MIT FILMAVIDED SECTION
20 AMEZ STsimET
BLDG. Fi5.275
CAMBRIDCE, 1A 02138
A Database Representation of
Motion Picture Material
by

Donovan Christopher Beauchamp

Submitted to The Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements
for the Degree of
Bachelor of Science in Electrical Engineering
at the

Massachusetts Institute of Technology

May 1987

© Donovan C. Beauchamp 1987

The author hereby grants M.L.T. permission to reproduce and to distribute copies
of this thesis document in whole or in part.

Signature of Author
Donovan Beauchamp
Department of Electrical Engineering and Computer Science

Certified by ;
Glorianna Davenport
Thesis Supervisor

Accepted By
Leonard Gould
Chairman, Department Committee of Undergraduate Theses

A Database Representation of
Motion Picture Material

by

Donovan Christopher Beauchamp

Submitted to The Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Science in Electrical Engineering

ABSTRACT

An alternative representation of motion picture material is
described within the context of an experimental video workstation. A
database structure has been implemented which seeks to provide a more
intuitive level of association between visual information and thematic
content. As electronic archives become a common resource, the tools to
provide a variety of viewing experiences with the same video materials
must also evolve. The proposed workstation environment seeks to address
this growing need.

Thesis Supervisor: Glorianna Davenport
Title: Lecturer of Cinema

Contents

1 Introduction............. T R LV P 4
2 BACKET O oo verrsnessrevnsensnasssssseensnessonenssssssnansssussavansossivnsssvbivonsasinsiie 7
2.1 History of the Technology .. 7
Z.2 VIOCOISEE ciiiiisivn i iintiinnmnnsnmnsenssmmynans savsssssas MEARORESESSESEALY 8
2.3 Relegating Control to the Computer..........cccceceeeevrrericnnenscnnnn. 9
3 Database Representatioccosmesscasssissssissssssssvassssssssssssssissupsssiosinsass 12
3.1 HATAWATE.. cxeesmomupsmmnnssmanas enspsassansnsesaorneos s sus sk asssssvusasHaasasms 12
3.2 Didtabase: MOdel.....veesssessncosnnmusssnansosmunnsnnssasssssvososiosusnssssninss 14
3.2.1 Seamless Transitions and Preview.........ccccececuvnneeeennns 17
3.3 LIser INECrFale vcussmriniivivessssssissmsissntunmnrsonemmmesasnnpnrsnnussasons 19
3.3.1 Keyboard Commands...........cccceeereerrinnnnrereeeesesssnnnnnns 19
3.3.2 Graphical Interface,inviimonsmivimsnioinasmmmnmes 20
BA LIRS conrsmanssmsmmmessseissvvesmseis i e s R s So TR e 20
4 FUUEE WORK coiiiiierarsesnsnsnasnsrrassanesnnensronanssnensssasosesinsssriowassssisipuessisnss 22
4.1 Graphical IDTRITACE .vvrvrimsresssnnersrsssusssavoivassivusvsvnssssvasvaesssss 22
4.2 Levels of HIerarChy......cccoseammsasssonenssaensnsossssssssesesssasanasasonsss 22
8.3 TTADSIHONS i i trmpimnrsnsnssannonsrsmursnsmnnsanmnsnsonsearsriassssesssessssgain 23
8.0 PROVABWE wiisissiisiiisssiihinstannmemrrnsnsnpbrs sasmesmsisn amnsseses s s bese isues 23
4.5 Videodisc Agenda........ccuimeeeiniiiiiiimineeniiinninnneecseerinennnneesaens 24
.0 DAEABAEE ovruccionsessnininiiins s iiisintbsns et s oA S A AR m K GOSN We 25
5 Conclusions......ccccccceeeennncennses S PP R 27
A Ingres Database SUMMATYccceeeereeeeccescessesssasssssasasssssssssssssssssess 29
Al Database Creation . msssscsnsisas s s s s i iiisnmss 29
A2 TADIER s ocuncsrersmmmmsssmumsmmsssns sssmss ey o o TR S o RSB 30
A3 Loading Dati....consewesumsssoveisssnsssovsnsanssvovsvavsinsmsinigessiasins 31
LD QUUBTIBE ooonnsramasvorsamesunsssanpmersosmennssnies i s ispys SRR T RIS 32
B GDB SummAryccccceccssenssesacsecceccnssases S P—————— 34
B.1 Building the Bridge......cccoccceeiiiciiiirneeieiniiniinnnerissecesessssnnna 35
B.2 Bobcat Implementation: ...;.siisssisiaisissmsmesssessaarsessessannans 39
o DT 1 - P T mm—— susRBAREes R 41
D C PrOgraINS. iciicscsissunmernssvestnesnsssonsvsennsoass URRRRURSIS— R 45

References......... D T DO 75

Chapter 1 TIntroduction 4

The problem of efficient access to motion picture materials is one that
has traditionally been the concern of film industry and television broadcast
editors. This is primarily due to the prohibitive expense of comprehensive
editing systems as well as the need for detailed knowledge of video
technology. With the advent of micro and mini-computer technology as well
as the introduction of playback devices for the novice videophile, the ability
to create many different viewing experiences from a single set of video
materials is now possible in a less cumbersome environment. In order to
explore what attributes such an environment might possess, certain
characteristics of the medium require review.

Many film historians draw a distinction between two primary genres,
the narrative film and the documentary. While the narrative film is generally
characterized as the weaving of a tale, the documentary is more
appropriately described as the cataloguing or observation of an actual event
or process. In some sense, the unifying thread between the two genres is the
artistic expression or embellishment provided by the directorial and editing
team. However, one area in which they differ is in their preferred mode of
presentation. Specifically, the narrative film assumes a linear presentation.
This is quite distinctive from the interactive narrative movie, where the
viewer chooses between several pre-defined plot paths at different points in

the film. In narrative film, there is no arbitrage situation; the viewer's role is

Chapter 1 Introduction 5

a passive one where all the decisions as to the order of presentation have been
made in advance. The issue of presentation format is particularly sensitive in
the area of documentary film. This is due to the unfortunate tendency to
relegate significant amounts of film footage acquired during a shoot to
inaccessible archives or simply to allow them to be erased because they were
not immediately utilized in the initial presentation of the material. This is
partially attributable to the nature of the medium itself. In order to provide
many versions of a film, whether documentary or narrative, the
responsibility has traditionally fallen on the filmmaker to re-edit the footage
and to record the new version onto a different reel of film or videotape.
Since this editing process is always lengthy and often tedious, few filmmakers
produce more than one version of a given film. One solution to this problem
would require that the viewer have a means to reconfigure the film that does
not depend upon a familiarity with traditional editing equipment. In this
way, the raw footage could be viewed in its entirety and formatted according
to the needs of a particular viewing audience as many times as desired.
Professor Richard Leacock aptly refers to the documentary as a fishing
expedition; the workstation environment herein described seeks to provide
the viewer with a parallel experience. Thus, while not advocating a purely
interactive documentary style, the current linear form of presentation seems
to be too limited for both filmmaker and viewer.

Altering the configuration of a film implies a means of representing
contiguous pieces of that footage. In this way, any film presentation could be
viewed as one of any number of ways to order these smaller blocks. The
traditional approach has been to use shot lists and a numerical indexing
scheme embedded in the medium itself. However, the reliance upon a

numerical method often separates the filmmaker or viewer from the content

Chapter 1 Introduction 6

and context of the footage. Excessive time is spent in linearly reviewing the
material as well as maintaining hand-written logs of shot placement. A
method of allowing one to associate ideas and perceptions of the footage as
well as some form of visual representation of the film would certainly be
more satisfying. It would also provide a more intuitive way of connecting
smaller parts of the film together.

To this end, an experimental video workstation has been developed
which seeks to provide an alternative means for both filmmaker and viewer
to study film content and to edit large amounts of video materials into logical,
expressive presentations. One of the primary charters of this system has been
to create an environment that alters the perception of motion picture
materials from a fixed, inflexible arrangement of images to a visual resource
capable of being restructured according to the intent of the viewer or
filmmaker. It is hoped that this would personalize the viewing experience,
providing different audiences with unique delivery formats. This paper
details a representation of video that provides both an efficient means of
access as well as a level of conceptual association. Section two reviews the
history of technological advancement that has made the implementaion of the
workstation possible. Section three outlines the database representation as
well as the constituent components of the system. Section four suggests areas

for future work and possible strategies.

[Chapter 2 Background 7]

In order to establish a relationship between the film medium and a database
representation via computer, it is useful to review some of the key points in

the evolution of video technology.

2.1 History of the Technology

The Ampex Corporation developed the first Video Tape Recorder! in 1956.
The first application of this device was the recording of programs in New
York for later playback on the West Coast. Prior to the advent of VTRs, the
method of kinescoping was used; this was the technically inferior process of
filming the programs directly from a TV monitor. Editing, at first, consisted
of splicing, but soon the advent of electronic editing with a record and
playback VTR was the sole approach. Previewing? edits was not possible
with early systems.

One of the major developments of the 1960s was the introduction of
time code in 1967 by EECO, a large manufacturer of professional video
editing equipment. This allowed every inch of videotape to be indexed by a
time code expressed in hours, minutes, seconds and frames. Due to the

increasing use of time code and an excessive number of emerging formats, in

IThe first VTRs were of 2 inch format; since then, many other formats have appeared. Among them are 1-
inch, 3/4 inch and 1/2 inch formats, some of them open reel and others cassette

2The method of previewing edits refers to the process of deciding what the order of shots in a given scene
will be and viewing the sequence without actually recording the sequence to tape.

Chapter 2 Background 8

1969 SMPTE(The Society of Motion Picture and Television Engineers)
introduced an industry standard for timecode that was adopted in the United
States and by the EBU(European Broadcasting Union). The National
Television Standards Committee(NTSC) time code reads from 00:00:00:00
to 23:59:59:29, recycling at each 24 hour interval. The time code is recorded
as a binary signal and designed to generate a complete line of information
twice during each frame. Each category(hrs, mins, secs, frames) is
comprised of two 4-bit words; one word in units and the other in tens. Thus,
all possible values may be represented. Longitudinal Time Code(LTC),
recorded on the audio track of videotape, is normally 80 bits in length.
Among these bits are usually 8 four bit words that are "user" bits and may be
used to indicate anything desired by the production team (reel number for
example). When doing a shoot, the time code generator and the video signal
must be in sync. There are 16 bits of sync information on the time code to do
this. There is also a drop-frame bit which is used to compensate for the fact
that the NTSC signal operates at 59.94 Hz. and the clock normally runs at 60
Hz. The difference amounts to 108 frames per hour. Normally the fix entails
skipping two frames a minute except for every tenth minute. If using non-
drop frame mode the rule of thumb is that 30 minutes of programming is

actually 2 seconds longer.

2.2 Videodiscs

One of the most significant events in the 1970s was the release of optical
videodisc playback devices. Video information on a videodisc is stored in
very small pits pressed into spiral tracks on a reflective surface. Two layers

of clear acrylic plastic, on either side of the disc surface, serve as a protective

Chapter 2 Background 9

barrier. Although these discs resemble phonograph records, the method by
which the information is read is quite different. As the disc revolves, a laser
beam reads the information encoded in the pits of the reflective surface. The
beam is reflected off the surface and sent to a mirror which in turn is
reflected to a microprocessor decoder which converts the information into
image and sound. Since the beam acts as a non-contacting stylus, there is
virtually no wear on the disc or image degradation over the course of the
disc's lifetime.

The CAV(Constant Angular Velocity) disc format is the most widely
used in editing system applications due to the fact that each frame of video is
addressable. These discs spin at 1800 rpm reading 30 frames per second,
meeting the NTSC standard for video. Up to 54000 frames may be stored on
a single side of a CAV disc. This may be used to store 54000 still images or
30 minutes of continuous play video at 30 fps. Embedded in each frame on
the disc is an index, or frame number. This allows the access capability
afforded by SMPTE time code but at much higher access speeds. The current
maximum delay in moving from one point of a disc to another is
approximately 2.5 seconds. One of the drawbacks of current disc technology
is its read-only characteristic. This is the primary reason that VCRs have
been more successful in the consumer market. However, the accessing
modes,durability, and memory capacity(3 Gigabytes) make the optical disc

player a much more useful tool in the educational environment.

2.3 Relegating Control to the Computer

In the context of the technological advancement summarized above, two

issues become apparent. The first is that there is a lack of order within the

Chapter 2 Background 10

traditional methodology for processing motion picture material. One
possible reason for this is a lack of standardization between devices that
perform the same function. One might attribute this to the absence of a well-
governed organization that also has the influence to define standards to which
all developers and manufacturers in the industry would adhere. However,
this view is only partly true since it does not address the complexity of the
video signal itself. The empirical techniques employed to maintain and
enhance the quality and integrity of the video signal has created industry
professionals that are one part engineer, one part artist, and one part
magician.

The second issue is related to the emergence of timecode in the
industry. This numeric index of the contents of a piece of video has opened a
door to a more orderly approach. And yet those who create films have only
partially stepped through this passageway. The virtue of time code is that it
allows the incorporation of a computer in two arenas. The first is that of
controlling the devices used to manipulate video, while the second
encompasses the potential for a parallel representation of the material. An
unbalanced amount of effort has been spent upon device control and the
bookkeeping involved in the management of many generations of editing
lists, while work in the latter area has been slow and isolated. One of the goals
of the workstation herein described is to provide an environment that
supports the required device control as well as a foundation from which
representational constructs of motion picture material may be developed. In
the next chapter, a system having a database representation of video as one of

its principal components is described. It is our hope that, aside from

Chapter 2 Background 11

relegating numerical indexing to the computer, greater modes of association,

both textually and graphically, will be possible.

‘Chapter 3 Database Representation 12

The workstation described in this chapter has had many contributors. Much
of the conceptual groundwork, upon which this implementation is based, has
evolved gradually over the last several years. As more hardware found its
way into the lab, different approaches on a variety of computers were
employed to address the issues of device control and interfaces. While the
current system is in some sense a culmination of much of this previous work,
the following summary is at best a snapshot of a dynamic process that
continues to expand in scope and in depth. The workstation consists of three

primary components:
1 - Hardware
2 - Database Model

3 - User-interface

Each of these areas will be discussed separately, followed by a description of

the way in which they link to one another.

3.1 Hardware

The workstation consists of the following devices:

Chapter 3 Database Representation 13

HP(9827) Bobcat computer : This computer has a UNIX operating system.
All system software has been written in the C programming language. There

are four external ports for the integration of video devices as well as a

separate graphics monitor.

Sony CAV Ontical Videodisc Player: Two of these players are connected to
the Bobcat computer via the RS232 serial interface.

CMX Audio-Follow-Video Switcher: This device switches between the two
videodisc players and provides various ways in which to perform an

aesthetically pleasing transition.

Sony Trinitron Video Monitor: This is where all video is displayed.

IBM PC/AT: A frame buffer has been installed into the PC which provides
the capability of digitizing a video image and performing various
manipulations on the stored image. These images will be shipped via ethernet

to the Bobcat and displayed on the Bobcat graphics screen.

The configuration for the System is presented Fig. 1

In a previous demonstration at the National Association of
Broadcasters conference last spring, a video multi-viewer was also proposed
as a useful addition to the hardware configuration. It is felt at this time that
this device is not necessary in achieving the goals of the system. There are
also several special effect devices currently available in the laboratory.

However, the time it would take to completely understand their functionality

Chapter 3 Database Representation 14

and the way in which they might be controlled by the computer (writing a
driver for each of the devices) has led us to postpone their incorporation for
the time being. The absence of a record video tape device should also be
addressed.

The emphasis at present lies in the viewing and representation of the
motion picture material rather than on the recording of a specific session. Of
course, the integration of a record VTR has been anticipated in the design of
the current system in such a way that future incorporation should not pose a
major problem. One of the major design goals was the creation of an open
system that would allow for the integration of additional devices with ease.
One example of this is the number of disc players being used by the system.
At present we are using two; theoretically, the system is designed for n disc
players. The only real limitation is the number of ports available on the
Bobcat. Further, the video switcher employed at present only supports cuts.
Once a switcher that supports the more elaborate types of transitions(wipes,
dissolves) is acquired, a driver will have to be written before it can become

part of the system.

3.2 Database Model

It is in representing film material as storable and retrievable data that the
ability to reconfigure the footage an infinite number of ways emerges. The
configuration is made possible by the presence of some form of time code
embedded in the medium. In the case of CAV videodisc, the index is the
frame number. Thus, a linear piece of video on an optical videodisc is
defined by the frame number at which the shot begins and the frame number

at which it ends. If these in/out points are stored in some permanent memory

Chapter 3 Database Representation 15

location on a computer, the question of how to associate other types of
information with them arises. This issue of association was addressed by the
introduction of a relational database into the system architecture.(See Fig. 2)
A relational database provides the means of partitioning large amounts
of data into smaller, more coherent pieces. Of the many databases
commercially available, the RTI Ingres Relational Database package was
chosen. The decision to use Ingres was based upon its superiority over other
available databases as well as the fact that it is generally available and
supported by MIT's Project Athena.! The wide variety of applications
provided by Ingres necessarily imply a relatively complex interface to its
functions. However, the primary goal of the workstation was to provide the
simplest, most direct database representation of video materials. Therefore,
only the most basic and straightforward of Ingres' capabilities were
required.(See Appendix A) The Database Manager in the figure refers to a
buffer between the user and the Ingres command interpreter. It provides the
user with the most useful of the features supported by Ingres, while at the
same time hiding the syntax from him. The information associated with these

in/out points will be of two primary types:

1- Textual information; This can include any textual information that the
user feels is relevant to a piece of footage. Some examples might be:
transcripts of dialogue, names of characters, a thematic category or perhaps

simply a short list of comments.

IProject Athena is a five year development strategy to explore computing environments in an academic
setting. It is funded by a variety of private sector organizations.

Chapter 3 Database Representation 16

2- Graphical Information: This refers to a digitized image captured in this
system by the IBM PC. The Targa 16 board allows a user to compress an
image into an icon which be displayed on the HP Bobcat graphics screen.
These icons are intended to serve the purpose of a memory-jogger for
someone who has already viewed the video material rather than as a

conveyor of new information.

The atomic unit inside the system will be referred to as a segment.
Within the database, a segment refers to a unique record that contains the
in/out points of a piece of video as well as any textual or graphical
information associated with it. As a first step in exploring what types of
information would be generally useful to both filmmaker and viewer, a
database entitled videofile has been created with the following categories(See
Appendix A):

1. Disc Name

2. Segment Name
3. In Point

4. Out Point

5. Theme

6. Comments

7. Character List
8. Date

9. Icon Address

Once a set of video segments has been represented and stored in this

fashion, the different modes by which one may access and manipulate these

Chapter 3 Database Representation 17

segments increases dramatically. The major reason for this lies in the utilities
provided by the Ingres database system. The ability to perform a query is
perhaps the most powerful of these utilities. A query allows the individual to
search through an arbitrarily large amount of information stored in a
database and view only those records(segments in this application) that
satisfy a user-defined criteria. In this way certain patterns may emerge that
otherwise might go undetected. An examples of this might be the querying of
the database according to some thematic category and seeing whether the
characters in a scene or the date in which it was shot have any correlation.
Another significant benefit from this representation is the ability to put
together a sequence of segments without having to deal with the numerical
indices(frame numbers) that define them. If we assume that a disc name and a
segment name uniquely define a particular segment in the database, then by
knowing those two pieces of information, the system can search the database
and find the in/out points associated with that particular segment. By the same
token, if we have an visual icon associated with a database segment, selecting
that icon will allow us to get at the frame numbers, or other relevant

information such as character names, dates etc.

3.2.1 Seamless Transitions and Preview

Once a sequence of segments has been defined, the system will translate the
sequence into an Edit-Decision-List format. The most prevalent format of
editing list in the film and video industries is one developed by the CMX
corporation.(See Figure 3) This format associates time code with a particular

type of transition between shots. Each edit within a CMX list is referred to as

Chapter 3 Database Representation 18

an event. The analogy to the popular CMX EDL format will be tranparent to
the user unless he wishes to actually view his defined sequence in this format.
These EDLs define the viewing experience. Originally, we contemplated
having a facility that generated an EDL on the fly as the viewer scanned
through each segment. We no longer feel that this option is necessary or even
desirable since the viewer will have the option to configure the segments in
any way he chooses.

The issue of whether to have a local database structure identical to the
larger system database has also arisen. The idea was to allow the user to
preview edits without saving them to permanent memory. If the specified
sequence of segments was acceptable, it could then be saved in the permanent
database by the user. We have decided to reverse this strategy so that all
segment definitions are in fact written to the permanent database, while the
list of segments that define a sequence is saved to a text file when created.
This approach seemed more appropriate since segment definition and
sequence definition are two logically distinct processes.

We wish to address the issue of seamless editing transitions here. It was
felt that using two playback devices with identical videodiscs would allow us
two perform a seamless, smooth transition between video segments. The
algorithm developed to preview a user-defined edit list has been successful in
this respect. A seamless transition is achieved by cueing the first disc player
to the in point of the first segment and then playing the segment. While the
first disc player is playing, the second disc player will cue to the in point of
the second segment . Once the first disc player has reached the out point, the
input to the monitor is switched to the second disc player and the second disc
player is now instructed to play. This is repeated until the end of the list is

reached. In this way the facility of editing motion picture material stored on

Chapter 3 Database Representation 19

videodisc is achieved.without having to focus on the numerical indices. This
algorithm hinges upon the ability for a disc player to cue to a particular point
on a disc almost instantaneously. This is possible since the disc players are

spinning at speed even when they are not playing.!
3.3 User Interface
The user interface for the EVW consists of two parts:

1 - Keyboard Commands
2 - Graphical Interface

3.3.1 Keyboard Commands

Almost all computer-controlled video editing bays have all the available
editing options assigned to the standard character set on the keyboard. A
representative keyboard is that of the Grass Valley Group System. One of the
ways in which a user interfaces to the EVW is with keyboard commands
very similar to the assignment of the GVG system. In some sense, this mode
of control is the most fundamental since it has the virtue of being portable to
any other keyboard and thus would be the manner in which a remote user
would access the system. However, until an effective strategy has been
defined to allow a remote user to view the video material (Cable TV channel

assignment, for example), the user will necessarily have to use the

IThis differs from traditional CMX tape previewing options. When previewing a sequence of shots with
tape-editing equipment, it is necessary to pre-roll the players to the edit point; this allows them to get up to
speed before the edit is executed.

Chapter 3 Database Representation 20

laboratory version of the system. The standard set of keyboard options will
include: forward play, cueing and rewinding at various speeds, and segment

definition.
3.3.2 Graphical Interface

Once it has been established that basic functionality will be possible with a
standard keyboard, we would be remiss if we did not utilize the additional
features available on the HP Bobcat to their fullest potential. Among those
features are a mouse interface, a keypad, a knob panel, and a tablet. The
Bobcat monitor also displays very impressive, crisp color images. With these
features and the use of a windowing package, a complete graphical interface
may be developed allowing the user to perform all those functions available
via the keyboard with mimimal use of the keyboard. Computer graphics will
be used to visually represent the physical processes of editing the video
material and controlling the video playback devices. As stated previously,
digitized key frames will be generated through the Targa board on the IBM
AT. The only planned constraint is that the user be provided with the ability
to generate a keyframe only for the purpose of associating it with an already
defined video segment. A pointer to the location of the key frame in memory

will be stored in the system database.

3.4 Links

Now that the separate components of the system have been described, we may
turn to the way in which they interact with each other. The first step was

assigning keyboard command for each of the viewing options supported by

Chapter 3 Database Representation 21

the disc players. This is done within a C program by sending the command to
the device across an RS232 serial port.! The options provided by the database
manager have also been provided by keyboard assignments. This was also
accomplished within an application program using a set of functions (GDB)
that allowed communication between the Bobcat computer and a remote
computer on the network where the database was created.(See Appendix C)
Therefore, the first level link between these two systems is the keyboard. The
ability to preview a sequence of database segments is composed of two parts.
The first entails a means to load in/out points from the database into a text file
in an EDL format. The second translates this list of in/out points into a set of
device commands(cue, play, switch etc.) that are sent to the appropriate disc
players. The next logical step in linking these routines is through a graphical
icon-based user interface. This could be built on top of the existing keyboard
architecture to allow input to come from a mouse or other input device
rather than directly from the keyboard. Work in this area has already begun
and is viewed as necessary since it provides a visual interface to a visual

medium.

1'The program to assign all disc player options to characters on the keyboard was written by Reza Jalili '89.

Chapter 4 "Future Work 22

4.1 Graphical Interface

The system described in the previous chapter , while providing the basic
functionality desired, will benefit greatly from additional work in several
areas. The most important area is perhaps that of the graphical user interface.
The problem of creating icons on the IBM AT is now well understood.
However, work in the area of displaying these icons and creating well-
organized windows of these icons has only reached a preliminary phase. The
issue of providing hooks between these icons and records in the video
database is also an important area where work should continue. Currently,
there is a field in the database that is entitled icon_address . The thought was
that this field could be used to store a location in computer memory where
the actual icon would live. An alternative might be the use of a unique icon
name that could be stored in the database record instead. Some type of icon
table would then need to be created to associated a region of the graphics
screen with an icon name so that selection of the icon would be immediately

translated to a selection of a single record within the database.

4.2 Levels of Hierarchy

One area that has purposely been ignored for the time being is that of

creating a hierarchical structure for sequences of video segments. Currently,

Chapter 4 Future Work 23

once a sequence has been created using the preview capability, there is no
way in which to use this object as a component of another sequence. It was
felt that this hierarchy would best be represented pictorially with the
graphical user interface. A different type of icon might be used to distinguish
between different objects in the hierarchy. Russ Sasnett has done some very
interesting work in this area using a film strip and index card metaphor to

distinguish between different classes of objects.!

4.3 Transitions

The different types of transitions that one might want to use in order to create
a video presentation are inevitably limited by available hardware. The recent
acquisition of a new video switcher will make it possible to increase the
number of different types of transitions as soon as a device driver is written.

Among these will be wipes, dissolves, and fades

4.4 Preview

In the area of previewing a sequence of pre-defined shots, some additional
routines would be beneficial. Currently, no checking is done to avoid playing
redundant in/out points. For example, if a sequence of two segments is to be
played and one is defined as having in/out points of 1000 and 4600
respectively, while the other has in/out points of 4400 and 7000 should the
segment be played without transition or should the segment play the piece of

video between 4400 and 4600 twice. Furthermore, what if an out point,

1See Russ Sasnett's Master's thesis, Reconfigurable Video, 1986.

Chapter 4 Future Work 24

greater than the defined in point, is specified? Much to our surprise, the
reverse play mode of the disc player results, giving an interesting, though
probably undesirable, effect. The inclusion of error prompts is a logical

addition.

4.5 Videodisc Agenda

One longstanding debate which should probably be reevaluated at this time is
that of divulging a videodisc agenda. Defining the header information to
appear on all future videodiscs requires that some important decisions be
made. We concur with Sasnett and Davenport as to the need to establish
corallaries to the Index, Table of Contents, and Dewey Decimal System for
video.! Whether it is preferable to include indices and tables of content with
actual frame numbers on the disc itself at the time of production or add a
feature to the system that allows a filmmaker to create these references and
store them in the video databse is still being examined. From the perspective
of the system, whether or not an information frame is included at the
beginning of a disc is irrelevant. It is not possible to digitally read the frame
and parse any of the data for any type of processing.2 However, for the user,
this seems to be a very useful resource. Since a number of filmmakers often
share the capacity of a single videodisc, there should be a simple way to
specify at least who shot what, when and where, and the frame range that the

footage occupies.

ISee Sasnett.

2 Actually, there has been progress in the area of reading digital data from optical videodisc by other
researcher's in the field. However, one unresolved problem is the format that this data should take, There are
more than ten formats and accompanying decoders currently on the market. Once a standard has been
established, it is likely that we will want to pursue a scheme that reads such data directly.

Chapter 4 Future Work 25

4.6 Database

Let us now examine some ways in which the database representation of video
material might be improved. One enhancement that will be necessary entails
the creation of a master shot list of the material on a given videodisc. This
would be the responsibility of the person who knows the most about the
footage, the filmmaker. In addition to a database record for each segment, a
representative icon of the segment should be generated as well. Once defined,
copies could be made of the database table containing this master list for
anyone who wished to define new segments or slightly change the in/out
points of those defined in the master list for their particular application. This
is perceived as a being first step in generating meaningful video courseware.

Related to the issue of providing a master list is the question of security
that different users have over different tables. At present, no levels of
security have been established. The addition of access criteria to particular
tables based on some password should be possible by a slight modification to
the code that comprises the database manager. This would probably take the
form of an initialization routine where a new user of the system is asked to
choose a password and a table name. From then on, the password would be
the identifier of which table the user has permission to modify.

Another planned change is a way to allow the experienced Ingres user
the ability to execute operations on the database not supported by the
workstation. This option would allow the user to type a QUEL command just
as he would if executing a command at the Ingres command interpreter. The
text string would then be sent to the interpreter to be executed, without the

need to exit the main workstation program.

Chapter 4 Future Work 26

Finally, several modifications to the field description of the database
have been proposed. One suggested change is the way in which comments are
defined. Currently, the user is limited to a text string of no more than twenty
characters in the comment field. An alternative to this arrangement is the
maintenance of an index in the comment field which would reference a
second table devoted to the storage of much longer comments. The addition
of dialogue and subject fields has also been recommended. A dialogue seems
appropriate for two reasons. The first is that the dialogue in a piece of video
is occasionally more important to a particular viewer than the way in which
the segment was shot(This is often true in documentary film). Therefore,
ability to generate a transcript of a particular scene would be extremely
useful. The second reason for advocating the inclusion of dialogue in the
database representation has to do with display format. The notion of
displaying dialogue on a monitor simultaneously with the video seems
particularly suited to educational applications. An obvious one is that of
providing subtitles for films in other languages for students studying that

particular language.

Chapter 5 Conclusions 27

A system has been described that supplements contemporary
approaches to the computer control of video editing systems. It is felt that
existing systems are too rigid in their configuration and somewhat inhibiting
to the creative process of the film maker. While the workstation
configuration is relatively well-defined, the structure is such that
enhancement and the introduction of new devices can be easily incorporated
into the system. Instrumental in the design of a more flexible medium was the
definition of an alternative representation of motion picture material. By
removing the cumbersome format of EDLs from the editing process, it is
hoped that a greater amount of pure image association may take place. In
addition to more meaningful ways of association, the alternative
representation makes it possible to easily construct different viewing
experiences with the same set of video materials. Thus, while it is possible to
view the system as a new tool, it is more accurately depicted as an

environment in which new tools may be created.

Appendices 28

This page has intentionally been left blank

A Ingres Database Summary 29

S———

A detailed description of the operations and capabilities supported by the
RTI Ingres Database package fills several volumes. However, the Ingres
utilities that were used in the development of the database manager of the
Video Workstation are representative of a minimal set of functions required
for any database application. Therefore, it seems appropriate to describe this
set of fundamental operations in the context of the implementation of a
database representation of video material. The following discussion outlines
the capabilities that currently are supported by the workstation as well as

several that we feel are logical additions to the core set of services.

A.1 Database Creation

The creation of a database is one of the few Ingres operations that must be
executed at the operating system level. All other utilities(QUEL commands)
may be executed either from within one of the available interfaces or from
within an application program. The database used in our development was

created via the createdb command as follows:

createdb videofile

Appendix A Ingres Database Summary 30

Once a database has been created, individual tables may be declared to
partition the data further. Fig. 4 illustrates the hierarchical structure of the

videofile database.

A.2 Tables

A single table was created in our implementation and was given the name,
segments . The segments table was established using the create command as

follows:

_create segments(disc_name=c20, seg_name=c20, in_point=i4,
out_point=i4, theme=c20, character =c50,
date=i4, comments=c20, icon_address=i4)

Each field is declared separately and given a type(integer, text) and a
size. Viewed as a two-dimensional row-column structure, each field
represents a column while each data record(tuple) represents a row. The
complete Ingres description of the table may be viewed by using the help

command:

help segments

The following summary appears in response to the request:

table o segments
owner : 4 d0002
location : default
row width k 146

number of rows : 6

Appendix A Ingres Database Summary 31

number of pages : 1
journaling : disabled
storage structure : heap
table type : user table
column name type length
disc_name C 20
seg_name c 20
in_point i 4
out_point i 4

theme c 20
character c 50

date i 4
comments c 20
icon_address i 4

The owner of a table is always the login of the user who created the
database.! .Parameters such as table type and storage structure may be set by

the user. The segments table uses the default parameter settings.

A.3 Loading Data

Loading data into a table can be done in several ways. The two most common
commands to do this are copy and append. Copy allows data to be transferred
from a text file to a table. This has the virtue of adding more than one record
to a table with a single invocation of the command. Append adds one new
record to the table and requires the data to be specified in the body of the

command. An example using the append command is given below:

append to segments(disc_ nam=" Annie Hall",seg name="=Cocaine",
in_point=12000, out_point=13450)

1For our implementation, a development account(4_d0002) on the Project Athena machine, Aphrodite, was
used. This is where the Ingres data is currently stored.

Appendix A Ingres Database Summary 32

A.4 Data Modification

The two utilities provided for data modification and used by the workstation
are the replace and delete commands. Both commands allow for a qualifying
statement to specify some range of tuples that will undergo the specified

modification. Two examples are given below.

delete segments where segments.in_point > 10000

replace segments(in_point = 10*in_point)
where segments.seg_name=""'Cocaine"

A.5 Queries

The final utility needed to provide the basic tools for a database manager is
one which allows the processing of queries. Ingres provides this capability
with the retrieve command. This command differs from those previously
described in that the result of a query is a set of data satisfying some qualifier
rather than a self-contained deletion or addition to an existing table. An

example using the retrieve command is given below.

retrieve segments(segments.disc_name, segments.seg_name)
where segments.seg_name = "cocaine"

The tuples in a table that satisfy the qualifying where statement in the
query are normally displayed on the monitor being used. GDB(See Appendix
B) provides a means for redirecting the data to a local data structure rather

than to the screen. One additional feature of the retrieve command is that the

Appendix A Ingres Database Summary 33

data resulting from a query may be redirected to another table given the table
name. Thus the ability to copy a master shot-list to a user table is a
straightforward extension of the query.

The issues of multiple users and table security require a more thorough
look at the structure of Ingres databases. The implementation herein
described does not incorporate such provisions. Modifications to the user
interface will be required to allow users of the workstation to specify
different table names as well as whether a particular user has authority to
update a given table. It is hoped that future enhancements will resolve these

issues.

B GDB Summary 34

Having established the need for a permanent memory storage environment
that has a relational database as its foundation, the link between application
program and data will now be explored. The decision to incorporate the
capabilities of the RTI Ingres database available through Project Athena
presented a major problem. Access to the data stored on an Ingres database
has been traditionally limited to an application program that runs on the
same machine. Although access is possible either directly using the Ingres
Menu System or from within an application program(written in either
Fortran or C), no provisions were made for the execution of these accessing
modes from a remote location. The main usage and role that GDB! plays is
allowing a program(in this case a C program) running on machine in a
Berkeley Unix2 environment to create alter and query the relations in an RTI
Ingres database stored on some other machine in the network. In
accomplishing this end, the GDB software package handles all of the
communication protocols inherent in the tranferring of information between
machines as well as any inconsistencies between data types.

One additional issue remained to be resolved before work in the
creation of a database interface using GDB could proceed.The problem lay in

the existence of two versions of the Unix Operating System. While project

1GDB is an acronym for Global Database. It is a set of C library routines written by Noah Mendelsohn. It
is hoped that this very useful set of functions will receive official sanction from Project Athena.

2Unix is a trademark of AT&T Bell Laboratories.

Appendix B . GDB Summary 35

Athena is a Berkeley Unix environment, The Hewlett Packard Bobcat
computer currently provides the AT&T System V version of Unix. Although
Unix is extremely portable in many respects, some of the communication
protocals provided in a Berkeley environment are not provided in System V.
Thus, the inclusion of two libraries as well as some subtle modifications to
the code comprising GDB needed to be made in order to develop and execute
the additional software required by the Video Workstation. A discussion of
the structure of GDB and the utilities that it provides follows. The details for
implementing GDB on a Bobcat will then be presented.

B.1 Building the Bridge

The Unix library routines that comprise GDB offer a variety of
asynchronous communication services. The realization of our design
specifications was possible through the use of some of the more
straightforward GDB tools. Fig. 5 illustrates the link provided by GDB
between the database manager and the data stored on the remote Ingres
database. It is important to reiterate that once a database has been created on a
remote machine, any operation provided by Ingres may be performed within
a C program by invoking a function provided by the GDB library. A brute
force method to accomplish this end would have been to create a unique
routine for each possible operation provided by Ingres. The approach used
by GDB is a much more generic one and reduces the programming overhead
to the use of three primary GDB utilities. The first of these utilities
establishes a connection to a particular database on a remote machine.

Moreover, it creates a local identifier for future operations to this database

Appendix B GDB Summary 36

since simultaneous connections to multiple databases are supported. The

syntax of the function is as follows:

access_db(db_identifier, &db_handle)
string db_identifier;
DATABASE db_handle;

An example of the use of this function is given below.

access_db("videofile@aphrodite", & videofile);

As stated above this routine maybe used repeatedly if access to more
than one database is desired. Once a connection to a remote database has been
successfully established, we may now perform queries and operations that
modify the database from within our application program. In the example
above, an Ingres database(videofile) which resides on the network machine,
aphrodite, has been specified as the target database for establishing a
connection. The data variable, "videofile", of type DATABASE(a GDB
defined type) is used to specify the database upon which a given operation
will be performed. There are two functions which gdb provides in order to
perform an operation on a particular database. These are:

perform_db_operation and db_query.

perform_db_operation(db_handle,request)
DATABASE db_handle;
string request;

Appendix B GDB Summary 37

db_query(db_handle, relation, query_string)
DATABASE db_handle;

RELATION relation;

string query_string;

The perform_db_operation routine may be used to execute any Ingres
command with the exception of the retrieve command. An example using the

definition of the segments table described previously might be:

command = "append to segments(disc_name = \" Godfather\",
seg_name = \"trigger's demise\", inpoint = 3000,
outpoint=4500,comments=\""don't mess with the mob\")";

perform_db_operation(videofile,command);

This would add a new record to the videofile database with the chosen
fields taking on the specified values. The result of this operation is merely an
integer return code stating whether the operation was successful or not. The
issue of performing a database query will now be addressed.

When Ingres is used to retrieve data from a relational database
according to some specified criteria, the result of the query is referred to as a
relation. A relation may be comprised of 0 or more tuples (or records)
where each of the tuples consists of fields. The fact that a database
query(accomplished in Ingres by using the retrieve command) returns a set
of data and not just an integer return code is why a separate function is
needed to provide the programmer with query capability. Thus a local data

structure must be provided to store the result of the query(GDB provides the

Appendix B GDB Summary 38

datatype RELATION to do just that). An example of a query specified at the

Ingres command shell would be:

retrieve(disc_name = segments.disc_name, segment_name =
segments.seg_name,in_point = segments.in_point)
where segments.in_point > 10000

Thus, the three fields, disc_name, seg name and in_point would be returned
for each tuple in the database that satisfied the query criteria(having an
inpoint in excess of 10000). The identical query would be accomplished in a

C program using the db_query routine as follows:

db_query(videofile,retrieved_data,
"(>*disc_name*< = segments.disc_name,
>*seg name*< = segments.seg_name,
>*in_point*< = segments.in_point)
where segments.in_point > 10000");

Once completed, the resulting data will be stored in the RELATION ,
retrieved data, and may be accessed via additional gdb utilities and used in

the body of the main program.

Now that a general description of some of the GDB library routines
has been given, it is appropriate to touch briefly on the Ingres/GDB interface
at the server site. Fig. 6 illustrates the two major compents of GDB. Once the

desired Ingres operation has been specified by the user, the command string

Appendix B GDB Summary _ 39

is sent over the network to the remote machine. In order to interpret a given
instruction GDB has a command interpreter which resides on the machine
where the Ingres database is located. This program(dbserv) receives the
command string, parses it, and then send the properly formatted instruction
to the Ingres command shell for execution. Therefore, unless this program is
running, database accesses will be impossible.l.A problem with the syntax of
the command or a reference to a non-existing table will result in an error that
will be communicated back across the network to the application program

that attempted the operation.

B.2 Bobcat Implementation

Currently, Project Athena is distributing all the files needed to run GDB on
any Berkeley Unix machine in the network. In order to achieve the same
level of functionality on an HP Bobcat, follow the procedures described

below.

1. After getting the tar file from Project Athena(or the author of the
libraries), unpack them in a clean directory.

2. Change the file, gdb.h, so that the file, time.h, is looked for in
/usr/include, rather than /usr/include/sys. If not available, bring this file over
from a Berkeley Unix machine.

3. The files : socket.h, signal.h, wait.h must be ported over from a Berkeley

machine into the local directory that has the GDB files. A version of wait.h

LThis program should be executed at the operating system level. It may be run in the background by

typing:
dbserv &.

Appendix B GDB Summary 40

does not exist on the Bobcat, while the other two are merely lacking some
definitions. Once the first three steps have been completed you can create the
library libgdb.a using the Makefile provided by executing, make libgdb.a .

4. Once libgdb.a has been created, an application program can only be
successfully compiled if two additional libraries are included in the compile

statement. An example is:

cc sample.c libgdb.a -lbsd -lbsdipc

These additional libraries provide the additional communication prorocals
provided on a Berkeley machine that GDB uses to provide network server
capability.

5. Steps 1-4 allow you to successfully compile an application program.
Access to an Ingres database will require one last change. The file,

gdb_conn.c, requires that the declaration:

int *port;

be changed to

u_short *port;

C Figures 41
ETHERNET
l
BOBCAT
01 02 03 04 AUX BLACK
LDP 1 L
VIDEO
SWITCHER MONITOR
w —
LDP 2

Figure 1: Hardware Configuration

Appendix C

Figures

42

Video
Workstation

Device Datebase
Controller Meaneger

Figure 2: System With Database Manager

Appendix C Figures 43
Event Device A/V Trans Dur Sourceln SourceOut RecordIn Record Qut
001 001 B [& 01:28:54:19 01:29:11:28 01:01:00:00 01::01:17:09
001 002 B D 01:00 01:27:11:15 01:27:14:05 01:01:17:09 01::01:19:29
002 002 B 5 01:28:17:01 01:28:26:07 01:01:19:29 01::01:29:05
003 aux B C 01:26:25:24 01:26:27:12 01:01:29:05 01::01:30:23
004 002 A2V C 01:26:40:21 01:26:49:29 01:01:30:23 01::01:40:01
005 001 Al C 01:25:00:09 01:25:21:17 01:01:40:01 01::02:01:09
006 002 Al [&y 01:29:34:05 01:29:59:29 01:02:01:09 01::02:27:03
007 001 V C 01:25:00:09 01:25:21:17 01:01:40:01 01::02:01:09
007 002 V WO000 01:00 01:29:34:05 01:29:59:29 01:02:01:09 01::02:27:03
Figure 3: CMX Edit Decision List
VIDEOFILE
DATABASE
SEGMENTS TABLE
| Disc Segment | In Out Character | Date | Icon
Name| Name Point Point List Address

Comments] Thems

Figure 4: Hierarchical Database Structure

Appendix C

Figures

DATABASE

MANAGER

INGRES
DATABASE

Figure S: GDB Interface

GDB

BOBCAT

C LIBRARY
ROUTINES

REMOTE MACHINE

COMMAND
INTERPRETER

Figure 6: GDB Structure

D C Programs 45]

The following C programs were written in order to implement the database
manager of the video workstation. The first(dbfuncs.h) is a header file
containing definitions of variables used by the primary program(dbfuncs.c).

Appendix D C Programs 46

(dbfuncs.h)

/******************************

Header file for dbfuncs()

*******************************/
#include "“gened.h" /* for some things */

/*
The following field declarations reflect the current ingres
database definition of the segment database and are used to

create a tuple descriptor.

*/
char *field names[] = {"disc_name",
"seg_name",
"in point",
"out_point",
"theme",
"character",
"datE",
"comments",
“"icon_address"};
FIELD_TYPE field types([] = {STRING_T, /* disc_name */
STRING T, /* seg_name */
INTEGER T, /* in_point */
INTEGER_T, /* out_point */
STRING T, /* theme */
STRING T, /* character */
INTEGER T, /* date */
STRING T, /* comments,changeto
integer */

/* should reference
longer comment
in another table

INTEGER_T}; /*icon_address */
/*
This structure 1is not currently used but might be useful in
the future.
*/

STRUCTURE struct REL_DESC
{ RELATION retrieved_data;
TUPLE_DESCRIPTOR tuple desc;

}i
typedef struct REL _DESC *PREL_DESC; /* pointer to REL_DESC */

Appendix D C Programs 47

(dbfuncs.h)

/*
String Endings often used in the formatting of a quel command
for ingres

L

char ending([] = "\"";

char ending2[] = ",";

char ending2al(] = "\",";
char ending3[] = ™)";

char and_ending[] = " and ";

/*

Declarations required for creating a new record in the
segments database.The wvalues for each field are user-defined
while the actual fields definitions have been pre-defined.

®/

char a disc_string[50] = "disc_name=\"";

char a seg_ string[50] = "seg_: name=\"";

char a_inpoint_string(50] = “1n_p01nt—"-

char a_outpoint string(50] = "out_point=";
char a _theme_string[50] = "theme=\"";

char a character_string[70] = "character=\"";
char a_date_string(50] = "date=";

char a_comments_string([50] = "comments=\"";

char a_disc_string2[20];

char a_seg_string2([20];

char a_inpoint_ string2[20];
char a outpoint_string2[20];
char a theme str1ng2[20].
char a_ " character _string2([50];
char a date str1ng2[20],

char a_comments_strlngZ[ZO];

char quel_append[500] = "append toc segments (";

char appquery[] = "append to segments (disc name=\"NO\",
seg_name=\"segl\",in point = 1, out point = 10,
comments=\"none\", theme=\"none\")";

/*

Declarations for updating an existing record in the segments
database. The wvalues for each field are user-defined while
the actual fields definitions have been pre-defined.

*/

char r disc_string[50] = "disc_name=\"";

char r seg_ string[50] = "seg name=\"";

char r_1np01nt_str1ng[501 = "in point=";

char r_outpoint_string[50]) = “out_point=";
char r _theme_string(50] = "theme=\"";

char r character_string(70] = "character=\"";

Appendix D C Programs 48

(dbfuncs.h)
char r date_string[50] = "date=";
char r_comments_string[50] = "comments=\"";

char r_disc_string2(20];

char r_seg_string2[20];

char r_inpoint_string2[20];
char r_outpoint_string2[20];
char r theme str1ng2[20],
char r__ “character _string2([50];
char r__ "~ date str1ng2[20],

char r_comments_string2[20];

char quel replace(500]
char quel replace2[30]
char quel_replace3(30]

"replace s (";
" where S.d.isc_name = \nu‘|=
" and S.seg_name = \n"";

1|

/*
Declarations for deleting a record from the database
*/

"delete s where ";
"s.disc_name=\"";
"s.seg_name=\"";

char quel delete[300]
char quel_delete2(30]
char quel delete3[30]

char d_usr_disc[20];
char d usr seg[20],

/*
This string will be used to retrieve all data from the
segments database at the beginning of execution. All fields

for each tuple will be retrieved with no qualification.
*/

char startup_query([] = " (>*disc_name*< =
segments.disc_name,>*seg name*< =
segments.seg_name,>*in_point*< =
segments.in_point,>*out_point*< = segments.out point,
>*theme*< = segments.theme,>*character*< =
segments.character, >*date*< = segments.date,>*comments*< =
segments.comments,>*icon_address*< = segments.icon_address)";

/%

The following string is used to set a range variable for the
"segments" table in the videofile database.Range variables
are described in the Ingres Reference Manual.

*f

char range_string([30] = "range of s is segments";

int field count 9; /* Used when creating the tuple

descriptor */

Appendix D C Programs 49
(dbfuncs.h)
/ *
* The following defines are for convenience in
addressing
* the fields in the segments table.
x
#define DISC_NAME O
#define SEG_NAME 1
#define IN_POINT 2
#define OUT POINT 3
#define THEME 4
#define CHARACTER 5
#define DATE 6
#define COMMENTS 7
#define ICON_ADDRESS 8
#define FIELD_LENGTH 21
#define CHARLIST_LENGTH 51
#define FULL_FIELD LENGTH 50
#define FULL CHARLIST LENGTH 70

Appendix D C Programs 50

(dbfuncs.c)

#define terminatedb(x) /* nothin doin yet */
/*

* This program access the videofile database on the

x aphrodite machine. A variety of standard ingres

* commands are offered to the user in order to append
* delete and update data in the segments table of the
* videofile database.

*

*

*

* Author: D.C. Beauchamp

*

#include <stdio.h>
#include "gened.h"
#include "gdb.h"
#include "funcs.h"
#define SCOPE extern
#include "global.h"
#include "requests.h"
#include "dbfuncs.h"

extern PKEYREQ getrequest();

RELATION retrieved_data; /* Database contents loaded into
this GDB
defined data structure. */
DATABASE video file; /* A handle specifying which ingres
database will be accessed */

dbfuncs ()
{ PKEYREQ keyreq:;
int result;

/***
% %k Kk Kk Kk

* EXECUTION BEGINS HERE *

‘k***/

PRINTF ("getting ready for gdb_init () \n") ;ENDPRINT

keyget:
printf ("\n\nDATABASE> ") ;
curkbd = DBKBD OVERLAY; /* change meaning of keys
xif
keyreq = getrequest(); /* get request */

PRINTF ("got request = %d\n",keyreg->request) ; ENDPRINT
/***x* Do database function *x*xxkxkx*/

result = dbdispatch(keyreg->request);
if (result != QUIT CODE) goto keyget;

Appendix D C Programs 51

(dbfuncs.c)
curkbd = CNTLKBD_OVERLAY;
return (NOERR) ; /* request was to quit, so
return */

/* END OF DBFUNCS */

static int

FUNCTION dbinit ()

{

TUPLE_DESCRIPTOR tuple_desc;
int rcl,rc2;

/*
* Open a connection to the database - identify session as
* video_file
%

[rxxkKkxkkxx TNITIALIZE GDB BEFORE USING ANY GDB ROUTINES

*****/

gdb_init ();

/************************************ ******************/

printf ("\nEstablishing Connection...");

if (access_db("videofile@aphrodite", &video file) !=
DB_OPEN) {
printf ("Cannot connect to video database--giving up\n");
return (NULL) ;

printf ("\nLoading Local Data Structure...");

/*
* Build the descriptor describing the layout of the tuples
* to be retrieved, and create an empty relation into which
* the retrieval will be done.

*/

tuple_desc = create_tuple descriptor(field_count,
field_names,

field types);
retrieved data = create_relation(tuple_desc);

Appendix D C Programs 52

(dbfuncs.c)
/*
* Do the query for the entire contents of the "segments"
* table. Put the results in the relation, retrieved_data.
*/

/*

First step is to load all pertinent ingres data into a
local storage location. All subsequent accesses,thus, will be
faster
L

rcl db_query(video_file, retrieved _data, startup_query);
if(rcl != OP_SUCCESS) {
printf ("query unsuccesfull\n");
terminatedb(video file);
return (NULL) ;
}
printf ("\nQuery Successful");

/%

Now we define a rangevariable for use in subsequent queries
and database operations.,

*/

rc2 = perform db_operation(video_file, range_string);

if(rc2 != OP_SUCCESS) {
printf ("Range Operation Unsuccesfull\n");
terminatedb (video file);
return (NULL) ;
}

/*
This is the current function to display a single tuple of
data from the database.

X7

static FUNCTION print_a_line (tup)
TUPLE tup;
{

printf ("\n\nDisc Name: %s ",

STRING_DATA (* (STRING*) (FIELD_FROM TUPLE (tup,
DISC NAME))));

printf ("Seg Name: %s ",

STRING_DATA (* (STRING *) (FIELD_FROM_TUPLE (tup,
SEG_NAME))));

Appendix D C Programs 53

(dbfuncs.c)

printf("In_point: %d\n",

* (int *) (FIELD_FROM TUPLE (tup, IN_POINT)));

printf ("Out_point: %d\t ",

*(int *) (FIELD FROM TUPLE (tup, OUT_POINT)));

printf ("Theme: %s ",

STRING DATA (* (STRING *) (FIELD_FROM_TUPLE (tup,
THEME))));

printf ("Comments: %s\n",

STRING DATA (* (STRING *) (FIELD FROM TUPLE (tup,
COMMENTS)))) ;

printf ("Date: %d\t",

STRING_DATA(* (STRING *) (FIELD_ FROM TUPLE (tup, DATE))));

printf ("Characters: %s ",

STRING DATA(* (STRING *) (FIELD_ FROM TUPLE (tup,
CHARACTER))));

/* printf("icon_address: %d\n\n “,
*(int *) (FIELD_FROM TUPLE (tup, ICON_ADDRESS))); */

static FUNCTION print_options ()
{
printf ("\nDatabase Options\n");
printf ("\n?\t\t\t: List Database Options");
printf ("\ni\t\t\t: Initialize GDB and Load Local Data
Structure");
printf ("\nl\t\t\t: List Database Contents by Category");
printf ("\na\t\t\t: Add New Record to Database");
printf ("\nu\t\t\t: Update Existing Record in Database");
printf ("\nx\t\t\t: Delete Existing Record From
Database") ;
printf ("\ng\t\t\t: Exit Database Mode");
}

/*
This function is used by the dbappend to cleanup all the

data pertinent to the last append operation perform. All
relevant

variables are initialized.
*x/

static FUNCTION cleanup ()
{

int i;

for(i=0; i < FULL_CHARLIST LENGTH; i++)
{

a_character_string([i] = 0;

}

Appendix D C Programs

54

(dbfuncs.c)
for(i=0; i < FULL_FIELD_LENGTH; i++)
{
a_disc_string[i] = 0;
a_seg_string([i] = 0;
a_inpoint_string(i] = 0;
a_outpoint_string([i] = 0;
a_comments_string(i] = 0;
a_ “theme strlng[l} = 0;
a_ “date _string[i] = 0;
}

for (i=0; i < FIELD_LENGTH - 1; i++)
{

a_disc_string2[i] = 0;
a_seg_string2(i] = 0;
a_inpoint_string2(i] = 0;
a_outpoint_string2([i]) = 0;
a_comments_string2[i] = 0

a_theme_string2(i] = 0;
a_ “character _string2(i] = 0;
a date strlngZ[ll = 0Q;

}

for (i=0; i <500; i++)
{

quel append[i] = 0;

}

strcpy (a_disc_string, "disc_name=\"");
strcpy(a_seg_string, "seg name=\"");
strcpy(a_inpoint_string, "in_point=");
strcpy(a_outpoint_string,"out_point=");
strcpy(a_comments_string, "comments=\"");
strcpy(a_theme string, "theme=\"");
strcpy(a_character_string, "character=\"");
strcpy(quel append, "append to segments (") ;
strcpy(a_date_string, "date=");

}
/*

Performs same function as cleanup() for the dbupdate ()

function

X/

static FUNCTION u_cleanup ()
{

int 1i;

for (i=0; i < FULL_CHARLIST LENGTH; i++)

{
r_character_string[i] = 0;
}

Appendix D C Programs 55

(dbfuncs.c)

for (i=0; i < FULL_FIELD LENGTH; i++)
{

r_disc_string[i] = 0;
r_seg_string[i] = 0;
r_inpoint_string[i] = 0;
r outpoint_string[i] = 0;
r_comments_string[i] = 0;
r theme_string[i] = 0;
r_date_string[i] = 0;

}

for(i=0; i < FIELD_LENGTH -1; i++)
{

r_disc_string2[i] = 0;
r_seg_string2(i] = 0;
r_inpoint_string2[i] = 0

r_outpoint_string2[i] = 0;
r_comments_string2(i] = 0;
r_character_string2([i] = 0;
r_date_string2(i] = 0;
r_theme_string2([i] = 0;

}

for(i=0; i < 500; i++)
{
quel replace(i] = 0;

}

strcpy(r_disc_string,"disc_name=\"");
strcpy(r_seg_string, "seg_name=\"");
strcpy(r_inpoint_string,"in point=");
strcpy (r_outpoint_string, "out point=");
strcpy (r_comments_string, "comments=\"");
strcpy(r_theme_ string, "theme=\"");

strcpy (r_character string, "character=\"");
strcpy (r_date_string, "date=");

strcpy (quel_replace, "replace s (");

/*

Performs same function as cleanup() for the dbdelete ()
function.

*y

static FUNCTION d_cleanup ()
{

int i;

for (i=0; i <300; i++)

{

quel delete(i] = 0;

Appendix D C Programs 56

(dbfuncs.c)
}
for(i=0; i <30; i++)
{
quel_delete2[i] = 0;
quel delete3[i] = 0;

}
strcpy(quel_delete,"delete s where ");
strcpy (quel delete2,"s.disc_name=\"");
strcpy (quel__delete:i, ma seg_name:\ wwy -
}

/ *

This function is used to make comparisons between a user-
specified

input and a database field value. Spaces must be added to the
end of a user-defined string in order to do the comparison
successfully.

iy

static FUNCTION pad{(str)

char str(];

{

int p_test = 0;

int 1;

for (1=0,p_test=0;1 < FIELD LENGTH -1; l++)
{

if(str(l] == '\O'")
p_test = 1;

if (p_test == 1)
str(l] = ' ';

}
str[FIELD LENGTH -1] = 0;
}

/%
See the pad function
xg

static FUNCTION pad2(str2)

char str2[];

{

int p_test2 = 0;

51§ o i)

for(l=0,p_test2=0;l < CHARLISTﬁLENGTH =1; 1++)
{

if (str2(1l) == '\0")
p_test2 = 1;
if (p_test2 == 1)
str2[(1l] = ' ';

}
str2 [CHARLIST LENGTH -1] = 0;

Appendix D C Programs 57

(dbfuncs.c)
}
static FUNCTION clearstring(str,size)
char str([];
int size;
{
int x;
for(x=0;x < size; x++)
strix] = ' ';

str[size] = 0;
}
/ *

If the database operation requested by the user is
supported,

the appropriate function will be called and executed.
*4

FUNCTION dbdispatch{request)
int request;
{ int result;

/*
Main database options loop
xf

switch (request)
{

case R DBLIST: result = list();
break;

case R QUIT: result = dbquit():
break;

case R_DBHELP: result = print_options();
break;

case R _DBAPPEND: result = dbappend();
break;

case R DBINIT: result = dbinit{();
break;

case R DBUPDATE: result
break;

dbupdate () ;

dbdelete () ;

1

case R DBDELETE: result
break;
default: result = ERR _DONT_KNOW;

Appendix D C Programs 58

(dbfuncs.c)
}

return(result) ;
}

/*

This function provides several ways to look at the data down-
loaded

from the database to the retrieved_data relation

L

static int FUNCTION list ()
{ char
choice,l usr string[FIELD_LENGTH],char string[CHARLIST LENGTH
1:
char *c_string;
TUPLE q;
int result, got_one, match, g, 1, p;
result = NOERR;

printf ("\nLIST\n\n");

printf ("Type 'a' for a complete listing of all segments
in the

database");

printf ("\nType 'd' to list by disc name");

printf ("\nType 't' to list by theme");

printf ("\nType 'c' to list by character\n\nChoice:");

choice = getachar();

if (choice == 'a')

{

for (q = FIRST_TUPLE_IN RELATION (retrieved data); qgq!=
NULL;

g = NEXT_TUPLE_IN RELATION(retrieved data,q))

prlnt a llne(q),
}

if (choice == 'd")
{
1 usr string(FIELD LENGTH - 1] = 0;
clearstrzng(l usr string,FIELD_LENGTH - 1);
printf ("\nDisc Name: ");
getchar () ;
scanf ("% (*\n]",1 usr_string);
pad(l_usr_string);
if ((result =
strfieldmatch (
FIRST TUPLE__ IN RELATION(retrleved data)
DISC_NAME 1 _usr_string)) < 0)
result = ERR;

Appendix D C Programs 59
(dbfuncs.c)

if (choice == 'c¢')

{
clearstring(char_string, CHARLIST LENGTH - 1);

printf ("\nCharacter: ");

getchar () :
scanf ("% [*\n]",char_string);

for (match=0,got_one=0, q=FIRST_TUPLE IN RELATION (retrieved dat
aj;
g != NULL; gq =
NEXT_TUPLE_IN RELATION (retrieved data,q))
{
c“string = STRING_DATA (* (STRING *)
(FIELD_FROM TUPLE (q, CHARACTER))) ;

for(g=0; g < CHARLIST LENGTH - 1; g++)
{
if (match == 1)
{
got_one = 1;
match = 0;
break;
}
if (char_string(0] == c_string[g])

{
for{l=l’p=g+l,’p < CHARLIST__LENGTH = 1Fl++:P++}

if (char_string[l] == '\0"')
{
print_a line(q)
match = 1;
break;

}
if (char string(l] == c_string(p])

-~

r
else
break;

}

}

}
if (got_one != 1)
printf ("\nNO RECORDS FOUND") ;

if (choice == 't')

{

1 usr_ string[FIELD_LENGTH - 1] = 0;
clearstring(l_usr_ string,FIELD_LENGTH - 1);
printf ("\nSearch Theme: ");

getchar () ;
scanf ("$[*\n]",1_usxr_string);

Appendix D C Programs 60

(dbfuncs.c)
pad(l_usr_string);
if ((result = strfieldmatch
(FIRST_TUPLE_IN_ RELATION(retrieved data),
THEME,

1l usr_string)) < 0)

result = ERR;
else
result = NOERR;
}

return (result);

} /* end of list () */

/*

This function returns control to main where the device
drivers

may be accessed directly.

xy

static FUNCTION dbquit ()
{
printf ("\nEXITING DATABASE MODE\n");

/* terminatedb does not actually do anything at this point */

terminatedb(video file);
return (QUIT CODE);

/* end of quit */

/*

This function allows a user to specify data to be entered
into the database as a new record(tuple).

*/

static FUNCTION dbappend ()
{ TUPLE a_tup;

char a_local comments [FIELD LENGTH],
a_local seg[FIELD_ LENGTH],
answerl(],
a_local_theme (FIELD_ LENGTH],
a_local_character [CHARLIST LENGTH],
a_local _disc(FIELD_LENGTH];
int a_inpoint_int,
result,
g,

Appendix D C Programs 61

(dbfuncs.c)
rc2,
a_outpoint_int,
a date int;
TUPLE_ DESCRIPTOR tuple_desc3;

tuple desc3 = create_tuple_descriptor(field count,
field names,
field_types);

cleanup();

a_tup = create_tuple(tuple_desc3); /* For local append to
the

retrieved data relation

*/

initialize_tuple(a_tup);

printf ("\n\nAPPEND FUNCTION");

printf ("\nYou Must enter both a Disc Name and Segment Name
for each record you create.\nAll other fields are
optional.

To leave a field blank hit RETURN");

printf ("\n\nDisc Name: ");
getchar();

scanf ("% (*\n]", a_disc_string2);

if (a_disc strlngZ[O] == ABORTCHAR) /* abort? */
return(0);

if(a_disc_string2(0] != 0)

{
strcpyl(a_local disc,a_disc_string2);
pad(a_local disc);

string alloc((STRING*) FIELD FROM TUPLE (a_tup,DISC_NAME),
FIELD LENGTH) ;
strcpy (STRING DATA (* ((STRING*)
FIELD_FROM_TUPLE (a_tup,DISC_NAME))),
a local dlsc),
trcat(a disc string, a_disc_string2);
strcat (a_disc strlng,endlngZa),
strcat(quel _append,a_disc_string);
/* printf ("\nhope = %s",quel append); */
}

printf ("\nSegment Name: ");
getchar ()
scanf ("%[~\n]", a_seg string2);

if (a_seg_string2[0) == ABORTCHAR)
return(0);
if (a_seg_string2(0] != 0)

{

strcpy(a_local_seg,a_seg_string2);

pad{a_local_seg);

strlng alloc((STRING*)FIELD FROM TUPLE(a tup,SEG NAME)
,FIELD LENGTH) ;

Appendix D C Programs 62

(dbfuncs.c)

strcpy (STRING DATA (* ((STRING*)

FIELD_FROM TUPLE (a_tup,SEG_NAME))),a_local seg);
strcat (a_seg_string, a_seg_stringZ);
strcat (a_seg_string,ending2a);
strcat (quel_append,a_seg_string);
/* printf ("\nhope = %s",quel append); */
}

if (ef2 & INPT _BIT)
strcpy(a_inpoint_string2,inframe); /* get currently
marked
in point
x/
printf ("\nIn Point: [%s] ",a_inpoint_string2);
getchar();
scanf ("% (*\n]", a_inpoint_string2);

if (a_inpoint_ string2[0] == ABORTCHAR)
return(0) ;
if (a_inpoint_string2([0] !'= 0)

{a_inpoint_int = atol(a_inpoint_string2);

*(lnt *)FIELD FROM TUPLE(a _tup, IN_POINT) =
a_inpoint_int;

strcat (a_inpoint_string, a_inpoint_string2);

strcat (a _inpoint str1ng,end1ng2),

strcat (quel . append a_inpoint_string);

/* printf ("\nhope = %s",quel_append), */

}

if (ef2 & OUTPT_BIT)

strcpy(a outpoint string2,outframe); /* get
currently marked in
point */

printf ("\nOut Point: [%s] ",a_outpoint_string2);
getchar();
scanf ("%$[*\n]", a outpoint_ string2);

if (a_outpoint_string2[0] == '“a')
return(0) ;
if (a_outpoint_string2[0] != 0)

{a_outpoint_int = atol(a _outpoint_ string2);

* (int *)FIELD FROM TUPLE (a_tup,OUT_POINT) =
a_outpoint_int;

strcat (a_outpoint_string, a_outpoint_ string2);

strcat (a_outpoint_string,ending2);

strcat (quel_append,a_outpoint_string);

/* printf ("\nhope = %s",quel_append); */

}

printf ("\nComments: ");

getchar () ;

scanf ("% [*\n]", a_comments_string2);

if (a_comments_string2[0] == ABORTCHAR)
return (0) ;

Appendix D C Programs 63

(dbfuncs.c)
if (a_comments string2([0] != 0)
{
strcpy(a_local_comments,a_comments_string2);
pad(a_local_comments) ;
string_. alloc((STRING*)FIELD FROM TUPLE (a_tup, COMMENTS) ,
FIELD LENGTH);
strcpy (STRING DATA(* ((STRING*)

FIELD_FROM TUPLE (a_tup,COMMENTS))),a_local comments) ;
strcat (a_comments_string, a_comments_string2);
strcat (a_comments_string, ending2a);
strcat (quel_append,a_comments_string);

/* printf ("\nhope = %s",quel append); */
}

printf ("\nCharacter List: ");
getchar () ;
scanf ("% [*\n]", a_character_string2);

if (a_character strlng2[0] == ABORTCHAR)
return (0) ;
if (a_character string2(0] != 0)

{
strcpy(a_local_character,a_character string2);
pad{a_ local character),

string_alloc((STRING*)FIELD FROM TUPLE (a_tup, CHARACTER),
CHARLIST LENGTH) ;
strcpy (STRING DATA (* ((STRINGY*)

FIELD FROM TUPLE (a_tup,CHARACTER))),a_local character);
strcat(a character_string, a character _string2);
strcat (a_ “character strlng,endlng2a),
strcat(quel _append, a_character_string);

/* printf ("\nhope = %s",quel_append); */
}

printf ("\nTheme: ");
getchar();
scanf ("% [*\n]", a_theme_string2);

if (a_theme string2(0] == ABORTCHAR)
return(0) ;
if (a_theme_string2[0] != 0)

{

strcpy(a_local_theme,a theme_string2);

pad(a_ local _theme) ;

string . alloc((STRING*)FIELD FROM TUPLE
(a_tup, THEME) , FIELD LENGTH),

strcpy (STRING DATA(* ((STRING*) FIELD FROM TUPLE (a_tup, THEME)))
r
a local_theme);
strcat (a_theme_string, a_theme_ string2);
strcat (a_theme_string,ending2a);

Appendix D C Programs 64

(dbfuncs.c)
strcat (quel_append,a_theme_string);
/* printf ("\nhope = %s",quel append); */
}

printf ("\nDate: ");
getchar();
scanf ("% (*\n]", a_date_string2);

if (a_date_string2(0] == ABORTCHAR)
return(0) ;
if (a_date_string2[0] != 0)

{a_date_int = atol(a_date_string2);

*(int *)FIELD FROM TUPLE(a _tup,DATE) = a_date_int;
strcat (a_ date strlng, a_date_string2);

strcat (a_date string,ending2);

strcat (quel_ append,a_date_string);

/* printf ("\nhope = %s",quel append); */

}

if ((result =
segment_search (
FIRST TUPLE_IN RELATION(retrleved data)
,a_local disc,a local seg)) < 0)

; /* if no match go ahead with the
append */
else
{
printf ("\n\nSO SORRY. That segment name is already
being
used on the disc. Please choose another.");
result = ERR;
return (result) ;
}

for(g=0; g < 500; g++)
{

if (quel_append[g] == '\0")
{
if (quel append[g -1] == ',")
quel_append(g-1] = ") ';
else
quel_append(g] = ')';
break;

}
}

/* printf ("\n\nhopeful query: %s\n",quel append); */
printf ("\n\nNew segment defined as: ");

print_a line(a_tup);
printf ("\n\nAre you sure you want to add the segment

Appendix D C Programs 65

(dbfuncs.c)

definedabove?") ;
scanf ("%$s", answerl);

if (answerl([0] != 'y")
printf ("\nAPPEND ABORTED\n");
else

{

rc2 = perform db_operation(video_file,quel append);
if(rc2 = OP SUCCESS) {

printf ("Append Unsuccesful\n");

return;

}

{
ADD_TUPLE_TO_RELATION (retrieved data,a_tup);
prlntf("\nRECORD ADDED TO DATABASE");

}

else

}
} /* end of append */

/*
This function allows an update to be performed on a database
record

o

static FUNCTION dbupdate ()

{

TUPLE r_tup;

TUPLE existing tup;

TUPLE q;

int rec;

int g;

char u_usr_disc[FIELD LENGTH];
char u_usr_seg([FIELD_ LENGTH] ;
char up_usr dlsc[FIELD _LENGTH] ;
char up_usr seg[FIELD LENGTH],
char *u_rel_disc;

char *u_rel_seg,

int u_exists;

char answerl|[];

char r local character [CHARLIST LENGTH];
char r local _comments ([FIELD__ LENGTH] ;
chay “local _seg [FIELD_ LENGTH] ;
chay 2 “local _theme [FIELD_ LENGTH];
chax ¢ " local | _disc[FIELD LENGTH],
int r_inpoint_int;

int r_ outpoint_int;

int r_date 1ntr

TUPLE DESCRIPTOR tuple desc4,

tuple_descd4 = create_tuple_descriptor(field_count,
field names,
field types);

Appendix D C Programs 66

(dbfuncs.c)

u_cleanup();
r tup = create_tuple(tuple_desc4);
initialize_tuple(r_tup);
printf ("\n\nUPDATE FUNCTION");
printf ("\n\nTo uniquely specify a video segment for updating,
please

specify");
printf ("\na disc name and a segment name. Use the list (1)
command if

you");
printf ("\ncannot recall the required names. Make sure that a
disc

does not");
printf ("\nhave two segments with the same name. If duplicate

segments exist,");
printf ("\nany updates will affect both records.");

printf ("\n\nDisc Name: ");
getchar () ;

scanf ("$[*\n]",u_usr_disc);
printf ("\nSegment Name: ");
getchar () ;

scanf ("$[*\n]",u_usr_seg);
strcpy (up_usr_disc,u_usr_disc);
strcpy (up_usr_seg,u_usr_seg);
pad (u_usr_seq);

pad(u_usr dlsc),

for (u_exists = 0,q =
FIRST TUPLE_IN RELATION (retrieved_data); q!= NULL;q =
NEXT TUPLE_IN RELATION (retrieved data,q))
{

u rel disc = STRING DATA(* (STRING *)
(FIELD_ FROM | TUPLE (q,DISC_NAME))) ;
u_rel seg = STRING _DATA(* (STRING *)

(FIELD_FROM_TUPLE(q;SEG_NAME)));

if(!strcemp(u_usr disc,u rel disc))
{
if (!strcmp (u_usr_seg,u_rel seq))
{
u_exists = 1;
printf ("\n\nYour record currently contains the
following
data:");
print_a_line(q);
existing tup = q;
r_inpoint_int = *(int
*)FIELD_| FROM | TUPLE (q, IN_POINT);
r outpoint_int = *(int
*) FIELD_FROM TUPLE(q,OUT POINT) ;
r_date_int = *(int *)FIELD FROM | TUPLE (q, DATE) ;
strcpy(r local_disc, STRING DATA{*((STRING*)

Appendix D C Programs 67

(dbfuncs.c)
FIELD_FROM | TUPLE (q,DISC_NAME))));
strcpy (r_ local seg,STRING DATA(*((STRING*)
FIELD FROM [TUPLE (q,SEG_NAME)))) ;
strcpy (r_ local _comments, STRING_DATA (* ((STRING*)
FIELD . FROM TUPLE(q,COMMENTS))}),
strcpy (r_ local _theme, STRING_DATA (* ((STRING*)
FIELD FROM TUPLE(q,THEME)))),
strcpy (r_ local character STRING DATA (* ((STRING*)
FIELD FROM | TUPLE (q, CHARACTER)))) ;
break;
}
}
}

if(u_exists != 1)
{

printf ("\n\nNo Match. Either the specified disc does not
exist

or the");

printf ("\nsegment doesn't exist on the disc. Check with
the

list command") ;
return (ERR) ;

}

printf ("\n\nType a new value or hit RETURN if you do not
wish\nto change the current value.");

printf ("\n\nDisc Name: ");
getchar () ;
scanf ("$[*\n]", r_disc_string2);

if (r_disc_string2[0] == ABORTCHAR)
return (0) ;
if (r_disc_string2[0] != 0)

{

strcpy(r_local_disc,r_disc_string2);
pad(r_local_disc);

strcat (r_disc_string, r disc_string2);
strcat (r_disc_string,ending2a);
strcat(quel replace,r disc string) ;

/* printf ("\nhope = %s",quel replace); */
}

printf ("\n\nSegment Name: ");
getchar ();
scanf ("% [*\n]", r_seg string2);

if(r_seg _string2[0] == ABORTCHAR)
return(0) ;
if(r seg string2[0] != O0)

{

strcpy(r_local_seg,r_seg_string2);
pad(r_local_segq);

strcat (r_seg string, r_seg string2);

Appendix D C Programs

(dbfuncs.c)

strcat (r_seg_string,ending2a);

strcat (quel_replace,r_seg_string);

/* printf ("\nhope = %s",quel_replace); */
}

printf ("\n\nInpoint: ");
getchar();

scanf ("$[*\n]", r_inpoint_string2);

if(r_inpoint strlngZ[O] == ABORTCHAR)
return (0) ;

if(r_inpoint_string2([0] != 0)

{

r_inpoint_int = atol(r_inpoint_string2);
strcat (r_inpoint_string, r_inpoint_string2);
strcat (r_inpoint strlng,endlng2),

strcat (quel _replace, r_inpoint_string);

/* printf("\nhope = %s",quel_replace); */

}

printf ("\n\nOutpoint: ");
getchar () ;
scanf ("% ["\n]", r outpoint_string2);

if (r_outpoint string2[0] == ABORTCHAR)
return(0) ;
if (r_outpoint_string2([0] != 0)

{

r_outpoint_int = atol(r outpoint string2?);
strcat (r_outpoint_string, r_outpoint string2);
strcat (r_outpoint_string,ending2);

strcat (quel_replace,r_outpoint_string);

/* printf ("\nhope = %s",quel replace); */

}

printf ("\n\nComments: ");

getchar () ;

scanf ("%$[~\n]", r comments string2);

if (r comments string2[0] == ABORTCHAR)
return (0) ;

if(r_comments_string2(0] != 0)

{

strcpy(r_local comments,r comments_string2);
pad(r_local_comments) ;

strcat (r_comments_string, r_ comments_ string2);
strcat(r comment s strlng,endlngZa),
strcat(quel replace, r comments _string);

/* printf("\nhope = %s",quel replace); */

}

printf ("\n\nTheme: ");

getchar () ;

scanf ("$[(*\n]", r_theme_string2);

if (r_theme_string2[0] == ABORTCHAR)
return(0) ;

Appendix D C Programs

(dbfuncs.c)

if(r_theme_string2(0] != 0)

{

strcpy(r_local_theme,r_theme_string2);

pad(r_local theme),

strcat (r_ theme ~string, r_theme_string2);

strcat(r theme strlng,endlngZa),

strcat (quel replace r_theme_ string);

/* printf ("\nhope = %s",quel replace); */

}

printf ("\n\nCharacter List: ");

getchar();

scanf ("% [*\n]", r_character_string2);

if (r_character strlngZ[O] == ABORTCHAR)
return(0);

if (r_character_string2[0] != 0)

{

strcpy(r_local_ character,r_ character_string2);
pad2 (r_local_character);

strcat (r_character string, r_character_string2);
strcat (r_character_string,ending2a);

strcat (quel replace,r character _string);

/* printf ("\nhope = %s",quel replace); */

}

printf ("\n\nDate: ");
getchar () ;
scanf ("%[~\n]", r_date_string2);

if (r_date_string2([0] == ABORTCHAR)
return(0) ;
if (r_date_string2[0] != 0)

{

r_date_int = atol(r_date_string2);

strcat (r_date_string, r_date_string2);
trcat{r date strlng,endlngZ),

strcat(quel replace,r date_string);

/* printf("\nhope = %s",quel replace); */

}

for(g=0; g < 300; g++)
{

if (quel_replace[g] == '\0')
{
if (quel_replace(g-1l] == ',"')
quel_replace(g-1] = ') "';
else
quel_ replace(g] = ")"';
break;

}
}
strcat (quel replace,quel replace2);
strcat (quel replace,up_usr_disc);

Appendix D C Programs 70

(dbfuncs.c)
strcat (quel_replace,ending);
strcat (quel “replace, quel replace3);
strcat (quel_replace,up_usr_seq);
strcat (quel replace,ending);

/* printf ("\n\nhope2 = %s",quel replace); */

string_alloc ((STRING*)FIELD FROM TUPLE (r_tup,DISC_NAME),

FIELD_LENGTH) ;
strcpy (STRING_DATA(* ((STRING*) FIELD_FROM TUPLE (r_tup,DISC NAM
E))),

r local disc);
string_. allOc((STRING*)FIELD FROM_TUPLE (r_tup, SEG_NAME),

FIELD LENGTH),
strcpy(STRING_DATA(*((STRING*)FIELD_FROM_TUPLE(r_tup,SEG“NAME
)),

r local_segq);
string_. alloc((STRING*)FIELD FROM_TUPLE (r tup,COMMENTS);
FIELD_LENGTH) ;
strcpy (STRING_DATA (* ((STRING*) FIELD_FROM_TUPLE (r_tup, COMMENTS
))),
r_local_comments);
string alloc((STRING
*)FIELD_FROM TUPLE (r _tup, THEME) ,FIELD LENGTH) ;
strCPY(STRING DATA(*((STRING*)FIELD FROM | TUPLE (r_tup, THEME)))
f
r local theme);
strlng alloc{(STRING*)FIELD FROM TUPLE (r_tup, CHARACTER),

CHARLIST_LENGTH),
strcpy (STRING_DATA (* ((STRING*) FIELD FROM TUPLE (r_tup, CHARACTE
R))),

r local character);

*(int *YFIELD:FROM_TUPLE(r_tup,IN_POINT) = r_inpoint_ int;
*(int *)FIELD_FROM TUPLE(r_tup,OUT POINT) = r outpomnt TNt
*(int *)FIELD_FROM TUPLE (r_tup,DATE) = r_date_lntr

printf ("\n\nNew definition for segment is: ");
print_a line(r_tup);

printf ("\n\nAre you sure you want to update the segment
\“%S\ll On
the",up_usr seg);
printf (" dxsc “\"%s\" 2", up_usr_disc);
scanf ("%s", answerl);
if (answerl [0] != 'y")
printf ("\nUPDATE ABORTED\n") ;

else
{
rc = perform_db_operation(video_file,quel replace);
if(rc != OP SUCCESS) {
printf ("Update Unsuccesful\n");
return;

Appendix D C Programs 71

(dbfuncs.c)

}
else

{

REMOVE_TUPLE_FROM RELATION (retrieved data,existing tup);
ADD TUPLE _TO RELATION(retrleved data,r tup);
prlntf(“\nUPDATE COMPLETED") ;

}

}
/* END OF dbupdate() */

/*

This function deletes a tuple from the database on the remote
ingres database as well as in the local retrieved data
relation

*/

static FUNCTION dbdelete ()

{

TUPLE d_kill tup;

int d_ exists = 0;

char d _usr_disc[FIELD_LENGTH];
char answerl(];

char d_usr_seg[FIELD_ LENGTH];
char dp usr_disc[FIELD_LENGTH];
char dp_usr_seg[FIELD_ LENGTH] ;
char *d rel_disc;

char *d_rel seg;

int rc;

TUPLE q;

printf ("\n\nDELETE FUNCTION") ;

printf ("\n\nTo uniquely specify a video segment for deletion,
please specify");

printf ("\na disc name and a segment name. Use the list (1)
command if you");

printf ("\ncannot recall the required names.");

d cleanup();

printf ("\n\nDisc Name: ");

getchar () ;

scanf ("% [(~\n]",d_usr disc);

printf ("\nSegment Name: ");

getchar () ;

scanf ("$[*\n]",d_usr_seq);

strcepy (dp_usr_disc,d_usr_disc);

strcpy (dp_usr_seg,d_usr_seq);

pad(d_usr_disc);

pad(d_usr_seq);

Appendix D C Programs 72

for

(dbfuncs.c)
(d_exists = 0,q =

FIRST TUPLE_IN RELATION (retrieved_data); q!=

"NULL; q = NEXT TUPLE IN_RELATION (retrieved data,q))
{
d rel disc = STRING DATA (* (STRING*)
(FIELD_FROM_TUPLE (q,DISC_NAME)));
d rel seg = STRING DATA(* (STRING*)
(FIELD_FROM_TUPLE (q, SEG_NAME))) ;

if (!strcmp(d_usr_disc,d_rel disc))
{
if(!strcmp(d_usr_seg,d_rel seg))
{

printf ("\n\nYour record currently contains the

following

data:");
print_a line(q);
d_exists = 1;
d kill tup = q;
break;
}
}

)

if (d_exists != 1)

exist

{
printf ("\n\nNo Match. Either the specified disc does not

or the");
printf ("\nsegment doesn't exist on the disc. Check with

the
list command");

return (ERR) ;

}
printf ("\n\nAre you sure you want to delete the segment
\"%s\",

on the",dp usr_seg);
print£(" disc, \"%s\" 2", dp_usr disc):;
scanf ("%$s", answerl);
if (answerl[Q] != 'y")

printf (*\nDELETION ABORTED\n");
else

{

strcat (quel_delete2, dp_usr_disc);
strcat (quel delete3, dp_usr seg},
strcat (quel delete,quel “delete2);
strcat (quel_delete, ending) ;

strcat (quel “delete,and _ending);
strcat (quel_delete,quel delete3l);
strcat (quel_ “delete,ending) ;

Appendix D C Programs

73

(dbfuncs.c)

/* eliminate the return and terminate db commands in these
error message routines

®Y

rc = perform db_operation(video_file,quel delete);
if(rc != OP SUCCESS) {

prlntf(“Deletlon Unsuccesfull\n") ;

return;

}
{

REMOVE_TUPLE_FROM RELATION(retrieved data,d_kill tup);
prlntf("\nDELETION COMPLETED") ;
}

else

}

/* END OF dbupdate() */

/*

This function performs a comparison of a user input and a
field

from a tuple in the retrieved data relation

*/

static int FUNCTION
strfieldmatch(start_tuple,field index,string)
TUPLE start_tuple;
int field index;
char *string;
{ int match, result;

TUPLE q;

char *d_string;

for (match = 0,q = start_tuple; q!= NULL;
q = NEXT_TUPLE_IN RELATION(retrleved _data,q))

{
d_string = STRING_DATA (* (STRING*)
(FIELD . FROM | TUPLE(qg, field index)));
1f('strcmp{str1ng,d string))
{
match = 1;
print_a line(q);
}

Appendix D C Programs

74

(dbfuncs.c)
if (match == 0)

{
print £ ("\n\nNO RECORDS FOUND.");
result = ERR;
}
else
result = NOERR;
return(result) ;

/*

This function checks to see if a tuple with the specified
disc name

and segment name exists in the retrieved data relation.
L

static int FUNCTION
segment_search(start_tuple,disc_string, seg_string)
TUPLE start_tuple;

char seg _string[FIELD_LENGTH -1];

char disc_string[FIELD_LENGTH -1];

{

int exists, result;

TUPLE q;

char *cmp disc;

char *cmp_ seg;

for (exists = 0,q = start tuple; q!= NULL;
q = NEXT_TUPLE_IN RELATION (retrieved data,q))
{

cmp_disc = STRING_DATA(* (STRING *)
(FIELD_FROM_TUPLE (q,DISC_NAME)));
cmp_seg = STRING DATA(* (STRING *)

(FIELD_FROM TUPLE (q, SEG_NAME))) ;
if (!strcmp(disc_string,cmp disc))
{
if (!strcmp(seg _string,cmp seg))
exists = 1;
}
}

if (exists == 0) {
result = ERR;
}
else
result = NOERR;
return(result);
}

[References 75

1. Anderson, Gary H. Video Editing and Post Production (New York:
Knowledge Industry Publications, Inc., 1984).

2. Claxton, William "PC-TV", PC World (February 1984).
3. Kemigan/Ritchie The C Programming Language (New Jersey:

PrenticeHall, Inc., 1984).

4. Lippman, Andy Videodiscs and Optical Storage (MIT Architecture
Machine Group).

5. Sasnett, Russ Reconfigurable Video (MIT Master's Thesis 1986).

