
TechStyle Page 1

TechStyle System: The Management and Memory of
Electronic Fabric Input and Output

MIT Undergraduate Thesis

Abraham Hsu (madentai@mit.edu)

 Lab: MIT Media, Arts, Sciences, Media Laboratory
 20 Ames Street
 Cambridge, MA 02139
 In collaboration with Collins & Aikman
 Group: Media Fabrics Group, TechStyle
 Supervisors: Glorianna Davenport (gid@media.mit.edu)
 Hyun-Yeul Lee (hyun@media.mit.edu)
 Alumni Contributors: Alex Crumlin and Charles Hightower
 Date: May 10th, 2004

Abstract

“The two main objectives are management and memory. At any time, the e-fabric unit has
two states: pixel input and pixel output. The input state of a unit describes whether or not
each pixel has been pressed down. The output sate of a unit describes whether or not each
pixel has had a color change (on/off). Management is the ability to change and control
both input and output states over time. Memory is the ability to record the history of both
input and output states over time. The management and memory of a single e-fabric unit
can be combined with other Units to create a powerful collective system of pixel input and
pixel output states over time.”

TechStyle Page 2

Table of Contents
 Page
i. Circuit View of the Electronic Fabric 4

I. Overview 5

1.1 Purpose and Background 5
1.2 System Overview 5
1.3 TechStyle System Signals 5

II. Two Major System Components 6
2.1 CPLD System 6
 2.1.1 CPLD System Building Blocks 6
 2.1.2 CPLD Inputs 7
 2.1.3 CPLD Outputs 7
2.2 Units System 8
 2.2.1 Units System Building Blocks 9
 2.2.2 Units Inputs 9
 2.2.3 Units Outputs 10

III. System Finite State Machines (FSM) Components 11

3.1 RAM 11
3.2 CPLD Pixel Output 11
3.3 CPLD Pixel Input and Computer Input 12
3.4 PIC Pixel Output 12
 3.4.1 RAMmode 13
 3.4.2 AUTOmode 13
3.5 PIC Pixel Input (History) 14

IV. Challenges 15

V. Conclusion 15

Appendix A: Electronic Fabric with Simultaneous Input and Output 16

Appendix A: VHDL Code 17

Appendix B: Assembly Code 20

TechStyle Page 3

List of Figures
 Page
Figure 1 : TechStyle LED Fabric Schematic 4
Figure 2: TechStyle System Overview Schematic 5
Figure 3: CPLD System Schematic 6
Figure 4 : Units System Schematic 8
Figure 5 : Single Unit Schematic 9
Figure 6 : RAM Memory Organization 11
Figure 7 : CPLD Serial Output Timing Diagram 11
Figure 8 : CPLD Serial Output Process 11
Figure 9 : CPLD Serial Input Timing Diagram 12
Figure 10 : PIC Pixel Output Process 12
Figure 11 : RAMmode Pixel Output Process 13
Figure 12 : PIC Pixel History Timing Diagram 14
Figure 13 : PIC Pixel History Process 14

TechStyle Page 4

i. Circuit View of the Electronic Fabric

The electronic fabric was custom-designed by Hyun-Yeul Lee. It is made with cotton,
nylon, and conductive fiber. This document assumes a certain amount of knowledge of the
e-fabric. Please read Appendix A: Electronic Fabric with Simultaneous Input and Output
for a review of the e-fabric implementation details. Also note that the terms e-fabric and
fabric are used synonymously in this document.

An e-fabric ‘unit’ is defined as an 8x8 pixel square of e-fabric. A unit is seen as the optimal
integration of the fabric with the associated circuit board. A square ‘X’ by ‘X’ pixel fabric
retains the best fabric area to number of wires ratio. At a maximum of 34 I/O pins on a PIC
microcontroller, an 8x8 pixel was thought to be the largest fabric unit possible (8*4 lines).
As an extra positive, the 8x8 pixel unit allows for easier PIC coding because hardware
memory is usually organized in bytes and 1 byte is 8 bits.

Figure 1: TechStyle LED Fabric Schematic

The unit’s output network can be idealized as a circuit of 64 LEDs and wires (Figure
13). The unit’s input network can be idealized as the same schematic of Figure 13,
except all the LEDs are shorted as simply connected wires. These two ideal input and
output circuits can be constructed to test the TechStyle system. The 32 I/O lines of the
e-fabric unit are connected to a PIC (see Figure 5).

An example of the unit’s output: how to turn ‘on’ pixel (or LED in the idealized case)
in row1, column5? The answer: pass power (high voltage) to column5 and tie ground
(low voltage) to row1. Moreover, leave the rest of the column and row lines as
unconnected open-circuits (no voltage).

TechStyle Page 5

Figure 2: TechStyle System Overview Schematic

I. Overview

1.1 Purpose and Background

The two main objectives are management and memory. At any time, the e-fabric unit has
two states: pixel input and pixel output. The input state of a unit describes whether or not
each pixel has been pressed down. The output sate of a unit describes whether or not each
pixel has had a color change (on/off). Management is the ability to change and control both
input and output states over time. Memory is the ability to record the history of both input
and output states over time. The management and memory of a single e-fabric unit can be
combined with other Units to create a powerful collective system of pixel input and pixel
output states over time.

1.2 System Overview

The TechStyle project can be divided
into two main systems: the CPLD
System and the Units System
(Figure 2).

1.3 TechStyle System Signals

There are five single-bit signals
(Figure 2) that travel between the
CPLD System and the Units System. Four are outputs from the CPLD System to the Units
system, and one is an input to the CPLD system from the Units system:

• System Clock (CLK): Output produced by the CPLD system. It is a 1 Mhz
system clock that synchronizes the system.

• Mode (Mode): Output from the CPLD system. When it is high voltage, the pixel
output is in RAMmode. When it is low voltage, the pixel output is in
AUTOmode (see 3.4 PIC Pixel Output).

• RAM Picture (FPGA_in): Serial output from the CPLD system. It holds pixel
output data used during the RAMmode (see 3.2 CPLD Pixel Output).

• History Trigger (Go): Output from the CPLD system. When it is a high voltage,
it is a sign to the Units system to start the output of its History data (see 3.3
CPLD Pixel Input and Computer Input).

• History (History): Serial data input to the CPLD system. Part of the memory
procedure, it passes data describing pixel output states of all pixels in the
TechStyle system over time(see 3.3 CPLD Pixel Input and Computer Input). (An
analogy is that the Units System uses this medium to pass color snapshot
pictures of the pixels to the CPLD System over time.)

TechStyle Page 6

II. Two Major System Components

2.1 CPLD System

Figure 3: CPLD System Schematic

The CPLD System is composed of four components: CPLD, RAM, switch, and Computer
(Figure 3). (Note that the RAM is instantiated within the memory of the CPLD, therefore a
physical integrated chip of a RAM is not needed. This allows for nearly instantaneous
communication between the RAM and CPLD.) The CPLD is the primary element of the
CPLD System, and the following inputs and outputs shall be referenced to the CPLD.

2.1.1 CPLD System Building Blocks

 Complex Programmable Logic Devices (CPLD)
 Four ATF750C CPLDs were required to fit the VHDL program compiled with
 Altera’s MaxPlusII software. The VHDL code was programmed with the Galaxy
 software in the MIT Electrical Engineering Lab, 38-600.

 Switch
 The single switch can be implemented with a variety of simple switches, buttons,
 latches, etc.

 Computer
 In the future, the computer may be a part of the management and memory
 procedures. It receives and sends data on the pixel output states over time.

TechStyle Page 7

2.1.2 CPLD Inputs

There are four inputs to the CPLD (Figure 3). One from the Units System, one from the
switch, one from the RAM, and one from the Computer:

• History (History): Serial data input to the CPLD. Part of the memory procedure,
it passes data describing pixel output states of all pixels in the TechStyle system
over time(see 3.3 CPLD Pixel Input and Computer Input).

• Switch (mode): User-controlled input from a physical switch to the CPLD. When
it is high voltage, the pixel output is in RAMmode. When it is low voltage, the
pixel output is in AUTOmode (see 3.4 PIC Pixel Output).

• RAM Data (dataRF[7:0]): Input from the RAM. It carries the 8-bit data
referenced by the address signal.

• Computer (Comp): Serial output from the Computer. It holds pixel output data
for every pixel in the TechStyle system. In the future, information may be used
during the RAMmode.

2.1.3 CPLD Outputs

There are eight outputs from the CPLD (Figure 3). Four to the Units System, three to the
RAM, and one to the Computer:

• System Clock (CLK): Output produced by the CPLD. It is a 1 Mhz system clock
that synchronizes the Units System.

• Mode (Mode): Output from the CPLD to the Units System. When it is high
voltage, the pixel output is in RAMmode. When it is low voltage, the pixel
output is in AUTOmode (see 3.4 PIC Pixel Output).

• RAM Picture (FPGA_in): Serial output from the CPLD to the Units System. It
holds pixel output data used during the RAMmode (see 3.2 CPLD Pixel Output).

• History Trigger (Go): Output from the CPLD to the Units System. When it is a
high voltage, it is a sign to the Units system to start the output of its History data
(see 3.3 CPLD Pixel Input and Computer Input).

• Write (wr): Output from the CPLD to the RAM. When it is a high voltage, it
allows the referenced RAM address to be written by the signal dataFR.

• RAM Address (addressRAM[7:0]): Output from the CPLD to the RAM. It is an
8-bit signal input to the RAM which references a unique 8-bit data string in the
RAM.

• Write Data (dataFR[7:0]): Output from the CPLD to the RAM. It is an 8-bit
signal which is written, when write is high voltage, to the 8-bit data string
referenced by the RAM address signal.

• Computer (Comp): Serial input from the Computer. It holds data for every pixel
in the TechStyle system. Should be identical to the CPLD Pixel Output signal
(see 3.2 CPLD Pixel Output). In the future, information may be used during
RAMmode.

TechStyle Page 8

2.2 Units System

Figure 4: Units System Schematic

The Units System is composed of multiple identical units connected together (Figure 4).
This makes the design scalable and flexible. Each unit has five I/O signals connected to its
left, right, top, and/or bottom units. The exception is the top-left unit, which connects its
five left I/O signals to the CPLD System. A single unit’s internal signal schematic is
provided in Figure 4. In following, the CLK, Mode, and FPGA_in signals are the same for
all units.

Thirty-two signals are connected between the PIC and the fabric unit (Figure 4). (Refer to
Figure 1 for ideal fabric unit schematic.) Sixteen MOSFETs are placed between the PIC
outputs related to the management process, and the fabric unit. In this MOSFET
configuration, a low PIC output seems like an open circuit and a high PIC output seems
like a connection to power. The 8 PIC inputs related to the memory process are connected
to the 8 column ends of the fabric unit. The 8 PIC outputs related to the memory process
are connected to the 8 row lines of the fabric unit.

TechStyle Page 9

2.2.1 PIC System Building Blocks

 PIC Microcontroller
 One PIC16F452 is needed for every unit being created. The language used is
 Assembly and was compiled with MicroChip’s MPLab. The programmer was
 MicroChip’s PIC-StartPlus. (Note that the primary component of the Unit is the
 PIC, and the following inputs and outputs shall be referenced to the PIC.)

 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET)
 Sixteen 2N7000 MOSFETs per unit are needed for the pixel outputs to the fabric.

 OR Gate
 A single dual-input ‘or gate’ per unit is required. At the moment, the 74LS32
 quad dual-input ‘or gate’ is being used.

 Electronic Fabric
 An 8x8 pixel electronic fabric is required per unit. The electronic fabric, custom
 designed by Hyun-Yeul Lee (hyun@media.mit.edu), is the cornerstone of the
 TechStyle System.

2.2.2 PIC Inputs

There are seven inputs to the PIC (Figure 5), including one 8-bit parallel signal from the
Fabric:

• System Clock (CLK): Produced by the CPLD system. It is a 1 Mhz system clock
that synchronizes the system.

• Mode (Mode): From the CPLD system. When it is high voltage, the pixel output
is in RAMmode. When it is low voltage, the pixel output is in AUTOmode (see
3.4 PIC Pixel Output).

Figure 5: Single Unit Schematic

TechStyle Page 10

• RAM Picture (FPGA_in): From the CPLD system. It holds pixel output data
used during the RAMmode (see 3.2 CPLD Pixel Output).

• Top and Left Trigger (TLGo): The ‘or’ of the BotGo of the top unit and the RGo
of the left unit (BotGo or RGo). When its voltage is high, it is a sign to start the
output of its History data (see 3.5 PIC Pixel Input (History)). The ‘or gate’
conserves the limited number of PIC pins used.

• Right History (RHis): Serial data input to the PIC. Part of the memory
procedure, it passes data describing pixel output states of all pixels to the right
and bottom of the right unit (see 3.5 PIC Pixel Input (History)).

• Bottom History (BotHis): Serial data input to the PIC. Part of the memory
procedure, it passes data describing pixel output states of all pixels to the right
and bottom of the bottom unit (see 3.5 PIC Pixel Input (History)).

• Fabric Input [7:0]: Eight parallel inputs from the fabric which is used to
determine the state of all 64 pixels (see 3.4 PIC Pixel Output).

2.2.3 PIC Outputs

There are five outputs from the PIC (Figure 5), including three 8-bit parallel signals from
the fabric unit:

• Right Trigger (RGo): When its voltage is high, it is a sign to the right unit to
start the output of its Right History (see 3.5 PIC Pixel Input (History)).

• Bottom Trigger (BotGo): When its voltage is high, it is a sign to the bottom unit
to start the output of its Bottom History (see 3.5 PIC Pixel Input (History)).

• Fabric Input and Output [7:0]: Eight parallel outputs from the PIC used for both
checking and changing the state of the fabric. The signals for checking the state
of the fabric is output directly to the fabric. The signals for changing the state of
the fabric are passed through eight MOSFETs before being connected to the
fabric.

• Fabric Output Only [7:0]: Eight parallel outputs from the PIC used to change the
state of the fabric. These signals are passed through eight MOSFETs before
being connected to the fabric.

TechStyle Page 11

Figure 8: CPLD Serial Output Process

III. System Finite State Machine (FSM) Components

3.1 RAM
The RAM is used as a storage device of a single state of all the Units of the TechStyle
system. It essentially holds a single snapshot ‘picture’ of all the united combined. The
RAM has an 8-bit address with 8 bits
(8bits=1byte) referenced per address.
The memory organization (Figure 6)
is set at nine bytes per unit. Within
each unit’s nine bytes, the first byte
is the unit’s unique id. The next eight
bytes describe the 64 pixels of the
unit. Each byte of these eight bytes
represents a row, starting from
Row0, to Row1, etc., to Row7. The
8-bits within each byte represent the
columns 7 down to 0. A 1 means the
pixel is on, while a 0 means the pixel is off.

3.2 CPLD Pixel Output

(Note that the signal referred to as ‘output’ in this section is
FPGA_in.) The FPGA output has a specified format shown
in Figure 6. The FPGA output is taken directly from the
RAM data. The first unit’s information at address 0x00 listed
in the RAM memory is the initial output (Figure 7). Then
there is a 100-bit pause low before the second unit’s
information is output. This pattern is repeated until all the
Units in the TechStyle system have been outputted, and then
this whole cycle repeats from the first unit in the RAM. Each
unit’s information consisted of a start byte of 0xFF, then its 1
byte id, and finally 8 bytes of its pixel information.

The CPLD serial output process (Figure 8) was implemented
as a finite state machine with six states: Initial, Setup, Start,
Byte7, Byte, and Pause1. This process continues whether or
not the mode is high or low voltage, though the PICs only
process the information only when mode is in RAMmode
(mode=’1’).

Figure 6: RAM Memory Organization

Figure 7: CPLD Serial Output Timing Diagram

TechStyle Page 12

3.3 CPLD Pixel Input and Computer Input

Figure 9: CPLD Serial Input Timing Diagram

The CPLD input is similar to the CPLD output, but there are many important
differences (Figure 9). The CPLD input’s 10 bytes of unit data is identical in format to
that of the output. Also, the unit data are separated by 100 bits of low. The similarity
ends there.

Knowing the differences are important to understanding the more complex CPLD input
data stream. The input has an End signal of ‘11000011’ (0xC3) connected to the end of
the final unit input. Also, the CPLD input does not automatically continue to repeat
itself. When the CPLD output signal Go is voltage high, it is the sign which allows the
History to start passing its data.

The most important detail is that the CPLD input does not follow the same sequence of
Units as the 3.2 CPLD Output. While the 3.2 CPLD Output followed the order in the
RAM, the CPLD input has a much more complicated, but still organized, order (see 3.5
PIC Output (History)). In the future, the CPLD Input may be passed directly as an
output to the Computer. This sequence of units’s data will be interpreted by the
Computer.

3.4 PIC Pixel Output

The PIC holds the 64-pixel states in 8 addresses: row0, row1,
etc., to row7. Each address contains a byte of information
which signifies columns 7 down to 0. This format is similar
to that of the RAM Memory Organization (see 3.1 RAM). An
output process was created to interpret all the states of the
pixels (Figure 10). This process initializes at row0, column 0.
It cycles through every column of row0, from 0 to 7,
checking if the pixel is on (‘1’) or off (‘0’). After this, row1 is
checked in the same manner, and then row2, row3, etc.

If the column in a row is determined to be on (‘1’), then the
PIC outputs signals, passing power through its ports to the
specified pixel (see i. Electronic Fabric).

Figure 10: PIC Pixel Output
Process

TechStyle Page 13

3.4.1 RAMmode

Figure 11: RAMmode Pixel Output Process

The RAMmode output draws the pixel picture specified in the RAM. It takes in the
serial input from the CPLD (see CPLD Pixel Output) and interprets this data into
pixel output states (Figure 11). After the initial state, the process waits for at least
100 low voltage inputs from FPGA_in before moving to the next state. Then it
waits for a Start byte of 8 high voltage inputs from FPGA_in. The next 8 bits are
stored in x[7:0] by function store8inx(). If x is not equal to the id of the specific
unit, then it moves back to state initial. Otherwise, it moves on to repeating a
pattern of storing 8 bits into x, and then storing this byte into all eight rows. This
process is executed only when the mode is voltage high.

3.4.2 AUTOmode

The AUTOmode of pixel output is initiated when the mode signal is low voltage. In
this state, the user controls which pixels turn on or off by pressing down on the
fabric. The overall logic is simple at every pixel press: 1) If pixel was off, then turn
it on. 2) If pixel was on, then turn it off. Every pixel is analogous to a light switch.

TechStyle Page 14

3.5 PIC Pixel Input (History)

Figure 12: PIC Pixel History Timing Diagram

The PIC Pixel History data starts to pass only when the
signal TLGo is high voltage. The History signal follows a
general guideline:

1. Start Signal 0xFF
2. Own Unit's 8-bit ID
3. Own Unit's 64-bit Pixel Information
4. Right Signal, or if X ~0xF0, or if XX ~0xFF
5. (If not XX) Bottom Signal, or if X ~ 0xF0

This pattern can be seen in the PIC
Pixel History Timing Diagram
(Figure 12). In the diagram, the
bottom signal represents the signal
format if there were no Units
connected to the top and bottom
(XX). The top signal shows the
format of the history signal if a unit
was connected to either the top or
bottom of the current unit.

An important detail in the history
signal is that the ‘right signal’ is not
limited to only 10 bytes, the standard
size of one unit. The ‘right signal’
contains all the pixel data of all the
units to its right and bottom.
Therefore, it most likely has many
signals within it. The same principle
applies to the ‘bottom signal’.

The PIC Pixel History Process
(Figure 13) follows the general
guideline of the Present Unit, Right Signal,
and then Bottom Signal order mentioned
previously.

Figure 13: PIC Pixel History Process

TechStyle Page 15

IV. Challenges

5.1 Challenges

The fabric was the largest challenge because of its multiple unknowns. The conductive fiber
has variable resistance which varies the speed at which pixels turn on. This makes it difficult
during implementation of the pixel output, when individual pixels do not visually turn on as a
group consistently. A phenomenon termed ‘pixel leakage’ is a problem that may be due to too
much power. This word describes how turning on one pixel, may slight change the color of its
surrounding pixels.

Another large challenge was in increasing the power output to the fabric. The maximum
voltage allowed to drive the PIC is 7.5 V, but the power wanted for fabric output is 10-15V.
The higher amount of voltage increases the speed that the pixel turns on. Ideally, one wants
increased speed to decrease, or possibly nullify, the variance of resistance within the fabric.

The first method tried was a MOSFET with the PIC output tied to the gate, and the fabric line
tied to the base. The MOSFETs of the column have power tied to the drain, and the MOSFETs
of the row have ground tied to the drain. Basically, the key idea was to set power at 10V. When
the PIC signal is low, there will be an open circuit, and when the PIC signal is high, power for
the column, or ground for the rows, will be passed through the circuit. Unfortunately, the
MOSFET output is limited by the gate voltage. For example, when one passes a 5V PIC signal
to the gate, the MOSFET output is still ~3.5V even when the drain is tied to 10V.

The second method was utilizing op-amps to increase the voltage output to the fabric. The
open circuit voltage was increased to over 10V, but the output drops to ~3V when the op-amp
output is connected to the fabric. This may be due to an output resistance that changes the
voltage and current.

The third method involves focusing upon increasing the current, instead of the voltage, through
BJTs. A simple common-emitter amplifier configuration should be enough to greatly increase
the current, and therefore the power. This plan has will be tested on May 14th.

V. Conclusion

The memory portion of the TechStyle System works as expected. It monitors the history of the
fabric, and sends data of the pixel output states in a flexible manner.

The management portion related to the input states of the TechStyle system works as expected.
Therefore, the sense of whether a pixel has been pressed within all units is known exactly.

The management portion related to the output states of the TechStyle system does not always
work as expected. The change of pixel color has not been faultless. The memory of the system
has proved to be more resilient. This is mainly due to the challenges of the electronic fabric
(see 5.1 Challenges). While the digital signals passed to the fabric units seem to be as planned,

TechStyle Page 16

the electronic fabric does not always respond with changes in color of an expected manner.
The TechStyle is expected to work with an idealized schematic such as in Figure 1, but the
reality of electronic fabric is not ideal.

Further work and communication with the Computer is expected in the future, as occasionally
mentioned throughout this document. Eventually, the management and memory of the
TechStyle system would be controlled by a user interface application within the computer.

Appendix A: Electronic Fabric with Simultaneous Input and Output

Implementation

Scalability

The scalability issue is approached by
using a pixel layout like a Cartesian
coordinate system. The pixel layout is
similar to the implementation used by a
normal television and computer screen.
The picture to the right is an example of
the current pixel system being
researched.

In the picture, each dark blue square
represents one pixel and each pixel is a
half inch by a half inch. Within each
dark blue square is a one-eighth by one-
eighth light blue square which represents the output square. There are three input points
within each dark blue square pixel and each one is represented as a small yellow square. To
improve robustness, three inputs per pixel were chosen in the case that if one input square
failed, two other points would still be operational.

This pixel design is ideal because it can be hypothetically expanded infinitesimally. Also,
in viewing this ‘x number’ by ‘y number’ pixel design as an ‘x number’ by ‘y number’
Cartesian coordinate system, it is easy to manage the output and input signals from a higher
level thought process.

Simultaneous Input and Output

The output is a change of color within the output square.
In the pictures to the right, the overlap of the blue lines
represents the output square that is identical within each
pixel. The top picture to the right is an example of an
output square that is inactivated. The bottom picture is an
example of an output square that is activated.

TechStyle Page 17

The underlying idea for the output requires two basic material preparations: heat-sensitive
dye and wires woven into the fabric. The electronic fabric
used by this project has by streaked with custom designed
heat-sensitive dye. At this time, the experimental fabric
has been coated with dye that is blue at room temperature
and white at a higher temperature. Wires are woven
within the fabric and current is passed through these
wires to induce heat dissipation. This heat causes an
increase in temperature at a pixel point and leads to a
change in color at an output pixel.

The input senses whether the fabric has been
pressed down upon. The input necessitates
two layers of woven fabric and a foam layer,
as shown in the picture to the left. As the top
fabric layer is pressed down, its woven wires
come in contact with the bottom layer’s
woven wires. The current sent through the top
wires flows into the bottom wires. This is then
detected by integrated circuits connected at
the ends of the bottom wires.

ICs Separate from Fabric

The integrated circuits used during this project were not woven underneath or on the
circuit. The integrated circuits are placed within a circuit board that can be hidden
anywhere within the object the electronic fabric is covering.

Appendix B: VHDL [CPLD] Code

-- FRsystem.vhd
-- Abraham Hsu
-- April, 2005
-- Student, MIT

-- Program Description:
-- This program interacts with a ROM and the mother PIC unit. It outputs
the
-- information from the ROM as a serial data on one line to the mother
unit.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

TechStyle Page 18

use IEEE.std_logic_unsigned.all; -- Needed for "+" with
std_logic_vectors
library work;
--use work.new_func.all;

entity FRsystem is
 port(
 clk : in std_logic;
 mode : in std_logic;

 -- ROM signals
 dataRF : in std_logic_vector(7 downto 0);
 wr : out std_logic;
 addressRAM : out std_logic_vector(7 downto 0);
 dataFR : out std_logic_vector(7 downto 0);

 -- PIC signal
 output : out std_logic
);
end entity FRsystem;

architecture component_a of FRsystem is

-- Variables
signal address, data : std_logic_vector(7 downto 0);

-- States for FRSystemOutput FSM
type StateType is (Initial, Setup, Start, Byte7, Byte, Pause1);
signal S_s : StateType;

begin

-- Internal Signals
addressMax <= "01010001"; -- addressMax=81
addressRAM <= address;
dataFR <= "00000000";

 FRoutput_process : process(clk)
 variable nS : integer range 0 to 7 :=0;
 variable nB : integer range 0 to 7 :=0;
 variable nU : integer range 0 to 9 :=0;
 variable nP1 : integer range 0 to 100 :=0;
 begin
 if rising_edge(clk) then
 case S_s is
 -- Initial
 when Initial=> if ((mode='1') and (power='1'))
then
 S_s <= Setup;
 end if;
 -- Setup
 when Setup => S_s <= Start;
 -- Start
 when Start => if (nS=0) then S_s <= Byte7;
 address <= address+1;
 data <= dataRF;

TechStyle Page 19

 else S_s <= Start;
 end if;
 -- Byte7
 when Byte7 => S_s <= Byte;
 -- Byte
 when Byte => if (address=addressMax) then
 S_s <= Pause1;
 address <= "00000000";
 elsif not (nB=1) then
 S_s <= Byte;
 elsif not (nU=1) then
 address <= address+1;
 data <= dataRF;
 nU := nU-1;
 nB := 7;
 S_s <= Byte;
 else
 S_s <= Pause1;
 end if;
 -- Pause1
 when Pause1 => if (nP1=0) then
 S_s <= Start;
 end if;
 when others => S_s <= Initial;
 end case;

 -- Initial
 if S_s=Initial then
 address <= "00000000";
 output <= '0';
 data <= dataRF;
 -- Setup
 elsif S_s=Setup then
 wr <= '0';
 nS := 7;
 nB := 7;
 nU := 9;
 -- Start
 elsif S_s=Start then
 output <= '1';
 nS := nS-1;
 elsif S_s=Byte7 then
 output <= data(nB);
 nB :=7;
 nP1 := 100;
 -- Byte
 elsif S_s=Byte then
 nB := nB-1;
 nBoutput <= data(nB);
 elsif S_s=Pause1 then
 output <= '0';
 nP1 := nP1-1;
 nB := 7;
 nU :=9;
 nS := 7;
 end if;
 end process;

TechStyle Page 20

end architecture;

Appendix C: Assembly [PIC] Code

; PIC.asm For 8x8Pixel Code
; Abraham Hsu
; April 2005
; MIT, Student

 list p=18f452
 #include "p18f452.inc"

; __CONFIG _CP_OFF&_WDT_OFF&_PWRTE_OFF&_RC_OSC

 radix hex
; Memory Map---

inCol equ PORTB
inRow equ PORTC
outCol equ PORTD

;inCol equ 0xA0
;inRow equ 0xA1
;outCol equ 0xA2
;outRow equ 0xA3
col equ 0xA4
row equ 0xA5
rowNum equ 0xA6
reg equ 0xA7
address equ 0xA8
state equ 0xA9

row0 equ 0x80
row1 equ 0x81
row2 equ 0x82
row3 equ 0x83
row4 equ 0x84
row5 equ 0x85
row6 equ 0x86
row7 equ 0x87

stat0 equ 0x90
stat1 equ 0x91
stat2 equ 0x92
stat3 equ 0x93
stat4 equ 0x94
stat5 equ 0x95
stat6 equ 0x96
stat7 equ 0x97

id equ 0xB0
nStart equ 0xB1
nPause equ 0xB2
x equ 0xB3

TechStyle Page 21

;--
 org 0x000
 goto start

 org 0x004
 goto start

; Program Starts
start
;Clear Registers------------------------------------
 clrf row0
 clrf row1
 clrf row2
 clrf row3
 clrf row4
 clrf row5
 clrf row6
 clrf row7

 clrf stat0
 clrf stat1
 clrf stat2
 clrf stat3
 clrf stat4
 clrf stat5
 clrf stat6
 clrf stat7
;--
 movlw 0x01
 movwf id

 ;inCol
 clrf PORTB
 movlw 0xFF
 movwf TRISB
 clrf PORTB ;portb input

 ;inRow
 clrf PORTC
 movlw 0x00
 movwf TRISC
 clrf PORTC ;portc output

 ;outCol
 clrf PORTD
 movlw 0x00
 movwf TRISD
 clrf PORTD ;portd output

;A0 CLK In
;A1 History Out
;A2 FPGA_in In
;A3 Mode In
;A4 TLGo In
;A5 RightGo Out

TechStyle Page 22

;E0 RightHis In
;E1 BottGo Out
;E2 BottIn In

 clrf PORTA
 movlw b'00011101'
 movwf TRISA
 clrf PORTA ;portd output

 clrf PORTE
 movlw b'00000101'
 movwf TRISE
 clrf PORTE ;portd outpu

;Testing Code--
; goto x7
; bcf
; movlw 0x01
; movwf mode

;Mode SubRoutine-------------------------------------
mode btfsc PORTA, 3 ;Mode=0?
 goto x7 ;FALSE
 goto input ;TRUE

;Input Program---------------------------------------
input movlw 0x01
 movwf col
 movwf row
 clrf rowNum

 movf row,w
 movwf inRow
 movf stat0,w
 movwf state

input2 movf col,w
 andwf state,w ;value in WREG
 tstfsz WREG ;if (state0)
 goto state1 ;FALSE
 goto state0 ;TRUE

seeCol movlw 0x80 ;if (col='7')
 cpfseq col
 goto addcolI ;FALSE
 ;TRUE
 cpfseq row ;if (row='7')
 goto addRowI ;FALSE
 goto output ;TRUE
;states Subroutine--
state0 movf col,w ;if (row1[col] = 0)
 andwf inCol,w
 xorwf col,w
 tstfsz WREG ;if (press=1?)
 goto seeCol ;FALSE
 ;TRUE
 call compBit

TechStyle Page 23

 call compStat
 goto seeCol

state1 movf col,w ;if (row1[col] = 0)
 andwf inCol,w
 tstfsz WREG ;if (press=0?)
 goto seeCol ;FALSE
 ;TRUE
 call compStat
 goto seeCol
;compStat Subroutine---
compStat movlw 0x90
 addwf rowNum,w ; unknown address is in WREG, how
to retrieve the data from this address?
 movwf FSR1L, ACCESS ; load address into FSR0L
 clrf FSR1H, ACCESS ; clear the four most significant
bits of FSR0

 call getStat
 movf col,w
 xorwf state,w ;value in WREG
 movwf INDF1, ACCESS ; fetch value pointed to by FSR0

 return
;compBit Subroutine--
compBit movlw 0x80
 addwf rowNum,w ; unknown address is in WREG, how
to retrieve the data from this address?
 movwf FSR1L, ACCESS ; load address into FSR0L
 clrf FSR1H, ACCESS ; clear the four most significant
bits of FSR0

 call loadRow
 movf col,w
 xorwf reg,w ;value in WREG
 movwf INDF1, ACCESS ; fetch value pointed to by FSR0

 return
;getStat Subroutine---
getStat movlw 0x90
 addwf rowNum,w ; unknown address is in WREG, how
to retrieve the data from this address?
 movwf FSR0L, ACCESS ; load address into FSR0L
 clrf FSR0H, ACCESS ; clear the four most significant
bits of FSR0
 movf INDF0, w, ACCESS ; fetch value pointed to by FSR0

 movwf state
 return
;getRow Subroutine--
loadRow movlw 0x80
 addwf rowNum,w ; unknown address is in WREG, how
to retrieve the data from this address?
 movwf FSR0L, ACCESS ; load address into FSR0L
 clrf FSR0H, ACCESS ; clear the four most significant
bits of FSR0

TechStyle Page 24

 movf INDF0, w, ACCESS ; fetch value pointed to by FSR0

 movwf reg
 return

;Add Subroutines---------------------- ---------------------------
addcolI rlncf col
 goto input2

addRowI rlncf row
 incf rowNum
 movf row,w
 movwf inRow

 call getStat

 movlw 0x01
 movwf col
 goto input2
;Output Program---------------------------------------
output movlw 0x01
 movwf col
 movwf row
 clrf rowNum

 movf row0,w
 movwf reg

output2 movf col,w ;if (row1[col] = 0)
 andwf reg,w
 tstfsz WREG
 call light ;FALSE
 ;TRUE
 movlw 0x80 ;if (col='7')
 cpfseq col
 goto addcol ;FALSE
 ;TRUE
 cpfseq row ;if (row='7')
 goto addRow ;FALSE
 goto mode ;TRUE
;Add Subroutines---------------------- ---------------------------
addcol rlncf col
 goto output2

addRow rlncf row
 incf rowNum

 movlw 0x01
 movwf col
 call loadRow
 goto output2
;Light Subroutine---
light movf col,w
 movwf outCol
 movf row,w
; movwf outRow
 nop

TechStyle Page 25

 nop
; call delay
 clrf outCol
; clrf outRow
 return
;Delay Subroutine--
;delay clrf TMR0
;again btfss TMR0,3 ;This makes a delay of internal clk*16*2
; goto again
; return
;Clock Subroutine---
;rising edge: 1)Make sure is in low 2)Wait for clk to be high again
clock btfsc PORTA, 0 ;clk=0?
 goto clock ;FALSE
 ;TRUE
clock2 btfss PORTA, 0 ;clk=1?
 goto clock2 ;FALSE
 return ;TRUE

;FPGA Output Subroutine---
Foutput movlw b'01100100'
 movwf nPause
 movlw 0x08
 movwf nStart

 clrf stat0
 clrf stat1
 clrf stat2
 clrf stat3
 clrf stat4
 clrf stat5
 clrf stat6
 clrf stat7

Pause ;call clock
 btfsc PORTA, 2 ;FPGA_in=0?
 goto Pause ;FALSE
 ;TRUE
 decfsz nPause ;(nPause=0)?
 goto Pause ;FALSE
 ;TRUE
Start ;call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto Foutput ;FALSE
 ;TRUE
 decfsz nStart ;(nPause=0)?
 goto Start ;FALSE
 ;True
;idTest SubRoutine-------------------------------------
 call x7

 movf x ;id=x?
 xorwf id,w
 tstfsz WREG
 goto Foutput ;FALSE
 goto write64 ;TRUE
;write64---

TechStyle Page 26

write64 call x7
 movf x
 movwf row0

 call x7
 movf x
 movwf row1

 call x7
 movf x
 movwf row2

 call x7
 movf x
 movwf row3

 call x7
 movf x
 movwf row4

 call x7
 movf x
 movwf row5

 call x7
 movf x
 movwf row6

 call x7
 movf x
 movwf row7

 goto output

;x SubRoutine---
;Stores the next 8 bits in address x
x7 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x7F ;FALSE
 bsf x,7 ;TRUE
 goto x6
x7F bcf x,7

x6 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x6F ;FALSE
 bsf x,6 ;TRUE
 goto x5
x6F bcf x,6

x5 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x5F ;FALSE
 bsf x,5 ;TRUE
 goto x4
x5F bcf x,5

TechStyle Page 27

x4 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x4F ;FALSE
 bsf x,4 ;TRUE
 goto x3
x4F bcf x,4

x3 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x3F ;FALSE
 bsf x,3 ;TRUE
 goto x2
x3F bcf x,3

x2 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x2F ;FALSE
 bsf x,2 ;TRUE
 goto x1
x2F bcf x,2

x1 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x1F ;FALSE
 bsf x,1 ;TRUE
 goto x0
x1F bcf x,1

x0 call clock
 btfss PORTA, 2 ;FPGA_in=1?
 goto x0F ;FALSE
 bsf x,0 ;TRUE
 return
x0F bcf x,0

 return

 end

