MUD:
A Networked, Multi-User
Database Service

by
Halvard K. Birkeland

Submitted to the Department of
Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Science in Electrical Engineering
as the Massachusetts Institute of Technology

February 1990

Copyright © Hal Birkeland 1989

The author herby grants MIT permission to reproduce and
to distribute copies of this thesis in whole or in part.

Author = y L= 7L
Department of Electrical Engineering and Computer Science
September 22, 1989

Certified by/ A - 1

Glorianna Davenport
Thesis Supervisor

Accepted by

Leonard A. Gould
Chairman, Department Committee on Undergraduate Thesis

W"ZS INST, TECH, .
o 18 S

\
\
4

i
Clmpari€2
. e

ARCHIVES

MUD:
A Networked, Multi-User
Database Service

by

Halvard K. Birkeland
hkbirke@media-lab.media.mit.edu

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the degree of Bachelor of Science in
Electrical Engineering and Computer Science

Abstract

MUD is a multi-user, configurable, distributed, network-based database
service designed for a workstation-based computing environment. The service is
composed of secure primary control and data servers interfacing with various
authenticated clients via TCP/IP. The service is secured by using a remote
authentication protocol for both servers and clients.

This document presents a detailed specification and design for a MUD
implementation. The discussed implementation uses CTREE for a local database
and Kerberos for the remote authentication protocol. In addition, this document
utilizes a multi-user, integrated editing sysiem for a detailed example.

Thesis Supervisor: Glorianna Davenport
Title: Assistant Professor of Media Technology

Table of Contents

AcknOWIedgemEeNnts.........ccouiviiiiiiiiicc ettt 6
Chapter T: INtrodUctON ..o 7
Chapter 2: BackgIOUNd.......cooiiviiiiiiicccee et 9
A Brief Overview of an Integrated Virtual Editing System............. 9

Existing Networked Databases............... OO 10

SYDASE....eiei et 11

RTT INGTES .oveveviiicittt e 11

CoT@ e 13

Available ReSOUICES......cccvvviviiiiiicccc s 14

WOTKStatioN. ..o 14

Networked Computing Environment..........ccccooeinn 15

Galatea: The Network Video Device Server...........ccccooeeevnene. 15

Kerberos: A Remote Authentication Service.......cccccoovuenueene. 15

Chapter 3: MUD ReqUirements. ... 17

Operating Environment.........ccccceuioeiniiiicciinieneicnencnececeneesneenenaeen 17

Database Functionality...........ccocoviciniiniiniiiiiiiiccce, 17

Multi-User Capability.......cccocvievnininiiiiiiiiiiiiccniccncieene 17

Multi-Server Capability ..o 18

SECUTIEY ..ottt 18

Definable Formats.........cccoooviiiininiiiiiciccicc 18

Apparent Real-Time Operation.........cc.coveeveiviniiinienierininennne, 19

Distributed Storage ..o 19

Chapter 4: Designing @ MUD ..o 20

The Database Object.........ccovvieiiinieiniiciie e 20

The Source A Simple, Fixed-Length Object.......ccccccovvuruinnnnn. 20

The Edit: A Variable Length Object.........ccccoveiiiiiiiiiins 21

Object TemMPlate.....ccouovuieiriiiiieiicericcetiiens creerecienieetsteresereseneseanns 21

The Individual Database..........ccovvieiiiininiciniiiiiccceeens 22

Database Information Segment...........cccocecovrinveriiiiininiceiiinnns 23

TemMPlate.. ..o 23

Data .ot s 24

Database SIUCLUIEc.cccviniimiieiiiiiicecee et 24

Static and Dynamic Databasescccoeeeeeveiiiiieieiciecieee, 24

Combining Databases.............cccccoiuiriiiniiiieiiiiincee 25

Networked Database Design.........ccoccuuiueeiiiiniiniiiice 26

Primary Server ... 26

Database SEIVeTS.........coiiiiiiiiiiiieiie e 28

MUD RedUndancy......ccocoueeriieiissnineniissssssstssss s 30

Overcoming Performance Penaities........cccoeeieiiiininiciiieninns 33

ProtectiOn.. ..ottt 34
File System Protection ..., 34

File Protection.......cccvveieiiininiieicicceis et 35
Internal Protection.........ccoviiiniiiiiniciicciies e 35
Chapter 5: Using @ MUD: VEdit ..o 37
Database Structure......... bbb er s e ns 37
Movie Databases.........ccccoeieininiiiiiici e 38
Project Databasesccccuiveeiiiiiiniiiciecc e 38
Personal Databases.........cccvuiiiiiiiniiinncccras 39
Editing ENVIrONMENt.....ccoovviiiiiiiiiiciciicc e 39
Exploring the Databases...........ccoouiemvieiiiiiiinniiieieciene 39
Searching within the Databases.........cccocoooiiiivnin 41
Building a Personalized Database...........ccocoeuiieiiiiinieinnan. 44
Maintaining the Databases...................... et 47
Chapter 6: Implementing MUD..........ccccoeuriimiiiinniccnereencre e 49
Scope of Implementation..........ccouivvieiiiieniiciieee 49
Networking the Database..........cccovreriiiinininiiieeceee s 49
Network Communicationsccccoecccniniiniinnniciniceiceees 49
Multiple, Simultaneous Network Connections..................... 50
Remote Authentication ..., 51
Network Error Handling.......cccoeveeiniiininiieee, 52
Primary Server Structure..........ccoieinieiiiiinisieie e 55
Maintaining Remote Connections..........ccoceveieieiiinieniiienennns 55
Structuring the Databasecccoeviveereriiieieeieeeeieieee 56
Maintaining a Primary Server..........iinniiiniennnn, 57
Journals and LOgS.......cuoueeiriirieiiirieircrccce e 57
Database Server Structure.... ... 58
CoTIOE ettt b 58

File Layoul. .o s 59

Using INAICES.....oovemiieiiiiciiiiii et 60
Record LocKing.....cocviiiieieieieeeeeie e 60
Caching Query Results........cccceeiiiiiiiniiiieiieieinan 61
Avoiding Variable Length Recordsccooonniiiiiiinnnnn. 61
Journals and LOGS......ccooeuvmiiimiiniieieiiecen e 64

Error Handlingccoccoveeiiininininiiicccniee e 64
Client Function LiDrary ... 65
INitialiZationcooeeiviniiiiiicc 65
BTTOTS cveuveieerieriieieiieiie st er et er bbb srsesasness 67
Database Management..........ccoeeiriniiiieiininteiiesieii e 68
Database Interaction ..o 70
Utility FUNCHONS .oveitiieieieicee e 78
Chapter 7: CONCIUSIONSivriiiniiieieniiieieieei ittt 81

Chapter 8: FUture WOTKccoioiiiieiie it 82

Multiple Server SUPPOTt......ccoiiieiiiicictceceeii e 82

User Authentication....... et e e e s bt a e sn 83
Implementation......i 83
Appendix A: VEdit Database Objects ..o 85
COMPULET ..ottt 86
Database......c.ooveiieciiiie s 86
Edit..cccooevennnene e bbb bbb e et e 87
Employer.......cocovvviiincninnnnne s OO 87
Group OF ACL ..ot 88
LOOML et s 88
TEEIMU o e 88
LIOG ottt e 89
Falette oot ittt 89
PeISOM ..t 90
PLACE coeviiiitcc e e 90
ReAIIMN cteic 91
SOttt s 91
Source............... OO 92
Template ... 92
Y P ettt 93
UST ottt s ea b s 93
Appendix B: Glossary of Technical Terms..........ccccecouveemeieiieieieieeerecccinnnnns 94

RO T OIICES. e eeeeeeeeeeeeseeeeeasaeeeeeensastnsaaasesassasasseenenssnnenasassassesssannannaasaes 96

Acknowledgements

First and foremost, I would like to thank all of my friends, corroborators
and fellow programmers for getti=3 me through MIT because I certainly couldn’t
have done it without you. Thanks to Dan, Ezra, Mark, Susan, Scott, Mike, Pascal
and Jenifer for I certainly wouldn’t be here today without your unending
support, confidence, patience and trust in me.

The Film/Video crew was great at seeing me finally write this after
months of procrastination. Alan “Cool Moe Barf Jam” Lasky, Ben “RubinHarry”
Rubin, Amy Bruckman, Brian Bradley, Jeff Johnson and Mike “Han Solo” Kobb
were always there when needed. To fix my code, read this tome, replace the
machines, graduate on time, and keep me writing once I started.

The night shift at the Media Lab deserves even more credit. Pascal
Chesnais and Jenifer Tidwell finally shamed me into writing a thesis after
talking about it for nearly a year. Dan “Luke Skywalker” Applebaum was
endlessly patient teaching me about networks, servers and how to write (and not
write) them. They sat through all of the discussions at the Haus and IHOP and
never said I couldn’t do it. Sylvain Morgaine, Ming Chen, Bob Sabiston, and the
rest of the VLW students were always there, making me feel guilty about not
writing the thesis. Without their constant prodding, I wouldn’t have graduated.

Finally, I would like to thank Glorianna Davenport. my thesis advisor, for
sticking by me through my indecision and procrastination until I finally decided
on a thesis and wrote it. The third time was the charm.

A fond farewell and following seas to my friends at The Tech, Pershing
Rifles, Project Athena, MTG, pika, NROTC, and, most of all, the Media Lab. It
really was fun, no matter how much I bitched about life.

--hal
DarthVader@movies.mit.edu

Chapter 1: Introduction

MUD was originally intended as a specialized database server for VEdit,
the Film/Video Integrated Video Editing System. The crucial element in an
integrated editing system seems to be the database: its flexibility, speed, and
utility. During the design, the project’s scope gradually expanded from this small,
dedicated server into a general, large-scale database service that VEdit could use.

This work is intended to present a design, specification, and sample
applications of a large-scale, networked database server for a distributed
computing environment. The proposed MUD unifies five significant design
elements available in other network servers. First, configurable database formats
and architectures permit client defined database structures. Second, distributed
database services enable simultaneous access to different segments and large scale
database integration. Third, centralized administration of the distributed database
system aids in load sharing and error recovery. Fourth, apparent real-time
response facilitates use by an interactive client. Finally, secure networked
database system uses a trusted, remote authentication service.

The thesis begins in Chapter 2 by describing existing networked database
systems, Moira, gdb and Sybase. In addition to the existing database servers,
Kerberos, Project Athena’s remote authentication service, is briefly described.
The thesis then continues describing the Project Athena workstation computing
environment and outlining the required hardware for a full MUD server
implementation.

The heart of MUD is presented in chapters three through six, covering the
design specifications, implementation, and use of the multi-user database
system. Chapter 3 presents a brief overview of the system and a description of its
major design requirements. A detailed discussion of a MUD design takes place in
Chapter 4. The design includes the internal database layout, networking the
database, database security, and client interface. Chapter 5 illustrates a MUD using
a multi-user, virtual video editing system. Implementing a MUD lies at the focus

of Chapter 6. This discussion ranges from coding a network layer atop an existing
relational database to writing a client interface and error recovery techniques.

Finally, the limited results of the work are presented in Chapter 7. In
conclusion, proposed future expansions and development of the MUD system
are detailed in Chapter 8. These modifications include further improvements in
server availability and error recovery along with backup facilities and a complete
implementation.

Chapter 2: Background

Before embarkirg on MUD specification ard design, let us review two
existing networked database services because the proposed design attempts to
combine the advantages of these available systems. In addition to the existing
network services, it is useful to examine the project’s available resources: both
hardware and software. Let me begin with the motivation for MUD: VEdit.

A Brief Overview of an Integrated Virtual Editing System

VEdit is an integrated, multi-user video-editing system written using the
X Windows System, Version 11 under Project Athena’s derivative of the
Berkeley UNIX™ operating system.l As an editing system, VEdit permits the
user to hierarchically combine, edit and mix a variety of source material in an
interactive environment with real-time, seamless playback [Birkeland, 1989].

The editing system is an outgrowth of the New Orleans Project: a large,
multi-media case study on urban development in New Orleans. This project
includes a cinematic representation of New Orleans between 1983 and 1986 as
well as a variety of supporting material drawn from newspapers, laws and
statistics.2 In ¢ der for the case study to become an effective courseware
document, users neea to access, explore, comment and rearrange the material.
The problem with making New Orleans a courseware tool was that once this case
study was catalogued, organized, and assembled there were only limited tools for
authoring and exploring it.

One of the most powerful tools would permit the student to integrate
original portions and other student’s interpretations of the source material into

1The X Windows System is © Massachusetts Institute of Technology, 1989. UNIX is a trademark of

Bell Laboratories.

24 City in Transition: New Orleans, 1983-1986” is a case study of the effects of the Worid's Fair,
produced by Professor Glorianna Davenport. For a complete description, see [DAVENPORT 1987].

9

his own documents. Imagine the beginning filmmaking student sitting down at
the console, calling up the sequences that everyone in the class had made for
yesterday’s class and being able to compare not only the final presentations but
also how they arrived there. The same system would suppcrt work in a film
history class: maybe the student wants to see how a real editor put together a
film; so he calls up that film and gets all of the annotated information of the
editor, continuity person, camera assistant, and director: what each thought
about individual shots, how they assembled the film, or maybe different
revisions along the way. The final environment for such an editing system
would be a video version of the Electronic Classroom where students could learn
how to edit video in an interactive group atmosphere.3 In a film production
course, students could use VEdit to interactively edit their own work, retain
previous edits and play them back seamlessly in real time.

The editing system relies heavily upon its databases for everything from
edit information to transcripts and database layout. In each of the preceding three
examples, the student needs access to a subset of the available material contained
in the database. A hierarchical, object-oriented database service can ~rganize the
material, presenting the student with only the material he is interested in. But in
order to successfully use VEdit in a video electronic classroom or in the Project
Athena environment, students must be able to access the databases
independently from and simultaneously with other students.

Existing Networked Databases

Before designing a new database server, three existing networked databases
were examined. Sybase, gdb, and Moira were chosen because they were available
under Project Athena’s version of Berkeley UNIX. c-tree and several other
commercially available network database servers including Oracle, DBase and
Fourth Dimension were not considered as a network database service because
they did not operate in the Project Athena environment.4 It appears that the

3The Electronic Classroom is a Project Athena cluster dedicated to group instruction.[Belville, 1989]

4While the c-tree network server will not run under Berkeley UNIX, the single-user portion of the

database package can run with minor modification.

10

speed of the ISAM relational database oirtweighs the generality present in the
SQL databases.

Sybase

Sybase, as distributed on the NeXT,™ is the more promising of the two
SQL relational databases. It is flexible, faster than Ingres, and can easily be used
with NeXTStep, the graphical programming interface for the NeXT. Sybase,
however, does not support database replication, multiple database servers, or on-
line backup. In additicn, information is stored in host byte order, precluding
sharing physical information between servers. Finally, the minimum database
size is two megabytes, substantially larger that the Project Athena home directory
size of 1.2 megabytes.[Sybase, 1989] It is fine for a limited availability
environment, but falls short when considered for a near one-hundred percent
availability requirement as in MUD.

RTI Ingres

RTI Ingres is a common relational database package available for the
Berkeley UNIX operating system. Ingres, while sufficient for some applications,
poses significant problems for a highly interactive application like VEdit.
Performance testing has been conducted using two different network interfaces
which resulted in the same conclusion: Ingres is too slow. The other major
problem is that Ingres runs on a limited hardware and operating system
configurations.

Moira

Moira is Project Athena’s dedicated network database service. It is consists
of databases containing records of all registered users, filesystems, and much
more.5 Moira, also called Service Management System (SMS), is a network
interface built on top of a relational database. Currently, SMS uses Ingres as the
database application. While Moira may perform satisfactorily in its current role,
it is not usable for a highly interactive, multi-user application like VEdit.

5The Moira Technical Plan is presented in [Levine, 1989].

11

In the past, performance testing has been done on boih Ingres and SMS.
With the database running on an unloaded DEC MicroVaxII with nine
megabytes of random: access memory (RAM), Ingres was showr: to take one
second to update a single field in a small, specified record in a large database. In
addition, SMS imposed a minimal overhead for the query (less than five
hundredths of a second).[fKohl, 1988] As Kohl concluded, the SMS protocol
overhead is not excessive but the Ingres response time is too slow for an
interactive system. Perhaps if a faster relational database were used, Moira would
be more usable for an interactive environment.

gdb

gdb is another network interface built on top of a relational database which
can best be described as a network abstraction for a local database. While one
could theoretically use any available relational database, gdb has only been
implemented for RTI Ingres version 3.[Mendelsohn 1986a] Unfortunately, it
suffers from problems similar to Moira. The Film/Video Section of the MIT
Media Laboratory has experimented using gdb and Ingres for movie database
storage [Beauchamp, 1987] and found gdb inadequate. Simple queries into a
relatively small database could take up to two and one-half minutes.[Davenport,
1989] It is logical to attribute the poor performance to Ingres because it was shown
before to be exceedingly slow.

Availability

While RTI supports many hardware configurations, Ingres is available at
Project Athena only on the Digital Equipment Corporation's VAX-11
architecture. More importantly, RTI has claimed that support for the Berkeley
version of the UNIX operating system will be discontinued in the near future. In
fact, Project Athena is currently searching for a replacement for Ingres as the
suppoited relational database. It makes little sense to develop a new networked
database service using a slow relational database which may shortly be replaced.

c-tree

An alternative to the SQL based databases presented above seems to be an
ISAM database like c-tree. c-tree is a relational database package originally

12

developed for the IBM PC which has been ported to run on a large variety of
platforms: everything from DEC VAX-11 and MicroVax through IBM PC and
PC/RT to Apple Macintosh.[FairCom, 1988] c-tree’s major advantages are speed
and portability. While the database may iack some of the generality present in an
SQL database like Sybase and Ingres, it is extremely fast.

Portability is important in a workstation environment because there often
is a mixture of vendors and products from one cluster to another. C-tree will not
only run on many platforms but also can share databases between platforms. The
sharing is difficult due to varying internal hardware differences between
different workstations.

What c-tree loses in generality to an SQL database, it makes up for with
raw speed. As shown below, it will perform simple queries, modifications, and
additions many times faster than Ingres. The speed difference is exacerbated
when c-tree is run on a faster machine. For example, a DECStation 3100 with
only eight megabytes of core memory performs three to five times faster than the
DEC MicroVAXIIL.

Test Type Ingres c-tree

{time in secs) uVaxII uVaxII PMAX
Add 100 100 6.2 3.2

Add 1000 1000 66 36
Change 1000 1050 23 4

Figure 1: Relative speed of Ingres and c-tree on various hardware platforms

Moira and gdb confirmed that the networked database service is rapid
enough for an interactive application but they utilized relational databases which
were too slow. As shown above, c-tree seems to be much faster than Ingres.
Because c-tree is not an SQL database, a different server must be written and in
the process it might as well combine the advantages present in Sybase and Moira
with c-tree’s speed.

13

Available Resources

MUD is designed for a workstation-based computing environment like
Project Athena’s. It follows the client-server model prevalent in remote services,
like Galatea and Kerberos, present at Project Athena.

Workstation

7| Graphics
i | Monitor

Keyboard = Mouse

Workstation Cru
(on floor)

~Network
Connection

Figure 2: Standard Project Athena Workstation

A workstation is a publicly available, single-user computer designed to
operate in a high-speed networked environment. While the workstation is a
private computing resource, it relies on remote machines for file and many
other remote services. At Project Athena, this machine is typically a
monochrome DEC MicroVax II or IBM RT/PC running a local version of 4.3BSD
UNIX (the Berkeley derivation of AT&T’s UNIX operating system).

14

Networked Computing Environment

/ Cluster
Network

Workstation Cluster

Figure 3: Networked Environment

In the past, large-scale distributed computing environments have been
composed of several, isolated mainframe computers with many connecting
terminals in each location. Recently, the small number of mainframes has been
replaced by a large number of individual, networked workstations. Going along
with the workstations have been a variety of distributed, network-wide services
including the file, name, and authentication services shown above.

Galatea: The Network Video Device Server

One of these distributed network services is Galatea, a network service
designed to access remote video devices.[Applebaum, 1989] Galatea provides a
sample, distributable client-server implementation using both TCP/IP and UDP
connections. This multi-user networked video device service could be used as a
basis to develop a secure networked database service.

Kerberos: A Remote Authentication Service

Another importait network service provided by Project Athena is a
remote authentication service called Kerberos. Kerberos is a trusted, third-party

15

service which provides private key encryption which can authenticate a remote
client to a server. [Steiner, 1988b] For example, Kerberos can be used to
authenticate a user {client) on an insecure workstation to his file server (remote

service) by providing a unique number (key) known only to the user and the
server.

16

Chapter 3: MUD Requirements

This chapter presents a brief description of the requirements for a multi-
user database server. It begins with an overview of a distributed computing
environment. Then, the specification is presented for the secure, multi-user,
definable database architecture.

Operating Environment

The MUD is designed for a distributed network environment like MIT’s
Project Athena. The classical computing environment is a tew large mainframe
computers each with many text terminals for users. Instead, Project Athena has
more than five hundred workstations located throughout the MIT campus.
Users no longer use a centralized machine but iiistead communicate with many
other machines using a variety of servers. MUD is designed to match this
environment by using several separate machines to provide the networked
database service.

Database Functionality

Perhaps the most important question at this point is what does MUD have
to offer that other, existing database servers do not. Its functionality can be
defined in two major areas: distributed environment and flexible structure. The
distributed environment permits multiple simultaneous connections and
distributed processing and storage in a secure environment. While the
environment encourages large scale database development, it is the flexible,
definable database format that forms the heart of MUD's functionality.

Multi-User Capability

The single most imporiant requirement of a multi-user database is for it to
be truly multi-user, meaning that many users can access the database
simultaneously. While true simultaneous access is not possible in all
circumstances without creating a read-write race conditions, database access shall
be as simultaneous as possible. This simultaneatity becomes important during

17

complicated multi-stage queries because other clierus should not be blocked from
accessing the database for the entire period.

Multi-Server Capability

Eventually, as the size of the client population and data size grows, more
than one server will be needed to maintain a reasonable level of performance.
Having more than one server also improves simultaneatity through parallelism:
while one server is conducting a search across a segment of the MUD, the other
servers are free to access their respective segments. Additional servers increase
the reliability and availability of the MUD system.

Security

Security, in light of recent computer-based attacks on network services,
may be the most important aspect of any networked database server. The
importance of security is only magnified by Project Athena’s public, workstation
based environment. Fortunately, Project Athena provides Kerberos, a remote,
secure, authentication service, for user validation [Steiner, 1988a].

To ensure a secure operating environment, MUD requires that not only
all clients authenticate themselves with the server but that each individual
server authenticate with the master server. The mutual authentications are
designed to ensure that neither a fake client nor database server can be brought
into the MUD.

Definable Formats

At the database level, definable formats are a significant advantage over a
dedicated network database like Moira. By allowing the client application to
specify the architecture and contents of a database allows the number and classes
of data objects to expand without modifying the database server. Definable
formats allow the best of both worlds: server conducted searches on a client
defined database.

In a traditional, dedicated database server, the application has two options:
use an existing record type and conduct searches on the server side or use a new
type and conduct searches on the client side. The first choice allows a new data
type only through a server modification. The second choice enacts a severe speed

18

penalty as the entire search set must be transmitted to the client and not just the
match set.

Apparent Real-Time Operation

The initial target application is the interactive video editing system. In
order for such highly interactive software to be usable, the access delay when
communicating with the database must be minimized. Ideally, the database
query and retrieval would happen in less than one second, but this delay could
be several seconds without greatly affecting the client. The current delay of more
than two minutes using Ingres and gdb is wholly unacceptable.

Distributed Storage

MUD'’s storage architecture should match its operating environment.
Existing databases were designed for timesharing hosts, large mini or mainframe
computers utilized by many users, as opposed to a single-user workstation. They
stored the data in a single centralized location because file storage was only local
to the timesharing machine. Since the workstation environment consists of
many remote storage locations (file servers) and remote file systems, it only
makes sense to use them.

MUD should place the databases in an appropriate remote location (file
locker) for three major reasons. First, the workstation has very limited local
storage which is routinely erased. Second, a user will rarely use the same
workstation on a routine basis because the workstation concept assumes that all
stations are identical and that a user will choose whichever is available. Third,
splitting the databases across filesystems allows each person’s or group’s data to
effect their own quota. Users will be in control of how much data they can store
locally and will not have to worry about another user’s usage. Placing files in a
consistent remote location, home directories for user databases and course file
systems for group projects, will permit the user to access the databases from any
Project Athena workstation.

19

Chapter 4: Designing a MUD

Presented in this chapter is one design for a MUD. It is not intended to be
the sole design method but simply one possible design. The design begins with a
database level discussion about internal database organization: the object and the
template. The objects are combined to form the database segment. Then these
segments are assembled to form the database hierarchy. The dual server
arrangement, primary and database, is introduced to control the segmented
database. Finally, an authentication protoccl is explained to ensure mutual
authentication of clients and servers.

The Database Object

The object forms the atomic unit for a MUD database. The complexity of
these objects varies widely from a few simple to multiple variable length fields.
Let us examine two sample objects from VEdit that illustrate the flexibility
present in MUD databases.

The Source A Simple, Fixed-Length Object

Perhaps the simplest object class currently implemented is the “Source”
object which provides background information about a particular piece of source
material. As shown in Figure 4, the source is a fixed length, 128 byte record. The
object defines not only the source material’s name, type, and description but also
assigns it an icon and unique id for future references.

Source:
key: unsigned long
Name: char31
Icon: Tuple
Source Type: unsigned long
Description: FileReference

Figure 4: The Source Object

20

The Edit: A Variable Length Object

The edit object is an excellent example of a complicated object containing
variable length elements. As shown below, the edit object has three major parts:
display information, ancestral information, and the EDL representation.

Edit:
key: unsigned long
Shot: Tuple
Parent: Tuple
Mode: StateArray
NumberClips: unsigned long
<Clips>: Clip
Number Switches: unsigned long
<Switches>: Switch

Figure 5: The Edit Object

The first segment, the display representation, describes how the shot
appears to the user. In addition to an array of flags which define the edit’s on-
screen appearance, it also includes a pointer to the edit’s icon (a portion of a
video frame). The ancestral information is a pointer to another database object. It
contains information entered when the movie was logged including continuity
information, notes, comments, transcript, original edit, and a technical
description of the camera shot. The final segment contains the variable length
representation of the EDL. In brief, the EDL consists of two major parts: “clips”
and “switches.”6 The segment begins with the number of each type of event
followed by a sequential listing of all of them. Typically, a straightforward shot
will be one clip and two switches. A complicated sequence, however, might
contain twenty clips and over sixty switches.

Object Template

The object template tells the database what fields, and their respective
types, are present in a given object class. This content and formatting
information consists of a series of tuples, one for each field in the object. A tuple

6The VEdit representation for an EDL is described in Appendix B.

21

is comprised of three fields: thie name, type, and formatting information. The
name is a NULL-terminated string used as the field’s title. The type is a four byte
signed integer used to denote what type of data the field is associated with.” The
format field consists of 32 single-bit flags to convey information about not only
the appearance of the field but also whether the field is editable and what classes
of characters are permitted for input.8 For example, the tuple for a person’s
surname will contain “Surname:” in the name field, “Char32” in the type field,
and “Editable | ASCII | Right Justified” in the format field.

Template:
key: unsigned long
Name: char31l
Icon: Tuple
Object Class: unsigned long
Number Fields: unsigned long
<Fields>: Field

Figure 6: Object Template
The Individual Database

An individual database is divided into three major portions. First, the
database information segment which contains the generic information about this
particular database including name, ownership, protection, and location. Second,
the template segment contains not only the templates used for each object class
but also location and ancestral information for that particular object class.
Finally, the remaining segment, the data segment, contains the actual
information contained in the database.

7A complete list of field types is available in Appendix B.

8The complete list of formatting and content information is also available in Appendix B.

22

Database:

key: unsigned long
Name: char127
Parent: Tuple

Icon: Tuple

State: StateArray
numGroups: unsigned long
<Groups>: Tuple
<Access>: StateArray
numULocations: unsigned long
<Location>: File Reference

Figure 7: Database Object
Database Information Segment

The first portion of the database record is the information segment
containing the name, ownership, protection, and physical location of the
database. Each access list entry is a tuple in the group list and a corresponding
state array containing the actual protection. This arbitrarily long list permits
flexible, configurable access similax to the Andrew File System.[TransArc, 1989]
The remaining list, the locations, give the real locations for the database as a
series of tuples. The first tuple in this list is the synchronizing site, other
locations must forward the write requests to this site.

Template

A template contains the formatting information for a given object class. It
consists of a series of field tuples preceded by the number of fields in the object
class. A field tuple consists of the field type, name, and flags. The field type
describes how the data in the field is formatted and is chosen from signed
numeric, unsigned numeric, character string, numeric string, and object pointer.
The field name is a fifty-four character string containing the field title. The final
element of the tuple is the flag information, an array of flags controlling field
display and modification. The controls include whether the entry is displayed,
the value is editable, the hierarchy is expanded, and whether a pointer should be
followed by default.

23

Template:

key: unsigned long
Name: char31

Icon: Tuple

Object Class: unsigned long
Number Fields: unsigned long
<Fields>: Field

Figure 8: Sample Template Structure

Data

The final element of the database is the information itself. Because the
individual object classes may be widely variant, the object classes are isolated
from one another. This segregation results in a series of record lists with each list
corresponding to the entries for a particular object class.

Database Structure

MUD aliows this information to be split amongst several databases. These
elements of the overall database, called segments, fall into two classes: static and
dynamic. In order to use these segments, MUD combines them into a single
homogeneous environment.

taticand D ic Databa

Databases fall into two general categories: static and dynamic. A dynamic
database is designed to be continually modified. All of the records within the
database are volatile. The static database, or master database, changes very slowly
with time. While it is not impossible to change the data in a static database, these
changes should be limited to minor corrections.

More importantly, important content related information should not be
changed in a static database because references into a static database are links.
This means that the information is not actually stored with the reference but is
looked up in the static database. For example, entire records should not be
removed from a static database without first verifying that nothing has been

24

linked to it. On the other hand, changing a typographical or data entry error
automatically changes it in all referring records.

Combining Databases

The important consideration when combining several databases is that
local information replaces parental information in a controlled manner. The
user must be able to selectively view not only the local information but all
additional information contained in parent records. On the other hand, the user
should not rely on information contained in dynamic databases because it may
be deleted or modified at any time. The solution seems to be varying the
inheritance path between a parent database types.

The inheritance rules are different between a static and a dynamic
database. If the user incorporates a record from a dynamic database into his
personal environment, then the entire record is copied over. Therefore, all of the
information is locally available to the user. If the parent record is changed, the
local record still contains all of the original information. If the record had been
copied from a static database, then only the link would have been copied. In this
case, a change in the parent record will be propagated to the local record.

Dynamic
Database

New Record

Figure 9: Inheritance Rules for Dynamic Databases

25

Master Database

Reference™

New Record

Figure 10: Inheritance Rules for Master Databases
Networked Database Design

The MUD incorporates two separate servers for the network interface. The
primary server oversees the database as a whole, maintaining state and status
information while the database server performs the actual data retrieval, sorting,
and storage operations. The dual server arrangement increases the reliability,
flexibility, and scale of a MUD implementation.

Primary Server

(global coordination)

Control
Connection

Database Server
(data storage and retrieval)

Data
Connection

Client
(application)

Figure 11: MUD Layout

Primary Server

The primary server oversees the MUD operation. Its role is composed of
four distinct parts: maintaining state, controlling database servers, authenticating
clients and servers, and aiding in error recovery. While none of these functions

26

are essential to an initiai implementation, each task becomes important when
building a large scale, networked database.

State Maintenance

The first task for the primary server is maintaining the MUD state. MUD's
internal state is divided into three major categories: client and database server
connections, database layout, and statistics. Client and remote server connections
describe the status of all of the remote clients and servers using the MUD. The
database layout describes not only the MUD database environment but also
which database server is controlling each segment of the MUD. The final
element of internal state is gathering statistics on various operations, load
factors, response times, and server availability. While the statistics are not
directiy usable by the MUD, they can be invaluable in indicating which portion of
the server to optimize and what typical usages of the MUD are.

Security

The primary server’s next task is to authenticate all of the connections,
both remote database servers and new clients. As described below in protection,
verifying all remote connections is crucial in a networked environment. A
secondary facet of authentication is providing a secure acknowledgement to a
remote server to attest to the authenticity of a newly requested connection.
Basically, the primary server distributes the initial client or server authentication
to any necessary remote locations.

Database Structure

The primary server’s third role is to distribute the MUD activities amongst
the available database servers depending on load and resource availability. If the
database is split amongst several database servers, the primary server needs to
coordinate the overall organization of the database, assign backup database
segments. An outgrowth of the assignment is reassigning database segments
when either the segment or the database becomes unavailable.

Combining and Maintaining Logs

Logs have two general purposes: statistics and recovery. The primary
servers have two separate roles in logging. First, they combine the individual

27

database server logs into a single, system-wide log. Second, the primary server
maintains its own logs regarding database servers, client connections, database
distribution, and overall activity.

The logs serve three major roles: audit trace, statistics, and recovery. The
logs could be compiled, sorted and filtered using a database administration client.
In addition, the logs can be used for a primitive audit trace to determine which
portion of the database have been entered, modified or deleted. The final, and
most important, role of the log files is to permit a database to recover from a
catastrophic crash.

Error Recovery

The remaining task for the primary server is to aid in error recovery. The
major reason for the dual server arrangenent is for error recovery. By including
a supervising server in the database architecture, the supervisor can reallocate
the resources among all of the workers (the database servers) without the clients
noticing. While there may be a decrease in performance during the
reorganization, the clients should not experience total failure. This error
recovery permits almost one hundred percent database availability except when
the primary server becomes unavailable for extended periods.

Database Servers

Perhaps the most important quality for a database in a networked, multi-
user environment is network support. Network database server support seems
to exist in two flavors: specialized and raw. A raw network interface simulates a
low-level local interface for the application. The specialized network interface
behaves like a UNIX server allowing the application to make high-level requests
and returning the results. While the raw database server seems to be the
preferred option, the faster specialized server can be used by encoding additional
information within the database.

Raw Database Server

The raw network interface possesses several important advantages and
one very significant disadvantage. The raw interface is much more flexible in the
general case because the application directly controls the database. The interface

28

simply pipes the application’s requests to the database and returns the results.
However, the raw interface is much slower because it fransmits the intermediate
results back to the application. The performance for the raw interface may be
orders of magnitude slower than for a specialized interface when performing
large complex searches across multiple databases because the results for each part
are transmitted to the client application for comparison.

Specialized Database Server

The specialized network interface has several disadvantages but two very
important advantages for the multi-user environment. The specialized server is
inherently less flexible than the raw server. In addition, the database
implementation is split between the client and the server because the relational
database functionality is now in the server and not the client. Placing the
relational database manipulation in the server requires server development to
continue throughout the project because as new functionality is needed it must
be built into the server as opposed to the client under a raw database server
arrangement. Building the database functionality into the server results in the
major advantage for the specialized server — speed. Since the server is only
returning the matches to complex searches, much less data is being transmitted
across the network and the apparent search speed is dramatically increased.

The specialized server can be made more flexible by permitting client
definable database structure. In other words, the database format is not hard
coded into the server but is determined at run-time. The database formatting
information, templates, should be able to submitted by the client or some
existing segment of the database. By downloading the template into the database
server, queries still be performed server-side for a client defined database
maintaining the major advantage of the specialized server.

Maintaining Logs

A database server must also maintain its own versions of journal files.
Here, the logs contain command histories, client connections, and database
modifications. The purpose of these logs is very similar to the primary server:
statistics and error recovery. The log files are routinely used by the database

29

servers for recovering flushed queries and restoring a replicated database to the
current state.

MUD Redundancy

One of the more difficult issues to address in limited time and coding
effort lies in database maintenance during system errors. MUD improves the
reliability of a network database service in three areas: replicated databases,
multiple database servers, and multiple primary servers. Database replication
results in multiple physical copies of the information. Multiple database servers
permit several hosts to provide the service for a given database. Finally, multiple
primary servers permit the MUD to survive a primary server crash.

Replicated Databases

Maintaining multiple copies of the data have two major advantages. First,
it allows the database to survive a file server going off-line. Second, it provides
instant and zero-loss recovery from a catastrophic file system error. The penalty
for this redundancy is additional overhead in maintaining the database during
operation and doubled file storage requirements. Depending upon the role of
MUD, the database redundancy may be or may not be worth implementing.

The dual server arrangement permits database replicatiolr without a
complicated overhead. A replicated database is one which is maintained by
several, separate database servers. While any of the replications may be used for
retrieval operations, only the primary copy may be used for storage. The client
may be connected to any of the servers, but all write requests will be
transparently forwarded to the primary server. The additional overhead, present
on the write request, is a retransmission to the primary server. The database
server for the read/write copy, however, will then have to update each of the
remote copies after control is returned to the client. Depending on
implementation specifics and database structure, the delay from the write
o eration until full propagation should be between five seconds and one
minute.

30

Database Server:
Sync Site

Initial
Client Forwarded
Modification of

emote Sites

Database Server:
Read Only Site

Database Server:
Read Only Site

Figure 12: Replicated MUD Database

Multiple Database Servers

From a redundancy standpoint, having backup servers allows the entire
database to remain available in the event of a server going off-line. The segments
of the MUD database served by an individual server are controlled by the
primary servers. For the proposed example, VEdit, continuous availability is not
very important, but if the database was being used for user and system level
services one hundred percent availability is extremely important.

Multiple Primary Servers

If there were more than one primary server arranged in a primary-
secondary arrangement, when one goes off-line the other can keep the MUD
running. Unfortunately, this adds yet another communication requirement
(primary to secondary) in an already complicated system because the primary
servers must share the database control information. A simple solution to
sharing information is to use the MUD itself: storing the database information
inside the MUD database permits it to be replicated across several sites. In
addition to improved reliability, the additional primary servers can improve the

31

overall performance by sharing the centralized operations. If MUD service is

supposed .0 be uninterruptable, however, then the backup primary server is
essential.

Primary Server

Database
Server

Database
Server

Figure 13: MUD Service with a Single Primary Server

Primary Server Primary Server

Database

Database

Database
Server

Server

Figure 14: MUD Service with Multiple Primary Servers

32

Automatic Backups

The final redundancy issue is automatic backups. Given the volatile
nature of portions of the database, it may be desirable to implement a MUD
backup utility which would save the contents of a database every night. The
MUD can support this by making a temporary read-only replication of the
database and then dumping that to tape. While the author has no intention of
describing how to design or implement such a facility, it is important to realize
that internal backups may be a very desirable feature.

Overcoming Performance Penalties

Unfortunately, the dual server arrangement has some associated
performance penalties. These performance hits take the form of additional
overhead required for a given transaction because the database request must be
gatewayed through the primary server to the appropriate database server. If the
returned information also passed through the primary server, the database speed
would be one-half of the single server arrangement. Because a significant
portion of the request time lies in the network transmission, minimizing
transmissions is very important.

The proposed solution is to open a direct connection between the client
and the database server to accommodate both control and data transfer. The
initial location of the remote database will be established by the primary server,
but then all access will be performed directly with the database server. While this
technique will minimize the differential performance between a single-layer and
dual-layer server structure, it still yields a vast performance penalty when
compared to a local database.

33

Primary Server

Direct Control and

- Database
Response Connection

Server

Figure 15: Data Transmission in a MUD

Protection

Security and protection become important in a multi-user environment
where one user may want to restrict the availability of his information. Security
is a particularly difficult concept within Project Athena’s workstation-based
computing environment. VEdit databases support three layers of protection: file
system, file, and internal.

File System Protection

A file system forms the first layer of protection. It is possible to create file
systems which can only be “attached” or accessed by certain groups of users.?

9Currently, Project Athena has two classes of remote file service: AFS and NFS. NFS, the Network
File System, is the more widely used and highly distributed service. The NFS servers are
reasonably secure because they each have a local credentials files to authenticate the kerberos
tickets presented by the remote user. Unfortunately, the group concept is not conveniently supported
by NFS. In addition, access to the server's files are on a per-filesystem basis and not per-locker (a
single file system may contain several lockers). AFS, the Andrew File System, is a more recent

addition. It has a highly centralized architecture allowing a few system administrators to control

34

Placing data in such a “fascist” locker will restrict that data to the certain specific
list of users permitted to attach that file system. Unfortunately, the list of users is
on a per-machine basis (not per-file system). This means that access can be
restricted to specific groups of file systems but cannot be restricted to specific file
systems within that group. While this solution is effective, it is also less than
optimal if the database administrator does not administrator the file services. If
the administrative contrel is separated, updating the lists of users is quite
difficult.

File Protection

Secondary protection is on a per-file basis. The database server matches the
user’s identification and group access against the UNIX file system protection
modes. This is the most effective manner to create read-only databases, or
databases that can be modified by a certain select group. But beyond global access
restrictions, this protection layer is strongly limited. Per-file control, however, is
very effective to restrict access to detailed information contained in flat files
because the database can be world readable but the flat files may be restricted to a
certain group of users.10

Internal Protection

The primary layer of protection resides inside the sub-database itself and
closely mimics the UNIX file protection scheme. The internal protection has the
advantage in that it uses VEdit's own, internal access control lists (ACL) as
opposed to the external, Athena-wide lists.[Rosenstein, 1989] The internal lists
can be modified from within the editing system using the administration tools.
Any changes to internal ACLs take effect immediately as opposed to overnight
with the Athena-wide version. Furthermore, membership in a given ACL can be

the entire system. AFS has improved access control over NFS because it is on a per-directory basis
and also allows greater group control. Furthermore, the AFS protections can be easily changed by

any user who has administration access for that directory.

100ne possible use of this disctinction would be for a "bugs” database. Here, the general user could
retrieve all of the index information and topic heading from the database but only those users in

specific groups could access the detailed descriptions and fixes.

35

given on a per-database level because the ACLs are associated with a given
database as opposed to all of the databases. The internal protection is the more
flexible, easier to use, and less prone to error than the other two forms.

36

Chapter 5: Using a MUD: VEdit

The multi-user database service was originally developed specifically for
the Film/Video video editing system, VEdit. MUD has grown throughout the
project and now represents a general network database service. It has several key
features: error recovery, client specified database configuration, client security,
and centralized maintenance. Let us explore MUD'’s functionality using VEdit a:
a sample client.

Database Structure

The VEdit environment is broken into three major sections: movie,
project, and personal. The movie contains information which pertains directly to
the source material: logging, continuity information, transcripts, and description
of both the audio and video. The project may combine information from several
movie and project databases into a homogeneous environment. The final
element in the database hierarchy is the personal database which is intended for
user-specific information and, in addition, is the only truly dynamic database.

Movie Database
(Master)

Project Database
(Master)

Data
Dependencies

Personal Database

Personal Database
(Dynamic)

Personal Database
(Dynamic)

Project Database
(Master)

37

Figure 16: VEdit Usage of the MUD Database Service
Movie Databases

Within the editing environment are several movie databases. A movie
database is a complete collection of information about a given piece of source
material and may encompass several separate projects, interests, topics, and
users. It includes transcripts, logging information, character backgrounds,
annotations, comments, and anything else the filmmaker and other users
decided was important. ‘

Specifically, the movie database appears to contain all of the movie-
specific information. The information ranges from descriptive information
(scene lists, character backgrounds, dates, and locations among others) through
edit list management information (shot breakdown of the soirce material and
transcripts) and linked information (information linked to someplace else).
While the internal arrangement of this information will vary, it will always
appear as a single-level relational database While the user may recognize the
four paragraph description of the JAX brewery as descriptive, the database does
not treat it specially.

Project Databases

Project databases should be able not only to sub-divide a movie database
but also to incorporate several separate movies together if desired. The
separation between the movie and project databases is intended to isolate the
production information contained in the movie database from the application
and editing present in the project databases. In an academic environment, the
same footage may be used by different groups of people with different goals in
mind.

Let us pursue a film course project comparing the editing style used in
two different films. This particular project was chosen for the example because it
incorporates both functions of this database class: division and combination. The
combination lies in the integration of two separate movie databases (let us take
“Die Hard” and “Blade Runner” for an example). Division comes into play
because the student studying editing technique will not usually be interested in

38

character histories and someone else’s editing but will be interested in the EDL
information, logging, annotation and outtakes.

The project layer of the environment is intended to contain all of these
project-oriented customizations while the movie layer contains the raw
information about the source material. The project layer becomes more useful by
permitting the project to contain information from several movies or project
databases. The data combination allows critical comparison between two separate
movies or projects in a homogeneous environment.

Personal Databases

The final database class used for VEdit is the personal database. These
databases are intended for rapidly changing and narrowly targeted information
such as individual edit decision lists (EDL), annotations, and additions and, as
such, are typically isolated on a per-user basis. The degree of detail in the audit
trail is set according to the user’s needs: an editor may want a full audit trace
while a user who is exploring a database may need only minimal tracing.

Editing Environment

VEdit's environment allows the user to do everything from exploring to
editing to creating new information, references, and edits. This flexibility and
functionality, while present in the user interface, is a direct outgrowth of the
flexibility in the underlying database service, MUD. The database is used to store
information ranging from the current editor’s editing environment (a personal
cutting room) to camera and continuity information from the various source
material.

Exploring the Databases

The first step to using a hierarchical database architecture is being able to
explore the hierarchy. This database architecture can be illustrated through two
different representations, the hierarchy and the list. Both representations include
whether the database is writable by the user and if defined video resources are
available. Neither representation is better in all situations depending on the
user’s goals and the database architecture’s complexity and size. In a large,

39

disjoint environment, the hierarchical display may be more efficient while in an
integrated environment the single level approach may be superior.

The list display shows the databases as a single-level format, not
differentiating between a movie and a personal database. The two major
advantages of the list format are that all of the databases are listed in aiphabetical
order and that each database is listed only once. The format permits the user to
quickly enter a specific database or to find a database without traversing the
hierarchical structure. For example, opening a personal database does not require
opening first a movie database and possibly several group databases beforehand.

Available Databases: |Close

Citizen Kane @
% New Orieans 8 ©
@ Roves Wharf f

Create New Database

Figure 17: Databases in List Form

The hierarchical display portrays the layered database structure. The major
advantage lies in the forced organization. First, it is obvious how one database
relates to another and also makes it easy to find all related databases. Second, the
searching routines can narrow the search to the opened branches in the case that
the personal database, or one of its ancestors, has multiple parents.

40

Available Databases: |Close. Available Databases: |Close

Citizen Kane @ Citizen Kane &

% New Orleans 8 © # New Orieans 8 ©
R Wharf £ s >

% Rowes Ik e Py Hal’s DB /4O)

Mike’sDB 2 ©
% Rowves Wharf @

Create New Database Create New Database

Figure 18: Databases in Hierarchical Form

Searching within the Databases

After exploring the database hierarchy, the user will want to retrieve
specific information from it. VEdit handles searches by first defining the scope of
the search then the query parameters and finally the presentation style. The goal
is to present an efficient but flexible interface to allow the user to restrict his
searches to specific parts of the editing environment.

The first important factor in a search is the scope: how much of the editing
environment will be scanned for matches. Database searches seem to fall into
two broad categories: those limited by the database hierarchy and those limited by
a user-defined criteria. The first case, database limitation, means that the query is
restrained to a particular branch of the database. For example, looking for all of
the shots in Blade Runner containing Darryl Hannah. The second case, user
constrained search field, means that the only a specific set of data will be search.

41

For example, looking for all of the shots in the palette named “Darryl Hannah”
(generated by the previous request) that contain the word “quux.”

Perhaps the most comprehensive but simplest definition technique is a
“shelf.” A shelf would be a special area of the workspace where the user would
place all of the objects to search across. For example, it could contain three palette
icons, one database icon, and several edit icons. In this case, the elements of the
palettes and the database along with the edits would form the search set.
However, the user must also be able to control the depth of the search for each
element. The search depth is controlled through the three icons to the left of the
icon. The uppermost icon is a closed book which means that the search is not to
open that element at all. The center icon is a partially open book meaning that
the object will only be searched one layer deep. The bottommost icon is a
microscope which means that the objects will be recursively opened during the
search.

I Search Shelf: I

Iconic Object
Representation:

Search ®
Controls

Figure 19: The Search Shelf

Searching across multiple object types poses some significant problems.
The first problem lies searching across the individual object types because the
field names and classes may vary. Not all of the objects will contain editing
information like in point or out point. The current solution is to match those
fields in the search set which are defined in the object. In addition, at least one of
the fields must match the object because a disjoint set between the object and
search set should not yield a match. The other problem lies in conducting the
entire search. The solution for a multi-object search is to break the search down

42

into each unique object type and then union all of the resulting response sets.
These two steps, matching like fields and taking the union of the resulis, allows
the user to search across any set of objects.

The second element in the search is the search criteria: the parameters for
the matching set. Defining the search parameters is perhaps the most difficult
aspect of the VEdit interface because the object types vary widely and the fields
within them rnay differ throughout the hierarchy. The strategy for a multiple
parameter search closely mirrors the hierarchical structure exploration. The user
is presented with a series of objects into which he can enter the search criteria
(blank fields are ignored).

Database Query

Database @
% Shot
Action: *talk*
#* People
Han Solo
Luke Skywalker
Place: Milennium Falcon
Time:
Things

Camera:

Search Cancel

Figure 20: Establishing the Search Limitations [Kobb, 1989]

The final element of the search is result presentation. The results from a
search are displayed in a separate palette named after the search request. By
displaying the results in a new palette, the palette's formatting capabilities can be

43

exploited. The two major classes of palettes are icon each object is represented by
an icon and list where each object is represented by its name and class name.

Building a Personalized Database

Integrated with the editing system is a database construction kit. The
advanced user may even want to add additional fields or entire templates tc his
own databases. VEdit provides the student with the ability to create personalized
databases from creating new objects through incorporating original data into the
new database.

Designing a personalized database begins by choosing the objects contained
in it. VEdit comes with a collection of stock objects, as shown in Appendix B,
from which the user may choose. As shown below, the user can add any existing
object type to the new database. In addition, the user can define a new object type.
This permits the user to incorporate only the segments of the project database
which are of interest and allows the user more useful information in a limited
space.

Objects:

Action

People
Han Solo
Luke Skywalker
Obivan Kenobi
Princess Leia

Place
Death Star
Millenium Falcon
Tatioone

Things

x P

Create New Object Type

Figure 21: Database Construction Kit [Kobb, 1989]

The second step is defining any new object classes. Here, the object
construction kit replaces the database construction kit from before. Once again,
the user can select any existing entry type from the menu at the bottom of the
construction kit and add it to the current template. Entries can also be removed
by the user by first selecting and then pressing the delcte button. In addition, the
user could incorporate an existing template adding its fields to the ones currently
defined. Finally, the user can set the mode for the entry: editable, readable,
invisible, etc.

45

Object Toolkit

Name: Person

Fields:
Name: 7ex? 32
Actor: 7ex? 32
Age: Skort
Height. Floa?
Weight: Skor?
Hair Color. 7ex? &
Eye Color: 7ex? &
Employer: Long
Times: 7ax? 32

T 3 LI

Text & Long
Tax? 32 | Shor?
Text 128\ Floai

Done Cancel

Figure 22: Object Construction Kit [Kobb, 1989]

The final step in personalizing a database is incorporating information
from the original databases. The incorporation seemingly breaks into two pieces,
reference and replacement, which differ only in the time that the conversion
takes place. The reference case is converted at run-time, and the replacement case
is converted at creation. In either case, fields not present in the current template
will not be accessible even if they are present in the preceding template.

Maintaining the Databases

Perhaps the most intriguing capability of the MUD is the built-in
maintenance capabilities. In a true multi-user environment, there appears to be a
need for administration at the database level to parallel the administrative
control at the UNIX level. In response to this apparent need, VEdit has some
built-in maintenance tools for environment control, layout, and protection to
ease the maintenance of the VEdit editing environment.

One of the problems in a distributed database lies in the physical
organization. The first VEdit maintenance tools address the environment
hierarchy and layout: how the databases are physically linked and where they are
located. These tools were placed in the client for security reasons: the client
should control what groups have access to administrate the database. While
these tools are part of the client application, they can easily be incorporated into a
different client.

Another important issue in a multi-user database is protection control.
The second batch of tools are intended to control database access. Once again, the
tools themselves are part of the client but could easily be incorporated into a
different client. These tools encompass everything from adding internal VEdit
groups to changing the modes of various databases. One example is the database
protection menu below which allows the user to change the internal protection
mode of a database.

47

Database Construction Kit

Database
Name: Hal’s DB
Owner: hkbirke
Group: filmwvid
Protection:. O G W
Read: QA X 8
Write: / & @
Filesystem: ~/welfilms
% Shot
Action
% People
1 | Place

Add Remove
Object Object

S
Qﬁ and Cancel

Figure 23: Database Protection Menu [Kobb, 1989]

The third batch of tools form the previously discussed object construction
set which allow the user to build new database objects from the standard set of
building blocks. Again a part of the client, these tools can be rapidly included in a
different client or packaged into a stand-alone construction kit.

48

Chapter 6: Implementing MUD

Implementation of any server-client system can be broken down into
three parts: client interface, network transmission, and server implementation.
The server implementation covers the flexible database implementation atop the
database package. The network support primarily deals with layering a multiple
connection server atop a single user database, making the multiple remote users
appear to be the same local user to the database package. The final segment is the
client interface which is essentially simulates a local database interface over a
network.

Scope of Impiementation

Unfortunately, the implementation can be considered minimal at best.
Due to severe time constraints, the discussed system has yet to be implemented.
In fact, this thesis is a detailed design discussion and specification for a multi-
user networked database service and not an implementation critique of one.
While the service has not been implemented, the VEdit test case, the motivation
for the entire project, has been under constant development for the past ten
months.

Networking the Database

The first element in a MUD implementation is the network support and
interface. The network interface begins with the database interface and extends
through network support into user authentication and advanced error handling
protocols. The initial specification for the inter-process communication is
detailed in the first section. It is followed by a specification for secure
authentication of both the servers and the clients. The last element in the
network interface is error recovery.

Network Communications

The first phase of a network implementation is to implement a TCP/IP
based client-server and server-server protocol. The protocol defines three ports:

49

MUD server, primary server, and remote server. The first port, the MUD server
port, is used by the primary server to ensure connectivity between all of the
servers and the clients. The primary server port carries control communications
to and from the primary server. The remote server port carries data between the
database servers and the clients.

The MUD server port is used to by the primary server to keep track of the
entire database. Clients open connections to the primary server using this port
and the primary server listens to this port for sever status information. Database
servers use this port for similar reasons. Traffic on this port includes control
commands, authentication requests, and connection information.

The second port is the server data connection which is used for the actual
client-server communication. This port is used for raw data communication and
not control information. As opposed to the MUD server port, traffic on this port
does not pass through the primary server to eliminate an excess transmission of
the raw data and increase the apparent database speed. To further increase the
apparent database speed, the client is not required to re-authenticate to the
server. Instead they exchange unique session keys which had been generated
previously by the primary server.

The remaining port is the remote server connection which carries the
server-server communication. While the communication between the servers
may appear to be very similar to the client-server communication, the command
set is slightly expanded. In addition, the authentication procedure is different
because the servers must re-authenticate with each connection. The additional
security is required because the servers all trust one another.

Multiple, Simultaneous Network Connections

After building a network abstraction, the next stage of the implementation
is the network server itself. The server implementation is heavily based on
Galatea, a network based video device server. Essentially, the servers listen on all
open connections and handle requests in a round-robin fashion.

50

Remote Authentication

One of the important, and often overlooked, elements of a secure
networked database is remote user authentication. If the database was used from
a single workstation, each user could have a secure, local account. If the
connection is from a remote machine, however, verifying the remote user can
become very difficult without a remote authentication service.ll Fortunately,
Project Athena provides a such a secure authentication service, Kerberos,
precisely for this purpose.

Client/Primary Server

Authentication between a primary server and a client is a four step
process. First, the client requests a ticket for the database service located at the
primary server. Kerberos returns the MUD ticket and shared MUD key encrypted
in the client's session key. Second, the client decrypts the MUD ticket and shared
key and transmits the MUD ticket and client session key to the MUD server
encrypted in the shared MUD key. Third, the primary server uses its own, local
copy of the shared key to decrypt the transmission,2 extracts the ticket and
decrypt that. The primary server then sends a response encrypted in the client's
session key back to the client. At this point, the client and server have mutually
authenticated.13

Primary Server/Database Server

Authenticating between a primary server and a database server is a
simpler process. First, the primary server requests a MUD ticket for the database

11Project Athena workstations are essentially public machines, complete with a published super-
user password. The only method to verify the validity of a user is through a remote authentication

scheme such as Kerberos.[Miller, 1988]

12The local copy of the shared key is stored in /etc/srvtab or another local file located on each

server machine

13A much clearer and iilustrated example can be found in [Transarc, 1989] in section 2.4: a more

complex mutual authentication procedure.

51

server's host. The primary server then sends a generated session key to the
database server encrypted in the database server's shared key. The database server
decrypts the primary server's request. After obtaining a MUD ticket for the
primary server's host, the database server returns the session key encrypted this
time in the primary server's key. At this point the two servers have mutually
authenticated.

Database Server/Client

The most difficult authentication lies between the database server and the
client. The problem lies not in the authentication, but in propagating the client's
tickets to the database server. The current authentication scheme requires that
the database server be authenticated with the primary server.

Authenticating a client and database server is rather straightforward. First,
the primary server (which is already authenticated with the database server)
sends the database server's shared key to the client encrypted in the client's
session key. Second, the client requests a MUD ticket for the database server from
Kerberos as in the client, primary server authentication. The client then sends
the new session key encrypted in the database server's key to the database server.
The last step is the database server returning its shared key encrypted in the
clients session key. Once again, the two processes have mutually authenticated.

The problem lies in receiving a ticket granting ticket (TGT) on the database _
server but with the clients ticket. Using the new version of the Kerberos library,
it is possible to receive a TGT on the remote machine. An example of this
procedure is available in [Berkenbilt, 1989].

Network Error Handling

An essential part of any network based server is error correction. Network
errors seem to fall into three major categories: momentary, lasting, and
filesystem failures. Each type requires different recovery techniques and
timetables, but neither should incapacitate the entire MUD.14

l4Unfortunately, if the primary server goes off-line for any reason, the entire MUD not only

becomes unusable but has to undergo a complete state reset. The database may be unavailable for

52

Momentary Network Error

A momentary error is essentially a transmission glitch: one or two packets
damaged while traveling between the server and the client or a packet repeated,
dropped or relocated during transmission. By layering the communication atop
TCP/IP, most of these errors are automatically handled before reaching the client
application. The TCP/IP protocol itself will recover from momentary packet
corruption, omission, relocation or repetition.1> This leaves the client to handle
the lasting failures.

Lasting Network Error

A lasting failure is a network error which causes TCP/IP to break
communication and close the socket. These problems are typically caused by one
of the machines crashing or the network link between the two machines being
isolated. In any case, the remote machine will be unavailable from several
seconds to several days.

Galatea uses an appropriate, effective recovery technique. First, there is a
server-server query protocol where one server can send an acknowledgement
request to another. This query will determine if the remote machine is reachable
and operating as a server. If the remote machine is unavailable, the
acknowledgement request will time out and the remote machine will be marked
as down. In addition, a machine will be marked down if a connection to it is
dropped. Finally, if a request to the remote machine times out without being
dropped, an acknowledgement is sent. Only a successful response to the
acknowledgement will keep the remote machine labelled as active.

Unfortunately, the dual server arrangement in MUD can make error
recovery more difficult. The primary server maintains the available server tables

many minutes and all queries in process will have to be restarted. The severity of a primary server
crash can be mitigated by supporting a multiple primary server configuration similar to the Zephyr
arrangement at Project Athena. [DellaFerra, 1989}

I5A complete description of UNIX networking can be found in [Rochkind, 1985]. Using TCP/IP
within a network service is discussed at length in [Secrest, 1986] and [Lefler, 1986).

53

and serves as a clearing house to the remote database servers for this
information. It is theoretically possible for two database servers to each be able to
communicate with the primary server but yet be unable to communicate with
each other. The difficul*v arises in which server to mark down. In fact, this
isolation situation could be much more widespread where a large group of
servers can communicate with each other but not with any of the servers in the
other group. The author has yet to determine an effective recovery technique for
the group isolation problem. One possibility is to mark down which ever group
is smaller. Another is to mark down the less used group.

On the other hand, the dual server arrangement can greatly increase the
robustness of the system. The primary server could assign a different remote
server that has access to that portion of the database as a replacement. While this
requires maintaining a more complicated database server arrangement, it can be
a major advantage in an unstable distributed environment. The replacement
permits a relatively invisible operation to replace the newly unavailable database
segment.

Once a server is marked down, there must be some method of recognizing
that the server has returned. There seem to be two separate modes of recovery
depending on the state of the remote server. First, the remote server has just
started. In this case, it simply announces itself to the primary server and becomes
registered as a database server. The second case is more typical of a network
failure: the remote database server does not realize that it has ever been marked
as unavailable by the primary server. To recover from this, the simplest method
is for the primary server to query the supposedly unavailable database server
every few minutes to see if it has reawakened. Incidently, this is Galatea’s
method of recovery from network failures. In this case, the remote database may
be unavailable for some small period of time, typically less than five minutes,
after its server could have first been contacted.

Filesystem Error

The remaining error mode occurs with remote filesystems. Due to the
distributed architecture of a MUD, not all storage may be local to the database
server. Therefore, the data may become unavailable at any time during server

operation. It is important that the loss of a file locker does not interrupt database
service for more than a few moments.1é The length of the filesystem timeout can
be set when the locker is attached. But once the file locker has become
unavailable, it must be reattached when the filesystem returns to operation. In
this case, the database server must issue attach requests for that remote filesystem
periodically on approximately the same frequency as the primary server polls
defunct database servers.

Furthermore, the unavailability or reacquisition of some portion of the
database must be transmitted to the primary server. This technique has two
important advantages. First, it can permit rapid notification of the clients of the
new database status. Second, it permits the primary server to assign a new
server/filesystem for that portion of the database. While this requires
duplication of the data and a method to resynchronize the separate filesystems
when they both become available, it allows the database to remain available in
the event of a file server crash.

Primary Server Structure

The primary server is designed to control the database as a whole. This
includes maintaining ali of the remote connections, dividing the database
amongst the database servers, and ensuring that the proper authentications have
been made.

Maintaining Remote Connections

The most important role of the primary server is to maintain all of the
remote connections. Given the volatile network environment, machines will
frequently become inaccessible for extended periods. Managing all of the remote
connections can be roughly divided into opening and closing them and ensuring
that all servers are operational.

161.0ss of a remote filesystem will generate operating system-level biocks until either the remote
locker becomes available again or the request times out after anywhere from sixty seconds to ten

minutes. While sixty seconds is marginally acceptable, ten minutes is not an acceptable timeout.

55

Opening and Closing Sockets

In the current specification, the primary server has an open connection to
each client and database server in operation. The TCP/IP stream connection is
created when the remote service becomes available and is closed when it is no
longer in use.

Local Cache of Database Servers

Maintaining a local cache of the database server information is crucial for
dependable operation. First, a local file containing server information will
survive a server or machine crash and enable the primary server to restore state
rapidly when restarted. Second, because the cache contains all of the possible
database servers, the primary server can poil all of the machines listed there to
ensure that they are operational.

Using UDP to Locate Remote Servers

Keeping track of many remote machines can become an intricate
demanding task and has no obvious solution. The chosen technique is to send a
small UDP packet (a ping) to each remote service, client or server, every few
minutes. If the ping is not returned, the connection is closed and the remote
service is declared inactive. If the remote service is a server as opposed ic a client,
then the primary server will continue to ping it every minute until it comes back
on-line.

Structuring the Database

The second important task for the primary server is to maintain the
database, dividing the database up amongst all of the working servers. In
addition to the forementioned database server cache, there is a database segment
cache which contains information about each element in the database and which
server is its default server.

The database is restructured every time a database server either goes off-
line for comes back on-line. In the case of a server going off-line, the server’s
active segments are distributed amongst the remaining servers wherever
possible. If it is impossible tc attach a segment to an operational database server,

56

then the segment is marked down and removed from the database. In the case of
a server coming back on-line, all of the server’s default segments are returned to
it.

Maintaining a Primary Server

A primary server can be maintained in two separate methods.The first,
and easily implemented, technique is to edit the configuration file and restart the
server. The second, and more convenient, is to allow users with a specific
authentication, say “database administrator,” to change the configuration files
over a network configuration. The first technique, restarting the server, has its
advantages in a single-user environment because of its simplicity and
straightforward implementation. In a multi-user environment, shutting down
the primary server (and therefore the whole database) is not a viable option. The
remaining choice is to permit database management over the network.

It seems that the easiest technique for implementing the cache files is to
run a database server on the same machine as the primary server. This particular
database server will only control the database structure and availability
information and none of the real data contained in the database. The primary
server can then communicate with the local database server using the standard
client library to retrieve current database layout and availability information.
The only problems with the additional server is if the file system that the data is
stored on becomes unavailable or the database server crashes. While not too
much can be done about the second failure, the first problem is overcome by
placing the layout and availability files on local filesystems. Local storage of the
database information should not be a major problem because it only numbers a
few hundred bytes per host.

Journals and Logs

In addition to maintaining MUD state information, the primary server
must record this information to be used later. While the information could be
stored in a local disk file, using MUD as storage seems to be advantageous. The
MUD storage could be searched like any other database and could be replicated,
backed up, and maintained along with the rest of the MUD.

57

The simplest technique to permit interaction with the logs through MUD
is an unlogged database. By storing the informatior: in a database, it will be able
to be formatted and searched rapidly. In a large scale system, filtering the small
amount of signal out of the great noise is very important.}” The database will not
be logged otherwise every entry into the log files will create a log entry because of
the modification which will in turn be logged. It is evident that this will result in
an infinite loop of logging that something was logged.

Log:
key: unsigned long
type: unsigned long
Client: Tuple
Logging Host: Tuple
offset: unsigned long
Message: char 256

Figure 24: Log Record Structure

Database Server Structure

The low-level server implementation can be further subdivided into n
portions. The first element is developing an interface for an existing relational
database package. The second step is determining a standard relational database
layout. The next step seems to be optimizing the relational databases based on the
file layout scheme. Finally, the database server needs to propogate or recover
from database level errors.

C-Tree

The database itself is implemented using C-Tree, a commercially available
relational database product for a wide range of platforms. A commercial software
package was chosen because it should operate correctly and any programming

17Project Athena has shown that the filtration can be very important. Currently, all workstations
on campus centrally log certain system messages. Searching across many thousand messages per day

for important ones can be very time consuming and difficult.

58

errors will be rapidly fixed. Furthermore, the support originates from an outside
vendor which further reduces the internal maintenance effort. C-Tree, when
compared with other readily available relational database packages, also seems to
be a significant win. The package seems reasonably bug free, flexible, and stores
information in network byte order so it can be read on all machines.18

File Layout

MUD divides the database into a set of relational databases with each
relational database containing an object type. A database is divided into several
smaller ones based on object type because relational databases typically require
that all of the records in a database file have the same format. Remembering that
a database may be broken up into more than ten relational databases at the C-
Tree level, file management becomes an important issue. The maximum
number of simultaneously open files is typically either thirty-two or sixty-four.
While sixty-four files may seem to be quite a large number of files, they are
quickly filled with database connections and queries.

The easiest method of avoiding this pitfall is to never leave relational
databases open unless they are actively being searched. In other words, open the
database file and the appropriate relational databases, conduct the search and
then close them all. This technique minimizes the number of files open at one
time by keeping the files open for the minimum amount of time. Unfortunately,
repeatedly opening and closing large numbers of files is not very efficient.

An alternate method to avoid too many simultaneously open files is to
split up the MUD database servers among several machines. While this greatly
adds to the implementation complexity and interserver message traffic, it will
reduce the number of open files by reducing the number of databases used by a
given server. For an initial implementation, the first method’s simplicity more
than offsets the second method’s speed advantage.

18While network byte order may seem insignificant, it permits the database server to be run on any
hardware platform. If the data was stored in machine byte order, databases created with the
server running on an RT (big-endian architecture) will not be usable when the server runs ona VAX

(little-endian architecture).

59

Using Indices

Indexing, pre-sorting the database by certain fields, can greatly improve the
access time and search time across the databases. Indexing replaces the run-time
search that is O(1) with a precomputed indexed lookup that is O(log n). This
technique has its greatest advantage in large, static databases. The major problem
with indexing lies in the pre-computation because the index file must be
recomputed every time a value in the indexed field changes or a record is added
or deleted. But in an essentially static database, indexing on commonly searched
records can result in a major performance advantage.

C-Tree directly supports indexing by storing the tabulations in separate
index files. It also contains a complete set of routines to create, search across, and
maintain these index files. The problem with indexing is that the fields must be
specified. The database could maintain a histogram for each database segment
like Ingres, but the complexity and computation involved seem to outweigh the
automation. MUD's solution is to permit the user to specify which fields should
be indexed.

Record Locking

Record locking is very important in a multi-user environment. The
results of multiple users modifying the same record simultaneously could be
catastrophic. With MUD, the first element in the locking scheme is to ensure
that a given database is able to be written to by only one server. MUD
accomplishes locking a database to a server by opening the C-Tree files in
exclusive-only mode, meaning that no other process can open the file. Once the
database is locked to a server, the individual records must be lockable by a client.

C-Tree, however, does not directly support record locking under 4.3BSD
because the operating system does not support it either. Per-record locking can be
simulated easily by maintaining a lock index for each database.[FairCom, 1988]
Because only one server will use a specific database at one time, it will simply
maintain the state state of each record using the lock index file, simply one bit for
each record in the database. Maintaining the lock information in a file is
advantageous because it will survive server crashes and database reassignments.

60

Caching Query Results

If the database server were to cache the results of expensive database
operations, server performance may improve. The most frequently used,
computationally expensive command is the query because it typically traverses a
large segment of the database to find the matches. Caching results of recent
queries can be advantageous because applications will often make repeated,
similar requests in a short time period. The caching also is advantageous in a
multi-stage query for precisely this reason.

The disadvantages of result caching lie in server memory usage and
complexity. The server must be extremely to update the cached request if any of
the queried databases have changed. The simplest technique is to flush the cache
every time a searched database is modified. A more efficient, complicated
approach is to check the cache against the modified data on a per-record basis.
This technique permits the cache to be left relatively intact, only changing the
information that is modified, and improves the longevity of the cache. The other
major caching problem is memory usage: the server size has just been
dramatically increased by storing all of this additional information. Even though
the cache only consists of database tuples, there may be thousands of matches to a
given request. Furthermore, the more queries that are cached, the faster the
repetitive search and the slower the simple operation because the cache must be
checked for each write.

Caching becomes a significant advantage in large, static databases because it
will eliminate a long series of relational database accesses. In smaller databases,
the performance gain is not as evident because a smaller percentage of time
would be spent searching for a query with the same number of matches. In
dynamic database, caching slows down the write operations as each changed
record must be validated in the cache.

Avoiding Variable Length Records

Most database packages including C-Tree permit variable length records,
but they often attach a large performance penalty with the varying record length.
MUD avoids using a variable length record structure in most cases by either
record shadowing or flat-file referencing. The preferred technique depends on

61

the nature of the variable length record and whether the variable length portion
is often searched.

File Replacement

If the record structure contains extensive descriptive information, a text
description of an item, flat-file referencing can remove the body of the text from
the record and place it in a separate UNIX file. Instead, a file system name and
file name, both small, fixed length fields, are placed in the record structure. The
resulting record structure is a fixed length record.

key: key:

Name: Name:

Icon: File Icon:

Address: Replacement: Address:
Description: File Reference:

File Containing
the Description

Figure 25: Results from Using File Replacement

File replacement is useful only when the replaced information is not used
in searches. Two problems arise when attempting to search across this type of
record. First, the data is located in a separate file which much be opened, read,
and then searched. The extensive file i/0 incurs a significant speed penalty.
Second, and most important, C-Tree does not directly support searching on a
non-C-Tree file. As long as the replaced data is not searched, however, it will
greatly speed searching the rest of the record.

62

Record Shadowing

The other technique to translate a variable length record into a fixed
length structure is record shadowing, replacing a single entry with one covering

several separate records. Record shadowing is more useful for discrete data than
descriptive text.

key: key:

Name: Name:

Icon: Record Icon:

Title: Shadowing: Title:

Rectangle: Rectangle:
Number of Shots ﬁ:‘c’;’tgnes Number of Shots:

Shots: ggfxc:garies ShOtSI:OO Tuples

100 Tuples ' —

Figure 26: Record Shadowing

Shadowing has several important disadvantages compared to a simple
fixed length record database which range from decreased performance and
additional complexity. First, the record becomes longer because it must now
include additional fields. Second, the routines to extract and record information
become more complex because they must handle the multiple entry records.
Finally, searching across this database will take longer than the simple fixed
length database because the additional entries must be examined.

63

Most of the disadvantages can be compensated for by adding two fields to
each entry: position and next. The entry’s location within a record is denoted by
the position field. The next field gives the record number of the next entry in the
chain. By combining these two, it is possible to extract an entire record from the
database as a O(1) operation. While the extraction will be slower than extracting a
single record because the entries need not be consecutive, the extraction time
does not depend on the size of the database.1?

Record shadowing encodes the variable length record into a series of
entries. Shadowing yields improved performance compared to file replacement
when searching across the variable length fields and to true variable length
records in all cases. However, it may also increase the complexity and size of the
database more than file replacement. Shadowing seems appropriate for discrete
information which is frequently searched but not for descriptive text.

Journals and Logs

The database server's logs are very similar to the primary server's. They
are maintained in the same format and server the same purposes: audit trace and
error recovery.

Error Handling

The most challenging segment of the implementation is error handling.
Properly catching, evaluating, and propagating errors in a multi-user
environment is difficult because some errors will not only affect the local server
but also may affect other database servers and clients. These errors are divided
into two major sets: UNIX file errors and database errors.

UNIX file errors are the errors dealing with the filesystem including
improper permissions to read the file or non-existent files. A filesystem error,
while it may be triggered by a C-Tree command, does not lie within the database

195trictly speaking, this is not true. In a large database, it is more probable that the database will
be spread across a large section of the physical disk drive which would increase the drive seek

time between records.

itself but instead hinges on the availability of the database. These errors are
propagated back to the primary server. Reactions to these errors range from
ignoring them to retrying the command or marking that portion of the database
unavailable.

Database errors are those errors internal to C-Tree not dealing with the file
system. Examples of database errors include illegal search parameters, no
matches, and invalid or mismatched database formats. The other important
segment of database errors are authentication errors: where the user is not
permitted to access or write the requested information due to internal MUD
protection violations. While these errors may be less severe than a filesystem
errors, they are handled similarly. Typically an error code will be returned to the
client through the primary server notifying them what class the problem fell
into.

Client Function Library

The final element in the initial implementation is the client-side
interface. Essentially, the client library consists of four parts: initialization,
database management, database interaction, and additional utility functions.
Before delving into the data transfer and storage protocol, let us begin with
establishing server connections and authenticating both the client and the
server.

Initialization

MUD initialization is divided into two major areas: server connections
and authentication. The first area, server connections, creates and closes sockets
between the client and the primary server. Authentication is a set of routines
based on the Kerberos remote authentication system which verify not only the
client but also the primary server.

MUD Connections

The first step in using a MUD is to establish a connection to the primary
MUD server. The command, MUD_OpenServer(), establishes the connection to
the primary server, performs an initial client authentication, and returns a MUD
structure. MUD_CloseServer() closes a connection with the specified primary

65

MUD server. In addition, it frees all client storage associated with that database
and causes the database servers to flush all information including Kerberos
tickets pertaining to the client performing the MUD_CloseServer(). A
MUD_CloseServer() is performed automatically when the client exits.

MUD MUD_OpenServer (host, user)
char *host;
char *user;

host Specifies the host name of the system on which the primary MUD server is
running. If the host is NULL then the default MUD server will be contacted.

user Specifies the user name to attempt authentication with the remote MUD
server. The user must already have Kerberos tickets on the local host. If a NULL user is specified
then a generic authentication will be performed.

return value If NULL is returned, the server connection failed. If the authentication fails, a
MUD structure will be returned, but the user fields will be empty. In either case, the error handler
will be called if set.

Int MUD_CloseServer (mud)
MUD mud;

mud Specifies the connection to be closed.

return value TRUE is returned if the close is successful.

Authentication

MUD requires that the client authenticate with the primary server.
MUD_Authenticate() has two primary uses. First, it permits the client to
reauthenticate to the primary server. Given the eight hour lifetime of Kerberos
tickets in the Athena environment, it is possible for a session te span multiple
ticket sets. Second, it permits the client to authenticate to the server as multiple
users to increase access. For example, the client could authenticate as a user and
also as a database administrator to perform some maintenance activities.
MUD_FlushAuthentication{) causes the user's Kerberos tickets to be removed
from all remote servers.

int MUD_Authenticate (mud, user)
MUD mud;
char *user;

int MUD_FlushAuthentication (mud, user)

66

MUD mud;

char *user;
mud The database connection returned by MUD_OpenServer().
user Specifies the user name to attempt authentication with the remote MUD

server. The user must already have Kerberos tickets on the local host. If a NULL user is specified
then a generic authentication will be performed.

Errors

MUD has an error recovery interface similar to Galatea and the X Window
System. The recovery routine is called directly by the client library when an error
is detected. The routine recovers from the error and the client program
continues executing.

Status

Most MUD procedures can generate a wide variety of the errors detailed in
Appendix A. Instead of returning the error number to the client, MUD simply
returns a zero from the procedure indicating that it failed. MUD sets an element
in the MUD structure, MUD_Error, to the appropriate error number. Usually,
the client will not need to deal with this error number unless it installs its own
error handler.

Error Handler

Like Galatea, MUD permits a client defined error handler which will be
called whenever an error code is returned by the primary MUD server. The
procedure is set through MUD_SetErrorHandler() and can be retrieved with
MUD_GetErrorHandler(). In addition, MUD_HandleError() will execute the
defined error handler. While there are large numbers of possible error codes,
several types are easily handled and oft arising.

int MUD_GetErrorHandler (mud, handler)
MUD mud;
void (**handler) (mud, handier);

int MUD_SetErrorHandler (mud, handier)
MUD mud;
void (*handier) (mud, int);

int MUD_GetDefaultErrorHandler .(mud, handler)

MUD mud;
void (**handler) (mud);

67

int MUD_SetDefaultErrorHandler (mud)
MUD mud;

int MUD_HandleError(mud)
MUD mud;

mud The database connection returned by MUD_OpenServer().

handler An error handler procedure to be called when errors are reported by the primary
server. The procedure takes only one parameter, a MUD server structure.

Database Management

The database management section of the client library is also composed of
two major parts: database structure and template storage. The first section,
database structure, returns information about the database hierarchy to the client.
The second element of database management provides a method for uploading
templates from the client to the server and also downloading them from the
server to the client.

MUD uses a hierarchically arranged database where the individual
segments of the database are linked together. While the complexity of the links
may vary from one application to another, the links still exist and the database
structure can be extracted. MUD_GetCurrentDatabase returns the current
database segment. MUD_GetTopLevelDatabase yields the segment considered to
be the database root by the primary server. MUD_GetParentDatabases returns all
database segments directly related to the given segment. Finally, a complete list
of all children of the current segment is returned by MUD_GetChildDatabases.
The remaining function in this portion of the library, MUD_SetCurrentDatabase,
sets a new current database segment.

Database MUD_GetCurrentDatabase (mud);
MUD mud;

int MUD_SetCurrentDatabase (mud, dbase);
MUD mud;
Database dbase;

Database MUD_GetTopLeveiDatabase (mud);
MUD mud;

int MUD_GetParentDatabases (mud, dbase, parents, maxParents);
MUD mud;
Database dbase, *parents;
int maxParents;

68

int MUD_GetChildDatabases (mud, dbase, children, maxChildren);
MUD mud;
Database dbase, *children;
int maxChiidren;

int MUD_CreateDatabase (mud, dbase)
MUD mud;
Database database;

mud The primary server connection returned by MUD_OpenServer().

dbase Database structure representing a given portion of the overall database
environment. This is returned by MUD_GetCurrentDatabase() and MUD_GetTopLevelDatabase().

parents An array of database structures that are parents to the given database. In other
words, all of the databases that are referenced in the template segment of the given database. This
array must be pre-allocated by the client.

maxParents Maximum number of parent database structures to load. Typically this is the
size of the parents array.

children An array of database structures that are children of the given database. In
other words, all of the databases that directly use information present in the given database. This
array must also be pre-allocated by the client.

maxChildren Maximum number of child database structure to upload. Typically this integer
is the size of the children array.

return value For MUD_GetCurrentDatabase() ard MUD_GetTopLevelDatabase(), the
return value is the corresponding database structure. MUD_SetCurrentDatabase() and
MUD_CreateDatabase() use the return value 2as a status (see above under Errors). The
MUD_GetParentDatabase() and MUD_GetChildDatabases() return the total number of matching
databases.

The other half of of database management is the template control
routines. These procedures control exchange templates between the client and
the servers as well as control which templates are available to the database
servers. Because a template is another object class, creating, storing, and loading
them can be performed using the standard read and write routines specifying a
template object class. The remaining routines break down into two rough
groups: upload and download. To send a template either to or from the MUD
server there is a single template transmission function, either
MUD_GetDatabaseTemplate() and MUD_SetDatabaseTemplate(), and a multiple
template transmission function, MUD_GetDatabaseTemplates() and
MUD_SetDatabaseTemplates().

int MUD_GetDatabaseTemplate (mud, dbase, objectType, template)
MUD mud,;

69

Database dbase;
int objectType;
Template template;

int MUD_SetDatabaseTemplate (mud, dbase, objectType, template)
MUD mud;
Database dbhase;
int objectType;
Template template;

int MUD_GetDatabaseTemplates (mud, dbase,
templaies, maxTemplates)
MUD mud;

Database dbase;
Tempilate *templates;
int maxTemplates;

int MUD_SetDatabaseTempilates (mud, dbase, number, objectTypes, templates)
MUD mud;
Database dbase;
int number;
int *objectType;
Template *templates;

mud The database connection returned by MUD_OpenServer().

dbase Database structure corresponding to the desired element of the database
environment.

template The template for the given database structure for a specific object class. The

template contains all of the formatting information for each object class present in the database.

templates An array of templates for a given database. This array must be pre-allocated
by the client.

maxTemplates Maximum number of templates to load. Typically this will be the size of the
templates array.

Database Interaction

After establishing which portion of the database to work with, the next
step is to be able to load elements from and store them into the databases and
then find them ag«in. The first third of this library porticn are the routines
which reirieve information frem and store information into the database. The
second, and more complex, portion of database interaction is the searching itself.
The final third of the interaction segment is record locking.

Loading and Storing
Retrieving information from and writing it into the database are rather

straightforward two-step procedures. First, the remote server must verify that

70

the user has the desired access. Second, the data must be transmitted either to the
server or to the client depending on the request. MUD_StoreObject() and
MUD_StoreObjects() enter either one or more than one element into a given
database segment. If a segment is not specified (the tuple contains a negative key)
then a new record is allocated and the key number is placed in the tuple.
MUD_LoadObject() and MUD_LoadObjects() read either one or multiple records
from the given database segment.

int MUD_StoreObject (mud, dbase, tuple, objType, object)
MUD mud;
Database dbase;
Tuple tuple;
int objType;
Object object;

int MUD_StoreObjects (mud, dbase,
tuples, objType, objects, numObjects)
MUD mud;
Database dbase;
Tuple *tuples;
int objType;
Object *objects;
int numObjects;

int MUD_LoadObject (mud, dbase, tuple, objType, object)
MUD mud;
Database dbase;
Tupie tuple;
int objType;
Object object;

int MUD_LoadObjects (mud, dbase,
tuples, objType, objects, numObjects)
MUD mud;
Database dbase;
Tuple *tuples;
int objType;
Object *objects;
int numObjects;

mud Connection returned by MUD_OpenServer().
dbase The database to load from or store into.
tuple If the operation is reading from the database, it specifies which database

record to load. If the operation is writing to the database, it returns the database record that was
written.

tuples If the operation is reading from the database, it specifies which database
records to load. If the operation is writing to the database, it returns the database records that
were written. This array must be pre-allocated by the client.

71

object Object that should be stored into or read from the database in a single object
operation. The object must be pre-allocated by the client.

cbjects An array of objects that should be stored into or read from the database during a
multiple object operation. This array must be pre-allocated by the client.

numObjects The number of objects to read or write in a multiple object operation. The size is
typically the smaller of the object and tuple arrays.

Searching

The MUD library provides several classes of functions to permit a variety
of different queries to be performed. These searches are divided based on database
traversal and matching functions. Before delving into the actual library
functions, the basic functionality needs to be discussed. There are two major
control parameters for searching: search type and ALU function.

Given the hierarchical structure and large scope of the database,
controlling the progression of a search is very important. The search type
determines how the search proceeds from the initial database segment. The
currently supported categories permit searching upwards, downwards, giobally,
and locally limited by the client’s access permissions.

The ALU function controls whether or not a given record is considered a
match. The ALU function name is directly derived from the like-named logical
operator. Most databases limit the user to a simple "and" function which
matches records across all fields. MUD has added several additional ALU
functions for additional functionality: or, nand, nor, xor, and noop. For example,
the "or" function matches records which have at least one defined field the same
while the "nor" function matches records with no fields the same.

The database also limits the number of objects which can be matched and
returned to the client. MaxObjects controls the number of objects, passed to the
server, which may be used in a single query. MaxReturn limits the number of
records which will be matched until the query aborts. This is intended to avoid
accidental, large queries which could match the whole database.

The MUD servers maintain these search parameters for each client based
not only on the clients authentication level but also on client requests. While
the client cannot request more information or more general search categories

72

than the default parameters based on the authentication level, the client can
further limit them. MUD_SetSearchParameters() enabies the client to establish a
different parameter set. MUD_GetSearchParameters() retrieves the client’s
current search parameters. Finally, MUD_GetDefaultSearchTaramaters() returns
the default search parameters and MUD_SetDefaultSearchParamaters() returns
the search controls to the initial server limits. These routines are all atomic: if
any of the three parameters is outside the server imposed limits, the entire
request will fail.

int MUD_SetSearchParameiers (mud, searchCiass, searchOperation,
maxObjects, maxReturn)
MUD mud;
int searchClass;
int searchOperation;
int maxObjects;
int maxReturn;

int MUD_SetDefaultParameters (mud)
MUD mud;

int MUD_GetSearchParameters (mud, searchClass, searchOperations,
maxObjects, maxReturn)
MUD mud;
int *searchClass;
int *searchOperation;
int *maxObjects;
int *maxReturn;

int MUD_GetDefaultSearchParameters (mud,
searchClass,
searchOperations,

maxObjects,
maxReturn)
MUD mud;
int *searchClass;
int *searchOperation;
int *maxObijects;
int *maxReturn;
mud The database connection returned by MUD_OpenServer().
searchClass Specifies the desired search pattern, one of SEARCH_TREE,

SEARCH_BRANCH, SEARCH_LEAF, SEARCH_GLOBAL.

searchOperation Specifies the ALU operation used during the search. It must be one of
SEARCH_AND, SEARCH_OR, SEARCH_XOR, SEARCH_NAND, SEARCH_NOR,
SEARCH_NOT, or SEARCH_NOOP.

maxObjects Specifies the maximum number of objects allowed to be searched for at one time.

73

maxReturn Specifies the maximum number of matches to return to the client at one time
regardless of maximum number specified by the search command.

In addition to setting search parameters, clients can manually control
search caching within the database servers. MUD_ClearSearchSet() allows the
client to free a specific search set. MUD_ClearSearchSets() permits the client to
flush all search sets associated with a particular segment of the database. These
two routines are intended to be called after a multiple stage search has been
completed. MUD_ClearAllSearchSets() enables the client to free all server-side
cached search information. This routine is most effective in recovering from
MUD_MEMORY_EXHAUSTED errors during search operations. In all cases, the
client must be authenticated with the primary server and have sufficient
permissions to execute the commands. All search set commands return TRUE
only if wholly successful. While a FALSE return value may be returned, some of
the search sets may have been cleared before the error condition arose. If a query
is attempted using a cleared search set, the original query is performed and then
the requested operation is performed.

int MUD_ClearSearchSet (mud, searchSet)
MUD mud;
int searchSet;

Int MUD_SetSearchSet (mud, numObjects, Objects)
MUD mud;
Int numObjects;
Object *object;

int MUD_ClearSearchSets (mud, dbase)
MUD mud;
Database dbase;

int MUD_ClearAllSearchSets (mud)

MUD mud;
mud Primary server connection returned by MUD_OpenServer().
dbase Database segment for which all search sets are flushed.
searchSet Search set, as returned from a search command, to flush from server memory.

The next group of routines in the search segment of the client library are
the search routines themselves. These fall into two groups: the general search

74

routine and several convenience search routines. The general search routine is a
more powerful but slightly more cumbersome than the convenience routines.

The general search routine, MUD_Search, uses the current search set,
ALU function, and progression to conduct a multi-object query. The major
advantage of the general search command is the ability to search against multiple
objects. This reduces the number of server requests, cached search results, and
network transmissions. Multiple, simultaneous searching has its advantages
over a series of single queries and then intersecting or unioning the results
because the database is only searched once.

int MUD_Search (mud, dbase, numObjects, objType, object)
MUD mud;
Database dbase;
int numObjects;
int *objType;
Object *object;

mud Primary server connection returned by MUD_OpenServer().

dbase Database segment which acts as the root for the search.

numObjects Number of objects included in the search list.

objType Class of the search object. Used to reference the object template within the

server. This is an array of integers.

object The keys to search with are in this array of objects. Only fields present in the
objects are used as match criteria. The object types must exist in the root database.

The convenience routines simply specify the search class, or the database
traversal mode, in the function name along with the ALU function. The
functions do not change any of the defined search parameters; they are defined
internally to the convenience routines. In fact, the convenience routines’
functionality is reduced because they do not accept a list of objects to match
against. These routines may signal a variety of error conditions ranging from
protection violations to illegal search parameters and too many matches.

There are four convenience routines: MUD_LeafSearch(),
MUD_BranchSearch(), MUD_TreeSearch(), and MUD_GlobalSearch(). The first
routine searches only the given database segment. Branch searching begins with
the named database segment and continues downward. Tree searching begins

75

with the specified segment and continues upward in the database. The final,
exhaustive search mode is global search which searches the entire database.

int MUD_LeafSearch (mud, dbase, searchSet, objType, object)
MUD mud;
Database dbase;
int searchSet;
int objType;
Object object;

int MUD_TreeSearch (mud, dbase, searchSet, objType, object)
MUD mud;
Database dbase;
int searchSet;
int objType;
Cbject object;

int MUD_BranchSearch (mud, dbase, searchSet, objType, object)
MUD mud;
Database dbase;
int searchSet;
int objType;
Object object;

mud Primary server connection returned by MUD_OpenServer().

dbase Database segment which acts as the root for the search.

searchSet Specifies a previously searched group as an initial search set.

startingPos Specifies the position within the search set to begin the upload.

objIype Class of the search object. Used to reference the object template within the
server.

object The key to search with. Only fields present iﬁ the object are used as match

criteria. This object must exist in the root database.

Once the application has conducted searches it may want to combine the
results of those searches before loading the data over the network. MUD
provides two routines, MUD_IntersectSearchSets() which generates a new search
set consisting of the tuples present in both sets and MUD_UnionSearchSets()
which generates a new search set consisting of the tuples contained in both sets.

int MUD_IntersectSearchSets (mud, setl, set2)
MUD mud;
int set1, set2;

int MUD_UnionSearchSets (mud, set1, set2)
MUD mud;
int seti,set2

mud The primary server connection returned by MUD_OpenServer().

76

setl, set2 Key numbers to two separate search results.

After conducting the search, the client must then retrieve the data from
the remote server. MUD_GetResults() permits the client to upload a specific
segment from the overall results based on starting position anég number of
results to load. It returns the number of results actually uploaded from the
database server. As before, MUD_GetResults can signal a variety of errors
ranging from MUD_NO_PERMISSION to MUD_BAD_PARAMETER.

int MUD_GetResults (mud, searchSet, startingPos, results, maxResults)
MUD mud;
int searchSet;
Tuple *results;
int maxResults;

mud Primary server connection returned by MUD_OpenServer().

searchSet Specifies a previously searched group as an initial search set.

startingPos Specifies the position within the search set to begin the upload.

resulis An array of database tuples containing the results of a specific search. This

array must be pre-allocated by the client.

maxResults Maximum number of database tuples to return to the client. Typically, this is
the size of the results array.

Locking

The final element of the client interaction library is record locking:
allowing the client to lock certain records or groups of records so that they can be
updated. The records are automatically unlocked when the MUD connection is
closed.

int MUD_LockRecord (mud, database, tuple)
MUD mud;
Database database;
Tuple tuple;

int MUD_LockRecords (mud, database, number, tuples)
MUD mud;
Database database;
int number;
Tuple *tuples;

int MUD_LockSearchSet (mud, searchSet)
MUD mud;
int searchSet;

int MUD_UnlockRecord (mud, database, tuple)
MUD mud;
Database database;
Tuple tuple;

int MUD_UnlockRecords (mud, database, number, tuples)
MUD mud;
Database database;
Int number;
Tuple *tuples;

int MUD_UnlockAll (mud)

MUD mud;
mud Primary server connection returned by MUD_OpenServer().
database Specific database to operate on.
tuple Individual record specification to lock or unlock.
number Number of tuples to lock or unlock.
tuples Array of record specifications to lock or unlock
searchSet Specifies a previously searched group as an initial search set.
ility F ion

In addition to searching, loading, and storing, the MUD Client Library
permits the user to reset the connection, flush client-specific information from
the server, and upload performance and usage statistics from the server. These
routines are not really intended for normal use, but they are intended to aid in
debugging, benchmarking, and error recovery.

MUD_ResetServer() performs a full reset of both the client-side and
server-side of MUD. The only difference between a reset and closing and
reopening the mud connection is that the connection with the primary server
remains open during the reset. The client, however, must reauthenticate,
reestablish connections to database servers and reset any internal client MUD
parameters. Resetting the server does not require valid Kerberos tickets and can
be performed by all clients. MUD_ResetServer() returns TRUE only if the
operation is fully successful. It is useful to note, however, that the only failure
mode for a reset is MUD_PRIMARY_RESET meaning that the client cannot
contact the primary server.

int MUD_ResetServer (mud)

78

MUD mud;
mud The database connection returned by MUD_OpenServer().

If a full reset is not desired, the client can also flush all information about
itself from the database servers. MUD_FlushServer() leaves the connections
intact while flushing search results and other client-specific information from
the database servers. Since the connection between the primary server and the
client is maintained and the primary server’s local client information including
authentication is retained, the client must have valid tickets and permission for
a flush server operation. The function returns TRUE only if the entire operation
was successful.

int MUD_FlushServer (mud)
MUD mud;

mud Server connection returned by MUD_OpenServer().
return value Returns TRUE if a flush was successfully conducted. Returns FALSE any portion

of the operation failed.

In addition to resetting the server, the client can also get information
about the server. MUD_GetServerStats() uploads a portion of the current
statistics from the primary server. The degree of detail will depend on the client’s
level of authentication (system administrators will permit global, detailed
information while a standard user will only be able to get information about his
connection). Once again, the return value is TRUE if successful.

int MUD_GetServerStats (mud, stats)

MUD mud;
Statistics stats;
mud Server connection returned by MUD_OpenServer().
stats Statistics structure returned to the client. This structure must be pre-allocated.

The next utility function MUD_Compress() which will take a given
database and remove all of the deleted records, returning to the user a
compressed, compact database. Unfortunately, because the MUD implementation
uses record-shadowing, the compress routines become a little more complicated.
The result is a modified compression routine which first determines if a given
deleted record is actually being used by a previous record. The precise record
length can be determined from the record size and repetition count stored in the

79

database cache. After determining a record’s length then the compression can
skip to the first start after this point and begin normal processing again.

80

Chapter 7: Conclusions

MUD seems to solve several significant problems with available multi-
user, networked database services: real-time interaction, configurable databases,
distributed services, centralized administration and secure transactions.

Real-Time Interaction - Uses a network protocol layered on top of an ISAM
relational database to provide rapid access to large, remote databases.

Configurable Databases - Uses templates either read from the database or
dowrloaded by the client to describe the data organization.

Distributed Services - Permits multiple database servers to control separate
segments of the database to improve speed and availability.

Centralized Administration - Stores information in standard MUD database
format so it can be controlled through a standard MUD client.

Secure Transactions - Uses the Kerberos authentication service to aid in mutual
authenticatior and provide encryption keys for internal communication.

81

Chapter 8: Future Work

MUD is by no means complete either in design or implementation. Multi-
server support has not been thought out with enough consideration. In addition,
authentication in general can use additional refinement. Most importantly,
however, the implementation is essentially non-existent.

Multiple Server Support

The design for a MUD server does not directly address using and
implementing multiple servers for the database storage. While the interface
could permit the client to open multiple server connections, allowing the
database server to make the remote server connections seems preferable. There
seem to be two different approaches to the problem: using server-server or
server-client protocol.

The server-client protocol communicates between servers using the same
protocol as a client would use when communicating with a server. The
requesting server would make its requests and receive its information through
the client library functions. This technique makes it easier to implement the
server-server interface, but restricts the server to the client’s limited requests.
More importantly, it requires the server to ask the its own client for a new set of
Kerberos tickets for the remote server.

The server-server protocol establishes a different protocol for interserver
communications. The major disadvantage when compared with the client-
server communication lies in implementation. Fortunately, the implementation
can be minimized by modifying the client-server code for the new formats. The
advantages lie in authentication and survivability. By using a separate
communications protocol, the local server and the remote server can
authenticate each other via Kerberos without asking a client for Kerberos tickets.
In addition, the protocol can be tailored to different specs. For example, servers
will rarely want to execute remote storage requests but will often want to access
query results.

82

User Authentication

In addition to implementing the server, user level authentication and
protection needs to be implemented. The proposed technique is to make the
MUD server a secure client using the Kerberos authentication system. The
requirements for this become rather hazy at the moment because Project Athena
is not utilizing the most recent version of the Kerberos remote authentication
service. The problem is that a special ticket, called a ticket granting ticket or TGT,
must be issued to the user and this is not currently supported. The TGT is needed
so that the client can generate valid Kerberos tickets for the user to use on other
machines. Without these remote tickets, the databases must all be world-readable
and server-writable in order to work. Essentially, the users all map to the same
database user, eliminating all but the internal database protection.

Implementation

Due to time constraints imposed upon the author, the MUD system was
not actually implemented. The implementation naturally segments itself into
three major categories: database server, C-Tree interface, and client library. The
advantage to this particular division is that the parts can (and should) be
implemented in parallel to result in a working MUD before February.

Developing a reasonably robust client library is the simpler of the three
elements of the implementation. Since the client library is rather smc I, concise,
and highly abstracted, it is essentially independent from the server-side
implementation. Based on Daniel Applebaum’s implementation of Galatea, the
client library should be implemented in less than one month and remain
essentially static throughout server development.

Implementing a secure, robust MUD server is not a simple,
straightforward task. Based on Galatea, server development will be an ongoing
evolution. Most of the initial effort should be placed in the load, store, and
search functionality with authentication and error recovery coming later.
Fortunately, the server should be usable within a few months and fleshed out in
less than one year.

83

The most difficult portion of the server-side implementation lies in the C-
Tree interface. While C-Tree is a very fast relational database, programming with
it can be rather gruesome and obtuse at times. Fortunately, Jeff Johnson has spent
the last year learning how to use C-Tree rapidly, effectively, and
efficiently.[Johnson, 1989] Given Johnson’s past work as a starting point, the
relational database interface should be a difficult but doabie segment of the
project. It seems reasonable to allocate one month for an initial implementation
with refinements occurring throughout the rest of the server development.

All in all, the server implementation should be completed in three man-
terms. One programmer developing the database server, one the C-Tree
interface, and one the client library and sample application (VEdit). A final
implementation, however, will not be forthcoming for at least one year.

Appendix A: VEdit Database Objects

Before embarking on the description of the objects themselves, let us
define a few common object fields. These structures are not actual objects
themselves but are contained within the objects.

The first two, clip and switch, are used to define edits. A clip is a segment
of source material while a switch describes how to go from one clip to another.20

Clip:
Initial Frame: unsigneu long
Source: Tuple
InFrame: unsigned long
OutFrame: unsigned long
Speed: signed long
Switch:
Frame: unsigned long
InputClip: unsigned long
OutpuiClip: unsigned long
Duration: unsigned long
Switch Type: StateArray

The field sub-type is used to specify the consistes of a field name, type, and
set of flags. It describes a field within a record as defined in the object’s template.

Field:
Name: char31
Record Type: unsigned long
Flags: StateArray

The file reference is used during file replacement to eliminate a textual
description from the record and replace it with a file handle. The handle consists

20A complete description of the Galatea Seamless Extension including clips and swiiches can be
found in [Applebaum, 1989].

85

of a hesiod file system name that can bew resolved by the attach command and a
path to look at once the remote filesystem is attached.

FileReference:
Realm: Tuple
FileSystem: char31
Path: char127

The tuple is the generic database handle: a unique identifier used to find a
specific record anywhere in the database. The first field, the realm, denotes what
database hierarchy the record is in which allows separate hierarchies to co-exist.
The database key specifies which database within the realm to look at. The object
key further narrows the record’s location to a specific object type. The final field,
the record key, contains the specific key in the object database.

Tuple:
Realm Key: unsigned long
Database Key: unsigned long
Object Key: unsigned long
Record Key: unsigned long

Computer

The computer record contains information describing an individual
machire and is used to maintain information about hosts used by the MUD
server.

Computer:
key: unsigned long
Name: char31
Address: unsigned long
Icon: Tuple
Owner: Tuple
Location: Tuple
Description: char€3
numPrimDatabases: unsigned long
<PrimDatabases>: Tuple
numSecDatabases: unsigned long
<SecDatabases>: Tuple

Database

The database is an object which describes a database, its configuration,
protection, location, and appearance. Typically there are multiple copies of this

86

record: one within a given database and one located in the database database so
that the database can be easily located.

Database:
key: unsigned long
Name: char127
Parent: Tuple
Icon: Tuple
State: StateArray
numGroups: unsigned long
<Groups>: Tuple
<Access>: StateArray
numLocations: unsigned long
<Location>: File Reference
<Log File>: File Reference

Edit

The edit is the atomic list management unit used by VEdit. It contains the
physical information about the shot or squence of shots enabling it to be played
back. Specifically it contains the physical information (shot), ancestral
information (parent), and EDL management information (clips and switches).

Edit:
key: unsigned long
Shot.: Tuple
Parent: Tuple
Mode: StateArray
NumberClips: unsigned long
<Clips>: Clip
Number Switches: unsigned long
<Switches>: Switch

Employer

An employer record holds all of the necessary information pertaining to
an employer. In addition to the name, address, telephcne number and owner,
the record contains all of the employees and the represenative icon.

87

Employer:

key: unsigned long
Name: char31

Type: Tuple

Icon: Tuple

Owner: Tuple
Location: Tuple
Description: FileReference

Group or ACL

The group or ACL (Access Control List) record is a variable length record
containing not only the name for a group but a list of all of its members. It also
contains a textual description and a representative icon.

Group:
key: unsigned long
Name: char31
Icon: Tuple
Description: char127
Number Users: unsigned long
<Users>: Tuple

[—)
()

g
=

The icon record contains all of the information needed to form a video
icon: location, frame, and size. It alsc contains the input region for the icon: the
area of the frame to digitize to form the icon.

Icon:

key: unsigned long
Icon Width: signed long
Icon Height: signed long
Source Media: Tuple

Frame: unsigned long
Video X: unsigned long
Video Y: unsigned long
Video Width: unsigned long
Video Height: unsigned long

Item

The item record is the generic record containing a name, type, icon, and
decription for a physical object like a car.

Items

key: unsigned long
Name: char31

Type: Tuple

Icon: Tuple
Description:” FileReference

Log

A log record is used to record database transactions by both the primary
and database servers. it uses a modified form of file replacement to optimize
storage: a specific file reference is not made, instead the offset is used in searching
a journal file for the message text. The log file name is recorded in the database
structure.

Log:
key: unsigned long
type: unsigned long
Client: Tuple
Logging Host: Tuple ..
offset: unsigned long
Message: - char 256

Palette

A palette is a variable length record contains the information necessary to
construct a palette full of icons. The first part of the record includes the palette
name, icon, size, location, and description. The second half of the record contains
the list of all of the objects contained in the palette and where they should be
positioned.

89

Palette:

key: unsigned long
Name: char127

Icon: Tuple

Palette X: signed long
Palette Y: signed long
Palette Width: unsigned long
Palette Height: unsigned long
State: StateArray
Description: FileReference
Number Elements: unsigned long
<X>: unsigned long
<y>: unsigned long
<Elements>: Tuple

Person

A person, or character, record is used to store informatinn about a
character in the movie database. It is very simuiar to the employer record,
containing additional fields for job type and employer. Essentially, it is composed
of the person’s name, address, phone number, job, employer, and description
along with the icon representation.

Person:
key: unsigned long
Name: char31
Address: char3l, char31
Zip Code: unsigned long
Telephone: unsigned long
Icon: Tuple
‘ob Type: Tuple
Employer: Tuple
Description: FileReference

Place

The place record contains important information about a physical
location: namem address, phone number and description. In addition it contains
a reference icon and the type, or category, of building.

920

Place:

key: unsigned long
Name: char31
Address: char31, char31
Zip Code: unsigned long
Telephone: unsigned long
Type: Tuple
Icon: Tuple
Description: FileReference

Realm

The realm object goes in conjuncticn with the user, group, and database
objects. As the user object describes an individual user within a realm, the realm
object describes a realm within the network. It is used to seperate the various
Kerberos realms from one another because database, user, and group ids may be
replicated amongst them. For example, there may be a user at Carnegie-Mellon
University with the same username as a different user at MIT.

realm:
key: unsigned long
Name: char31
Icon: Tuple
Net Suffix: char31
NumberServers: unsigned long
<ServerName>: char31
<ServerIPAddress>: unsigned long

Shot

A shot is a variable length record that contains all of the physical
information about a given edit. The physical information ranges from date, time,
camera information and location of the shot to the actors in the shot, description,
and initial cut.

91

Shot:

key: unsigned long
Name: char31

Icon: Tuple

Date: unsigned long
Time: unsigned long
Place: Tuple
Number Actors: unsigned long
<Actors>: Tuple
Camera Info: StateArray
Initial Edit: Tuple
Description: FileReference

Source

The source record contains information regarding a piece of source
material. The record includes not only the name, icon and description but also
the source type (audio, videodisc, videotape, film, uncontrolled) and locations
that the source may be found.

Source:
key: unsigned long
Name: char31
Icon: Tuple
Source Type: unsigned long
Description: FileReference
Number Locations: unsigned long
<Locations>: Tuple

Template

The template contains enough descriptive information to format a given
object. It is composed of the template name, icon, and object class in addition to
the descriptions for each entry within an object record.

92

Template:

key: unsigned long
Name: char31
Icon: Tuple
Object Class: unsigned long
Number Fields: unsigned long
<Fields>: Field

Type

The type record is used as a generic text lookup and is used typically as a
cross reference to avoid a string match. It simply contains a string in addition to
the required four byte identifier.

Type:
key: unsigned long
Name: char 31

User

The final database object is the user: a record containing all of the personal
informaticn associated to a user. In addition to the user’s first and last names, it
also contains some default group information and representative icon. The
remaining two fields. username and uid, uniquely specify the user to the
operating system.

User:

key: unsigned long
Username: char8

Last Name: charl5

First Name: charl5

uid: unsigned short
Default UNIX group: unsigned short
DefaultGroup: Tuple

Icon: Tuple

93

Appendix B: Glossary of Technical Terms

Access Control List: A group and a list containing users who are members of the
group. This is very similar to a UNIX group.

Client: A process that requests a service from a server in the course of
performing some functions of its own. Often the client is acting on behalf
of a user. [Transarc, 1989]

Cluster: A group of workstations located in the same room.
Database Server: The server that oversees a particular portion of the database.

Database Tuple: A reference to a specific element in the entire database. The tuple
consists of the database id, object id, and record id.

Edit: The VEdit term for a “shot.” Encompasses everything from a simple butt-
cut to an EDL containing several hundred separate shots.

Ethernet: The network which links computers together within a small area. For
example, all machines in a cluster are on the same loop of ethernet but the
clusters are not connected together with ethernet.

File System: A directory tree which can be attached to remote workstations. For
example, the filesystem “hkbirke” is the author's home directory
structure.

Hesiod: A name service that allows an application to retrieve associations
between a name, particular service type, and information about that
named service. [Dyer, 87]

ISAM: Indexed Sequential Access Method. This is an old IBM relational database
term that has lost its specific meaning. Broadly, it describes a class of
relational databases which can be accessed both sequentially and through
an index.

Kerberos: A remote authentication service designed, implemented and used by
MIT Project Athena. It permits processes to verify the identity of the
remote service.

Key: The unique number given to a Kerberos principal by the Kerberos ticket
granting server. This number is used to uniquely identify the client.

Mutual Authentication: The process by which two separate processes verify that
the other process is who it claims to be.

94

Network: The pathway over which information is ransmitted from one
computer to amother. The physical ethernet cable, connectors, gateways,
bridges, and other associated hardware associated with the network.

Palette: VEdit's general purpose cataloguing device, similar to a directory for
UNIX or a bookshelf for a library.

Primary Server: The server that controls and maintains the MUD environment.

Record Shadowing: Representing a variable length record as a fixed length record
by storing the remaining elements in successive deleted records.

Server: Aprocess which performs a related set of services such as fetching files,
maunipulating volumes, providing authentication, and distributing
database service. [Transarc, 1989]

SQL (Structured Query Language): SQL is both a description for a database
interface and a class of databases. As an interface, it is a flexible, powerful,
high-level interface specification. As a class, it is composed of all databases
that use the SQL query language. Ingres and Sybase are SQL databases.

Template: A list of field names, types, and states for a record type.

VEdit: VEdit is the integrated video editing system written by Hal Birkeland and
Mike Kobb of the Film/Video Section of the MIT Media Lab. It serves as
- the sample application for the database service.

Workstation: A publicly available, single-user machine similar to a personal
computer.

95

References

Applebaum, D. “The Galatea Network Video Device Control System,” short
paper, MIT Media Laboratory, 1989.

Beauchamp, Donovan C. A Database Representation of Motion Picture Material,
S.B. Thesis in Electrical Engineering and Computer Science, MIT , 1987.

Berkenbilt, E. Jay “rkinit,” MIT Project Athena, 1989.

Birkeland, Halvard K. VEdit Users Manual,, Film/Video Section, MIT Media
Laboratory, 1989.

Davenport, G. “New Orleans in Transition, 1983-1986: The Interactive Delivery
of a Cinematic Case Study,” Film/Video Section. MIT Media Laboratory.
Paper presented to the International Congress for Design Planning and
Theory, Boston, August, 1987. -

Davenport, G. “Software Considerations for MultiMedia Video Projects,”
Film/Video Section, MIT Media Laboratory. Paper presented to the X11
Video Extension Technical Meeting at Bellcore, June 1988.

Davenport, G., Birkeland }., and Kobb, M. Conversation, 15 September 1989.

DellaFerra, C. et al Section E.4.1: Zephyr Notification Service, MIT Project
Athena, 1989.

Dyer, S. “The Hesiod Name Server,” MIT Project Athena, 1989.

Dyer, S. “Hesiod Name Service Application Programmer’s Guide.” MIT Project
Athena, 1987.

FairCom c-tree File Handler Programmer’s Reference Guide., 1988.

Johnson, J. Research Progress Report, Film/Video Section, MIT Media
Laboratory, 1989.

Kobb, Michael J. Research Progress Report, Film/Video Section, MIT Media
Laboratory, 1989.

Kohl, John T. A Database System for the MIT Residence/Orientation Program,
SB Thesis in Electrical Engineering and Computer tcience, MIT, 1988.

Leffler, S. et al An Advanced 4.3BSD Interprocess Communication Tutorial.
Computer Systems Research Group, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, 1986.

96

Levine, P. et al Section E.1: Moira, the Athena Service Management System, MIT
Project Athena, 1989.

Mackay, W. and Davenport, G. “Virtual Video Editing in Interactive Multi-
Media Applications,” Communications of the ACM, July 198Y.

Mendelsohn, N. “GDB C Library Reference Manual,” MIT Project Athena, 1986a.
Mendelsohn, N. “A Guide to Using GDB,” MIT Project Athena, 1986b.

Miller, S., Neuman, B., Schiller, J., and Saltzer, J. Section E.2.1: Kerberos
Authentication and Authorization System, MIT Project Athena, 1988.

Pepe, Louis J. A Digitial Icon Representation for Movie Editing and Analysis, S.B.
Thesis in Electrical Engineering and Computer Science, MIT, 1988.

Relationa Technology Inc. Ingres/QUEL Self-Instruction Guide, 1985.

Rochkind, Marc J. Advanced UNIX Programming , Prentice-Hall, Inc. Englewood
Cliff, NJ, 1985.

Rosenstein, M., Geer, D. and Levine, P. “The Athena Service Maintenance
System,” MIT Project Athena, 1989.

Rubin, Benjamin Constraint-Based Cinematic Editing, S.M. Thesis in Visual
Science, MIT, 198%a.

Rubin, B. and Davenport, G. “Structured Content Modeling for Cinematic
Information,” SIGCHI conference proceedings, 1989b.

Sechrest, Stuart An Introductory 4.3BSD Interprocess Communication Tutorial
Computer Science Research Group, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, 1986.

Steiner, J., Neuman, C. and Schiller, J. “Kerberos: An Authentication Service for
Open Network Systems” in Usenix Conference Proceedings, Dallas, Texas,
1988a.

Steiner, J. and Geer, D. “Network Services in the Athena Environment,” MIT
Project Athena, 1988b.

Sybase, “1.0 Release Notes: Sybase SQL Server and DB-Lib” as included in NeXT
1.0, 1989.

Transarc Corporation An Overview of the Andrew File System. Pittsburgh, 1989.

97

