 * DATA FOR REGISTER 16
JSR WRITE_DA

LDAA #5777 * DATA FOR REGISTER 17
JSR WRITE_DA

LDAA #5565 * DATA FOR REGISTER 18
JSR WRITE_DA

LDAA #512 * DATA FOR REGISTER 1%
JSR WRITE_DA -

LDAA #31C * DATA FOR REGISTER 1A
JSR WRITE_DA

LDAA #S6A * DATA FOR REGISTER 1B
JSR WRITE_DA

LDAA #54C * DATA FOR REGISTER 1C
JSR WRITE_DA

LDAA #33A * DATA FOR REGISTER 1D
JSR WRITE_DA :

LDAA #552 * DATA FOR REGISTER 1E
JSR WRITE_DA

LDAA #s00 * Reg. 1F is read only
JSR WRITE_DA

LDAA #$SAB * DATA FOR REGISTER 20
JER WRITE_DA

LDAA #SARA * DATA FOR REGISTER 21
JSR WRITE_DA

LDAA #SAA * DATA FOR REGISTER 22
JSR WRITE_DA .

LDAA #S4A . * DATA FOR REGISTER 23
JSR WRITE_DA

LDAA #500 * DATA FOR REGISTER 24
JSR WRITE_DA

LDAA #500 * DATA FOR REGISTER 25
JSR WRITE_DA

LDAA #5060 * DATA FOR REGISTER 26
JS5R WRITE_DA

LDAA #520 * DATA FOR REGISTER 27
JSR WRITE_DA

kkkAhkhkkrkhkhkrhkhhhhhkhkrrkkrrhkhhkxkrrkrhhrhhhhhhhak
*

* 22090 init of clut

*
Ak KA AHN KAk kA kA RARTARAFRARARN A A X Aok kR dkhxhdhdkhddd

clut_init :
LDAB #S1F

STAB PORTC, X

LDAA #300 * FIRST CLUT ADDRESS

STAA PORTRB, X

LDAB #$1B *loading first c¢lut address
STAB PORTC, X

LDAB #S1F

—— e — — e~ TT

LDAB #S3F

STAB PORTC, X
LDY #50000
LDAA #500
STAA PORTB, X
clut_leoad

LDAB #S3B *write table 4 (R) value
STARB PORTC, X
LDAB $S3F
STAB PORTC, X
LDAB #53B *write table e (G} value
STAB PORTC, X
LDAB #S3F
STAB PORTC, X
LDAB #S$3B *write table £ (B) value
STAB PORTC, X
LDAB #S3F
STAB PORTC, X
INCA
STAA PORTB, X
INY
CPY #$0100 * COMPARE THE CURRENT ADDRESS TO TOP
BLS clut_load * T,O00P IF NOT DONE
LDAA #500
STAA PORTHB, X
LDAB #S0F * PORCE LAST CLUT INTO REGISTER
STAB PORTC, X
LDAB #s0B
STAB PORTC, X

~ LDAB #SOF
STAB PORTC, X
LDAB #S8F
STAB PORTC, X

**
*

* I72C init if SONY digitizer

*
**

LDAB #$8D *DROP SDA FOR START SIGNAL
STAB PORTC, X

JSR WAIT

LDAB #S$8C *DROP SCL, NOW READY TO TRANSMIT
STAB "PORTC, X '
JSR WAIT ‘

LDAB #$8D *BIT 7 OF SLAVE ADDRESS (0)
STAB PORTC, X

JSR WAIT

LDAB #$8C

STAB PORTC, X

JSR WAIT

LDAB #58E

STAB PORTC, X ' .
JSR WAIT

LDAB . #88F *BIT 6 GF SLAVE ADDRESS (1)
STAB PORTC, X

JSR - WAIT

LDAB #S8E

STAB PORTC, X

JSR WAIT

LDAB #$8C

falask S ol nADMO WV

JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAR
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STAA
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STAA
LDAB
STAB
JSR
LDARB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR

TTMAD

WAIT
#s8D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT

_#s8C

PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#58D
PORTC, X
WAIT
#s8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#s8D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#SDA_Z
DDRC, X
#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#DDR_OUT
DDRC, X
#58D
PORTC, X
WATT
#$8C
PORTC, X
WAIT
#58D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#58D
PORTC, X
WAIT
#58C
PORTC, X

WAIT
daan

*BIT

*BIT

*BIT

*BIT

*BIT

*BIT

*ACK

*BIT

*BIT

*BIT

*RTT

CLAVE

SLAVE

SLAVE

SLAVE

SLAVE

SLAVE

ADDRESS

ADDRESS

ADDRESS

ADDRESS

ADDRESS

ADDRESS

(0}

(0}

(0)

BIT OF SLAVE ADDRESS

7 OF SUB ADDRESS

6 OF SUB ADDRESS

5 OF SUB ADDRESS

4 OF SUB ADDRESS

STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSER
LLDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STAA
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STAA
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JS5R
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB

. TOD

PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#38C
PORTC, X
WAIT
#S8E
PORTC, X
WAIT
#S8F
PORTC, X
WAIT
#S8E
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#58D
PORTC, X
WAIT
¥58C
PORTC, X
WAIT
4SDA_TZ
DDRC, X
#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
$DDR_OUT
DDRC, X
#S8E
PORTC, X
WAIT
#S$8F
PORTC, X
WAIT
#$8E
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#58D
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#48D

PORTC, X
WA TT

*BIT 3 OF SUB ADDRESS

*BIT 2 OF SUB ADDRESS

*BIT 1 OF SUB ADDRESS

*BIT 0 QOF SUB ADDRESS

*ACK BIT OF SUB ADDRESS

*BIT 7 OF APL

*BIT 6 OF APL

*BIT 5 OF APL

LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STARA
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAA
STAA
LDAB
STAB
JSR

LDAB

STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
aTAR

#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
$$8C
PORTC, X
WAIT
#$8D
PORTC , X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#4$8C
PORTC, X

_WAIT

#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#S8E
PORTC, X
WAIT
#58F
PORTC, X
WAIT
#S8E
PORTC., X
WAIT
#SDA_Z
DDRC, X
#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#DDR_OUT
DDRC, X
#S8E
PORTC, X
WAIT
#S8F
PORTC, X
WAIT
#S8E
PORTC, X
WAIT
#58C
PORTC, X
WAIT
#s8D
PORTC ., X
WAIT
#$8C
PORTC, X
WAIT
#38D
PORTC, X

*BIT

*BIT

*BIT

*BIT

*BIT

*ACK

*BIT

4 OF APL

3 OF APL

2 OF APL

1 OF APL

0 OF APL

BIT OF APL

7 OF SHP

*BIT 6 OF SHP

*BIT

5 OF SHP

JSR WAIT

LDAB #358C

STAB ‘PORTC, X

JSR WAIT

LDAB #S8D *RIT 4 OF SHP
STAB PORTC, X

JSR WAIT

LDAB #s8C

STAB PORTC, X

JSR WALT

LDAB #$8D *BIT 3 OF SHP
STAB PORTC, X

JSR WAIT

LDAB #$8C

STAB PORTC, X

JSR WAIT

LDAB #$8D *BIT 2 OF SHP
STAB PORTC, X

JSGR WAIT

LDAB #s8C

STAB PORTC, X

JSR WAIT .

LDAB #$8D *BIT 1 OF SHP
STAB PORTC, X

JSR WAIT

LDAB #$8C

STAB PORTC, X

JSR WAIT

LDAB #s58D *BIT 0 OF SHP
STAB PORTC, X

JSR WAIT

LDAB #358C

STAB PORTC, X

JSR WAIT

LDAA #SDA_Z

STAA DDRC, X

LDARB ¥58D *ACK BIT OF SHP
STAB PORTC, X

JSR WAIT

1LDAB #$8C

STADR PORTC , X

JSR WAIT

LDAA #DDR_CUT

STAA DDRC, X
LDAB #58C

STAB PORTC, X

JSR WAIT

LDAR #58D *BIT 7 OF EAT
STAB PORTC, X

JSR WAIT

LDAB #58C

STAB PORTC, X

JSR WAIT

LDAB #$8E

STAB PORTC, X

JSR WAIT

LDAR $#S8F *BIT 6 OF SAT
S5TAB PORTC, X

JSR WAIT

LDAB #S8E

STAB PORTC, X

JSR WAIT

LDAB #$8C

STAB PORTC, X

JSR WAIT

- — - [T L E o fTITM E MDD COAM

STAB PORTC, X

JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB #58D *BIT 4 OF SAT
STAB PORTC, X
JSR WAIT
LDAB $48C
STAB PORTC, X
JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB #$8D *BIT 3 OF SAT
STAB PORTC, X
JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB #58C
STAB PORTC, X
JSR WAIT
LDAB #$8D *BIT 2 OF SAT
STAB PORTC, X
JSR WAIT
LDAB #$8C
STAB PORTC, X
~ JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB #$8D *BIT 1 OF SAT
STAB PORTC, X
JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAB ¥SBE
STAB PORTC, X
JSR WAIT
LDAB #$8F *BIT 0 OF SAT
STAB PORTC, X
JSR WAIT
LDAB #$BE
STAB PORTC, X
JSR WAIT
LDAA #SDA_7
STAA DDRC, X
LDAB #$8D *ACK BIT OF SAT
STAB PORTC, X :
JSR WAIT
LDAB #$8C
STAB PORTC, X
JSR WAIT
LDAA . #DDR_OUT
STAA DDRC, X
LDAB - #$8E
STAB PORTC, X
JSR WALT
LDAB #S8F *BIT 7 OF HUE
STAB PORTC, X

TOD WATT

LDAB
STAB
JSR
LDARB
STARB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
I.DAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB
JSR
LDAB
STAB

Ta®R

#$8E
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#s8C

PORTC, X

WATT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#s8C
PORTC, X
WAIT
#s8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#s8C
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#s8C
PORTC, X
WAIT
#$8C
PORTC, X
WAIT
#$8D
PORTC, X
WAIT
#$8C
PORTC, X
WATIT
#38C
PORTC, X
WAIT
#3$8D
PORTC, X
WAIT
#$8C

PORTC, X

WATT

*BIT

*BIT

*BIT

*BIT

*BIT

*BIT

*BIT

OF

OF

OF

OF

OF

OF

OF

HUE

HUE

HUE

HUE

HUE

HUE

HUE

LDAA #SDA_Z

STAA DDRC, X
LDAB #$4$8D ‘ *ACK BIT OF HUE
STAR PORTC, X
JSR WAIT
LDARB- #58C
STAB PORTC, X
JSR WAIT
LDAA #DDR_OUT
STAA DDRC, X
LDAB $#58C *STOP BIT SEQUENCE
STAB PORTC, X
JSR WAIT
LDAB #$8D
STAB PORTC, X
JSR WAIT
LDAB #$8F
STAB PORTC, X
* Top of main loop. Just sit here.

main BRA main

*

* Subroutines
*

************************************'k*'k***************************************

*
* WRITE_DA - takes the control lines and the data to be written out
* and puts out that data for the DAC.
* Arguments: ACCA - has the data to be written
* Clobbers: ACCB
* Returns: Nothing.
*
***************-k***-k************'k***
WRITE_DA

SEI * Disable Interupts

LDAB - #52B * PRE-WRITE CONTROL LINE

STAB PORTC, X * put control lines in Port C

STAA PORTB,X * put data into port B

BSET PORTC,X #CSDA_BIT * Toggle write control line

CLI

RTS
**************************'k***
*
* WAIT - SITS AROUND FOR ABOUT 6us
*
* " CLOBBERS: ACCY
* RETURNS : NOTHING
*
********************‘*************************}k********************************
WATT

INY

INY

INY

INY

INY

INY

TATINT

INY
INY
INY
INY
RTS

**

*
* panic - system error. Just sits the system here.
* Arguments: None
* Clobbers: ACCB
* Returns nothing
*
k*****
panic
SEI
BRA panic

**

*
* cop_panic - system error. Goes to panic where the system sits.
* Arguments: None
* Clobbers: ACCB
* Returns nothing
* .
**
cop_panic
SET
BRA panic

**
kg

* Tnterrupt Vector Table

*
**

ORG SFFCO
FDB panic * Reserved ($FFCO)
FDB panic * Reserved
FDB panic * Reserved
FDB panic * Reserved
FDB panic *» Reserved ($FFDO)
FDB panic * Reserved
FDB panic * Reserved ($SFFD4)
FDB panic * gl Serial System
FDB panic x opl Serial Transfer Complete (SFFD8)
FDB panic * pulse Acc Input Edge
FDB panic * pulse Acc Overflow
FDB panic * Timer Overflow
FDB panic * Timer Output Compare 5 (4FFEO)
FDB panic * Timer Output Compare 4
FDB panic * mimer Output Compare 3
FDB panic * pimer Output Compare 2
FDB panic * Timer Output Compare 1 (S$FFE8)
FDB panic * Timer Input Capture 3
FDB panic * Timer Input Capture 2
*

FDB panic Timer Input Capture 1

FDB panic * Real Time Interrupt ($FFFO)
FDR panic * TRQ Input

FDB panic * XIRQ Input

FDB panic * Software Interrupt

FDB panic * Tllegal Opcode Trap

FDB cop_panic * COP Failure (Reset)

FDB cop_panic * COP Clock Monitor Fail {Reset)
FDB boot * External RESET (S$FFFE)

ORG SFFFE

FDB boot

Appendix D -- Composite Control Code

module keypal

title ‘key control device
Directors Composite Eyeglass
P. Barker, 4/20/94°
keypal device 'P22V10‘;
"Pin Declarations
"Inputs
I7 , pin 1;
16 pin 2;
15 pin 3;
I4 pin 4;
s7 pin 5;
86 pin 6;
85 pin 7;
S4 pin 8;
view pin 9;
key pin 10;
"Outputs
select pin 19;
"Declarations
LIVE = [I7,16,15,14];
COLOR = [87,86,85,584};
equationsg
select = ((LIVE >= COLOR) & key) + (lkey & view);

end keypal:

ABEL 4.00

Device Utilization Chart

key control device

select

Directors C

P. Barker,

omposite Eyeglass
4/20/94

p22V10 Programmed Logic ====

##:ﬂ:##########*#

1 1 T4 & 87 & S6 & g5 & S4 & key
117 & !J4 & S6 & S5 & s4 & key
176 & !I4 & S7 & S5 & sS4 & key
177 & !'I6 & 1I4 & S5 & s4 & key
115 & !I4 & S7 & S6 & sd & key
177 & 'I5 & (I4 & S6 & s4 & key
116 & !'I5 & !I4 & S7 & s4 & key
117 & !I16 & !IS & !I4 & sd & key
IT5 & S7 & S6 & 85 & key

177 & 1I5 & S6 & S5 & key

176 & !I5 & S7 & S5 & key

117 & 116 & !I5 & S5 & key

Iview & !key

176 & S7 & S6 & key

177 & LI6 & S6 & key

117 & 87 & key)i

Page 1
wed Apr 20 16:02:09 1994

. Page 2
ABEL 4.00 - Device Utilization Chart Wed Apr 20 16:02:10 1994

key contrel device
Directors Composite Eyeglass
P. Barker, 4/20/94

==== P22V10 Chip Diagram ====

pP22v10
fm——m—— \ fom—————— +
I \ / I
e iain I
I7 | 1 24 | Vecc

I I
I6 | 2 : 23 |
I : I
I5 | 3 22 |
I I
I4 | 4 21 |
| I
S7 1 5 20 |
| |

s6 | 6 19 | select
| |
s5 | 7 18 |
I I
54 | 8 17 |
| I
view | 9 16 |
I I
key | 10 15 |
I I
| 11 14 |
I I
GND | 12 13 |
| f
| |

SIGNATURE: N/A

Page 3
ABEL 4.00 - Device Utilization Chart Wed Apr 20 16:02:10 1994

key control device
Directors Composite Eyeglass
P. Barker, 4/20/94

==== P22V10 Resource Allocations ====

Device | Resource | Design I Part |
Resources | Available | Requirement | Utilization | Unused
I I I |
Dedicated input pins | 12 I 10 | 10 | 2 { 16 %)
" Combinatorial inputs | 12 I 10 i 10] 2 {16 %)
Registered inputs | - I 0 i - i -
| | ' ! !
Dedicated output pins | . - I 1 1 - [-
Bidirectional pins i 10 | C I 1 | (90 %)
Combinatorial outputs | - [1 I - I -
Registered outputs f - I 0 { - I -
Reg/Com outputs | 10 I - I 1 I { 90 %)
Two-input XOR I - I 0 | - I -
| I | I
Buried nodes I - I 0 | - I -
Buried registers I - | 0 | - I -
Buried combinatorials | - I 0 I - I -

Page 4
ABREL 4.00 - Device Utilization Chart Wed Apr 20 16:02:10 1994

key contrel device
Directors Composite Eyeglass
P. Barker, 4/20/94

== P22V10 Product Terms Distribution ====

Signal | Pin | Terms | Terms | Terms
Name | Assigned | Used | Max | Unused

select | 19 I 16 | 16 I 0

==== List of Inputs/Feedbacks ====

Signal Name | Pin | Pin Type

17 ! 1 | CLK/IN

16 i 2 | INPUT

I5 ! 3 | INPUT

I4 ! 4 | INPUT

g7 | 5 | INPUT

86 | 6 | INPUT

S5 | 7 | INPUT

g4 | 8 | INPUT

view { 9 | INPUT

key] 10 | INPUT

Page 5
ABEL 4.00 - Device Utilization Chart Wed Apr 20 16:02:10 1994

key control device
Directors Composite Eyeglass
P. Barker, 4/20/94

== P22V10 Unused Resources ====

Pin [Pin I Product | Flip-flop
Number | Type | Terms | Type
11 | INPUT | - ! -
13 | INPUT | - I -
14 I BIDIR | NORMAL 8 I D
15 | BIDIR | NORMAL 10 I D
16 | BIDIR | NORMAL 12 I D
17 I BIDIR | NORMAL 14 I D
.18 I BIDIR | NORMAL 16 I D
20 I BIDIR | NORMAL 14 I D
21 | BIDIR { NORMAL 12 I D
22 | BIDIR | NORMAL 10 I D
23 I BIDIR | NORMAL 8 [D

ABEL 4.00 - Device Utilization Chart

key control device
Directors Composite Eyeglass
FP. Barker, 4/20/94

Module: ’keypal’

Input filesg

ABEL, PLA file: keypal.tt2
Vector file: keypal.tmv
Device library: P22V10.dev

Output files

Report file: keypal.doc
Programmer load file: keypal.jed

Page 6
Wed Apr 20 16:02:10 1994

module keypal?2

title *key control device
Directors Composite Eyeglass
P. Barker, 4/20/94"
keypal2 device 'P22V10';
"Pin Declarations
"Inputs
17 " pin 1;
I6 pin 2;
I5 pin 3;
14 pin 4;
g7 pin 5;
S6 pin 6;
55 _ pin 7;
54 pin 8;
view pin 9;
key pin 10;
E7 pin 11;
E6 pin 23;
ES pin 22;
E4 pin 21;
"Outputs
selectl pin 19;
select?2 pin 18;
"Declarations
LIVE = [I7,16,15,I4];
LEFT = [S87,56,85,84];
RIGHT = [E7,E6,E5,E4];
equations
selectl = {(LIVE »= LEFT} & key) + (
select2 = {((LIVE <= RIGHT) & key) +

end keypal?l;

lkey & view);
{lkey & view);

. Page 1
ABEL 4.00 - Device Utilization Chart Thu Apr 21 11:34:12 1994

key control device
Directors Composite Eyeglass
F. Barker, 4./20/94

== P22V10 Programmed Logic ====

selectl = t(1I4 & 87 & 86 & S5 & S4 & key
117 & !'I4 & S6 & S5 & 54 & key
116 & !'I4 & 57 & S5 & S4 & key
177 & 'I6 & 'I4 & S5 & S4 & key
115 & !J4 & 87 & S6 & S4 & key
117 & 'I5 & !I4 & 56 & S4 & key
1I6 & 'I5 & 14 & S7T & S4 & key
1I7 & 'I6 & !I5 & !I4 & S4 & key
1'I5 & 87 & 86 & S5 & key
117 & 'I5 & S6 & S5 & key
'I6 & !'I5 & S7 & S5 & key
117 & 'I6 & !I5 & S5 & key
lview & lkey
116 & 87 & 56 & key
117 & 116 & S6 & key
¥ IT7 & S7 & key);

select?2 = I{ lview & lkey
4 T4 & key & !E7 & !E6 & !E5 & !E4
I7 & I4 & key & !E6 & !E5 & !E4
I6 & I4 & key & !E7 & !E5 & !E4
I7 & I6 & I4 & key & IES5 & !E4
IS5 & I4 & key & !E7 & 'E6 & !E4
I7 & IS & I4 & key & 'E6 & !E4
I6 & I5 & 14 & key & !'E7 & !E4
I7 & 16 & IS5 & I4 & key & 1E4
I5 & key & !E7 & !E6 & !E5
¥ I7 & I5 & key & !'E6 & !ES
¥ I6 & I5 & key & 'E7 & !'ES
I7 & I6 & IHh & key & 'ES
I6 & key & !E7 & !E6
I7 & I6 & key & !E6
I7 & key & 'E7);

Page 2
ABEL 4.00 - Device Utilization Chart Thu Apr 21 11:34:12 1994

key control device
Directors Composite Eyeglass
P. Barker, 4/20/94

==== P22V10 Chip Diagram ====

P22V10
Fommmmmm s \ f———— - +
f \ / I
I
17 1 1 24 | Vcc
I I
I6 | 2 23 | Eé6
I I
15 | 3 22 | ES
| I
I4 | 4 21 | E4
i I
s7 1 5 20 |
[I
S6 | 6 19 | selectl
| I
s5 | 7 18 | select2
| |
S4 | 8 17 |
| I
view | 9 i6 |
{]
key | 10 15 |
| i
E7 1 11 14 |
I : i
GND | 12 13
| |
| |

SIGNATURE: N/A

Page 3
ABEL 4.00 - Device Utilization Chart Thu Apr 21 11:34:12 1994

key control device
Directors Composite Eveglass
P. Barker, 4/20/94

==== P22V10 Rescurce Allocations ====

Device | Resource | Design R Part !
Resources i Available | Requirement | Utilization | Unused
| ! l |
Dedicated input pins | 12] 14 | 11 I 1 { 8 %)
Combinatorial inputs | 12 I 11 [11 I 1 { 8 %)
Registered inputs I - I 0 ; - I -
I I f I
Dedicated output pins | - I 2 i - I -
Bidirectional pins I 10 | 0 i 5 | S { 50 %)
Combinatorial outputs | - I 2 | - I -
Registered outputs | - I 0 I - I -
Reg/Com outputs I 10 I - I 2 | 8 { 80 %)
Two-input XOR I - I 0 I - [-
I I | I
Buried nodes I - I 0 | - | -
Buried registers | - I 0 | - f -
Buried combinatorials | - I 0 | - | -

Page 4
ABEL 4.00 - Device Utilization Chart Thu Apr 21 11:34:13 1994

key control device
Directors Composite Eyeglass
P. Barker, 4/20/94

‘———= P22V10 Product Terms Distribution ====

Signal | Pin | Terms | Terms | Terms
Name | Assigned | Used | Max | Unused

selectl I 19 | 16 | 16 I 0

select?2 | i8 | 16 | 16 I 0

==== List of Inputs/Feedbacks ====

Signal Name | Pin | Pin Type

I7 I 1 | CLK/IN

16 I 2 | INPUT

15 | 3 | INPUT

14 I 4 | INPUT

57 I 5 | INPUT

S6 [6 | INPUT

35 | 7 | INPUT

54 f 8 | INPUT

view I 9 | INPUT

key I 10 | INPUT

E7 I 11 | INPUT

E6 | 23 | BIDIR

ES [22 | BIDIR

E4 [21 | BIDIR

Page 5
ABEL 4.00 - Device Utilization Chart Thu Apr 21 11:34:13 1994

key control device
Directors Composite Eyeglass
P. Barker, 4/20/94

==== P22V10 Unused Resources ====

Pin | Pin I Product | Flip-flop
Number | Tvpe | Terms | Type
13 | INPUT | - I -
14 | BIDIR | NCRMAL 8 ! D
15 | BIDIR | NORMAL 10 | D
16 | BIDIR | NORMAL 12 f D
17 | BIDIR | NORMAL 14 | D
20 | BIDIR | NORMAL 14 | D

ABEL, 4.00 - Device Utilization Chart

key control device
Directors Composite Eveglass
P. Barker, 4/20/94

=_—=== I/O Files —===
Module: ‘keypal2’

Input fileg

ABEL PLA file: keypalZ.tt2
Vector file: keypal2.tmv
Device library: P22V10.dev

Qutput files

Report file: keypal2.doc
Programmer load file: keypall2.jed

Page 6
Thu Apr 21 11:34:13 1994

Appendix E - Acknowledgments

Glorianna Davenport:

John Watlington:

Hanoz:

Chad Mikkelson:

Stephan Fitch:
John Eldon:

Betsy Brown:

Acknowledgments:

My supervisor who took set backs in stride.

The technical consultant without whom this project
would not exist. |

For the help in debugging and getting things
around the lab to work.

Whose comment one night showed me the error of
the past week.

Who gave me the project in the first place.

The chip designer that helped me figure out his
chip’s errors.

For sanity in adminstravia.

