Synchronized Structured Sound
Real-Time 3-Dimensional Audio Rendering
by

Araz Vartan Inguilizian

Bachelor of Science in Electrical and Computer Engineering,
Bachelor of Art in Art and Art History,
Rice University, Houston, Texas, May 1993

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements

for the degree of Ky
MASTER OF SCIENCE in .
Media Arts and Sciences 7
at the /

Massachusetts Institute of Technology
September 1995

© Massachusetts Institute of Technology, 1995
All Rights Reserved

' e o .;. .
Author | A et L mﬁfwh\tw
N Progrﬁr{'n in Media Arts and Sciences
August 11, 1995

Certified by i
V. Michael Bove, Ir.
Associate Professor of Media Technology,
Program in Media Arts and Sciences
Thesis Supervisor
Accepted by

Stephen A. Benton
Chair, Department Committee on Graduate Students
Program in Media Arts and Sciences

Synchronized Structured Sound
Real-Time 3-Dimensional Audio Rendering
by

Araz Vartan Inguilizian

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

on August 11th, 1995

S in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE in Media Arts and Sciences

/]
H
(’} Abstract

Structured Sound describes a synthetic audio environment where sounds are represented by
independent audio sources localized in time and three-dimensional space within an acoustic
environment. A visual analog, structured video, represents image sequences as a
composition of visual components, whose dynamics are controlled by a scripting language
and which is rendered/decoded in real-time according to an interactively modifiable viewer
location. This research takes the audio components of a script and interactively renders
them with respect to the position of the lisiener/viewer. The audio components are discrete
sounds and effects synchronized with the actions of script objects, while the acoustic
medeling and processing performed accounts for the listener location within the script
"world". Coupled with an interactive scripting language and a structured video system
already developed, this work produces a real-time three-dimensional structured audio/video
system.

Thesis Supervisor: V. Michael Bove, Jr.
Associate Professor of Media Technology,
Program in Media Arts and Sciences

Support for this work was provided by the Television of Tomorrow consortium.

Synchronized Structured Sound
Real-Time 3-Dimensional Audio Rendering

by
A P Araz Vartan Inguilizian
u
n
J Readers

The following people served as readers for this thesis:

@M'\@

Glonarma avenport
Assocmte Professor of Media Technology

Program in Media Arts and Sciences

Reader A

Pt =

Barry Lloyd Vercoe
Professor of Media Arts and Sciences

Program in Media Arts and Sciences

Synchronized Structured Sound

S, Acknowledgments l

U
7 This thesis has been a testimony to the abounding grace of our Lord

d Jesus to me. T was expecting to spend long long hours in the lab, not
sleeping and such. But God has blessed me abundantly. Everyday I would spend time
praying and then coming to work to complete all that He set aside for me to do. Step by
step things came into place, by His grace. And now, inretrospect, I can say that it was fun,
because God was with me throughout the whole process. He did not limit his abundance,
but also gave me great earthy support. I am thankful to Him for them. Therefore 1 would
like to express my gratitude to:

My advisor, Mike, for all the encouragement and help he gave me through this thesis, for
keeping the vision going.

My two readers, Glorianna and Barry, for their helpful comments and their desire to see
something glorious come out of this.

Bill Gardner, for his patience with me as I came up to him seecking help to understand
sound, and implement his techniques for this thesis.

Stefan, for making my life easier by writing a scripting language that could use my system,
and for being such a good sport.

Linda Peterson, for always comforting me when I came to her seeking help, and for
always coming up with a solution.

Shawn and Wad, for spending the time with me patiently explaining how things worked,
and never complaining whenever I came by.

David Tames, Katy, the Struct-O-Vision gang and the Cheops gang, for keeping the rest
of the system running and making it possible for me to do this thesis.

Lena and Santina, for being the coolest assistants ever.

Henry and the Garden gang, for keeping the garden ship-shape and ready.

The rest of the Garden - especially Bruce, Brett, Chris, Ed Acosta, Ed Chalom, Frank,
Jill, Karrie, Ken, Klee, Nuno, Pasc, Roger - for your friendships and making the
garden a special and fun place to be.

Wole, for being such a close friend, I thank God for you, brother.

Rob and the C-flat gang, for feeding me and blessing me abundantly.

Eliza, for just being the blessed person you are, for sharing God's glory to everyone, and
for encouraging me abundantly.

Folusho, for always encouraging me to have faith and to take God at his word.

& Acknowiledgments con’r.J

The rest of Maranatha - Durodami, Kamel, Ien, Joe, Tope, Rogelio, Suzie, Ale and even
Betty, for your helpful support during this time.

Mary & Mary, for your friendship, encouragement and help with my thesis and with my
driving, respectively.

74, for your encouraging and uplifting emails.

Marie Norman and the Thursday night prayer gang, for all the prayer support and the
exciting time of faith and deliverance.

Ann Yen, Ashley, Benty, Brian Diver, Derrick, Gaby, Lisa, Patrick Kwon, Patrick
Piccione, Santia, and all the rest of my friends who prayed for me and blessed me.

Tree of Life City Church & Framingham Vineyard Christian Fellowship, for being so
on fire for Jesus that I could neither escape, not help but be on fire for Him as well.

My family - Vartan, Takouhie, Taline, Haig and Ani - for your prayers and support. 1

love you all.

Thus is the scripture God gave me regarding this thesis:

"I will make rivers flow on barren heights,
and springs within the valleys,

Lwill turn the desert into pools of water,

and the parched ground into springs.

I will put in the desert the cedar and the acacia,
the myrtle and the olive.

I will set. pines in the wasteland,

the fir and the cypress together,

so that people may see and know,

may consider and understand,

that the hand of the Lord has done this,

that the Holy One of Israel has created it.”
(Isaiah 41:18-20)

Thank you Jesus for everything.
Thank you, everyone, for making this thesis possible,
and remember HI.C. - He Is Coming.............

Synchronized Structured Sound
Real-Time 3-Dimensional Audio Rendering

S
&S: Table of Contents |

CE Y

A Generic Structured System ¢
Thesis Overview 12

— Infroduction 8 EH

The pipeline 14
Cheops: An implementation 17

— Sound Locadlization 21 3

— Video Decoder 14 2

The Echo Process 23
Virtual Sources 23
Speaker Sound 24

FPruning the Filters 26
The Reverberation Process 27

- Sound Decoder 33
The Play Thread 34 4

Read from file 35

Eche 37

Reverberation 39

Play 40

The Setup Thread 41

Synchronization 42

— External Interface 46 5

External Functions 46
An Example: Isis 52

— Thoughts and Conclusions 56 6
= Bibliography 58 7

Synchronized Structured Sound
Real-Time 3-Dimensional Audio Rendering

A

List of Figures l

N

A Generic Structured System 11

A structured imaging system virtual space 13

Structured video display processing pipeline
The video decoder pipeline
A rotation in The Museum movie

A zoom in The Museum movie

1l

15
16
19
20

Echo effects of sources in a rectangular room 24
Intensity panning between adjacent speakers 25
Allpass flow diagram 28

A generalized allpass reverberator 28

A detailed description of the all pass procedure 30

Diffuse reverberators used in SSSound 32

The three threads of S§Sound

The PLAY process pipeline

The Play Thread Buffer sizes and processing pipeline
The SETUP process pipeline

Comparison of the two types of synchronization processes

33
35
36
41
45

2

1
Introduction

W

When movies were first introduced, people were amazed. No real actors were
present, just their images which moved and interacted on screen in a realistic manner.
Society quickly learned to accept these moving images as part of their life, but the audio
track was limited to an orchestral score accompanying the film. The second wave of motion
picture technology incorporated synchronous dialogue and special effects. In this era the
audio track was not solely comprised of the score, it also included sound that was related to
the objects and action on the screen. The sound was not of good quality, but it was
relevant.

The motion picture industry has gone through many other innovations. Many of
these innovations dealt with what is seen, but some enhanced what is heard. For example,
the introduction of Dolby Surround Sound [Dolby] was a great addition to the movie
industry; sound could now be perceived as coming from all around the room and not just
from between two speakers. Because of the contributions of object relevant sound, the
experience of today's audience is more realistic and enjoyable.

At the Media Laboratory, researchers have abandoned the traditional view that
movies are made up of eternal frames. Instead they are moving towards a moving image
system in which objects are assembled at the display [Bove 93]. This helps in many ways:
one of which is that the system is not bound to an eternal frame, but rather has the
flexibility of changing how the movie is viewed by having a few parameters changed. Thus
the viewer or a knowledgeable machine is able to interact with the movie. As onc interacts
with the system and the state of the system is changed, the output changes in response. The
viewer is transformed from a passive agent, to an active agent who can customize the
sequence and position of viewing according to his preferences.

This thesis will create a structured auditory system as others have built a structured

visual system [Granger 95]. The aim is to add realism to the structured video domain by

& 1 Introduction 9

adding synchronous structured sound. This thesis will consider sound as an entity of a
structured object, in the same way that a set of frames in a video shot are considered a
separate entity. This sound entity has the ability to be localized in 3-D space to support the
visual 3-D of the video structured system. These localizations have the capability of
changing instantly according to information recetved about their new location. The system

adds an acoustic environment that corresponds to the visual virtual room the viewer is in.

] 'l In a gencral structured system, all

components of the final product can

A Generic
come from any system and are
StrUCtu red SYStem composed together dynamically in

real-time. In such a system, the script and not the frames defines the final product. In a

traditional system, a movie is produced from a script which predetermines not only the plot
but also the sequence of events and views. However in a structured movie, this is not the
case, the script establishes the guide lines of the plot, but the sequence of events and views
has a dynamic capability of changing with setup and user input, What the audience sees
depends on the system setup and the audience’s interaction with the system. Therefore
every aspect of the production system has to be geared to produce adaptive elements that
can be composed in real-time from raw data.

The major components of a structured system so far are the audio and the video
components. The audio has to handle interactive sound localization, as well as virtual
atmosphere creation. The video has to handle interactive 3-D view change, as well as the
compositing of multi-layer images. The scripting language has to have the ability to adapt
from one view to another depending on user input. In the future, new dimensions, such as
wind or moving seats, could be added along side audio and video.

It is highly unlikely for one machine to be able to do all the work necessary for a
production of such magnitude. Thus a modular system is proposed to achieve this (Figure

1-1). The best system is found for each dimension, and they are put together 1o achieve the

& | Introduction 10

final result. The scripting language aiso has to be modular in form because it has to be able
to handle the different aspects of each dimension effectively.

In the system setup at the Media Laboratory, the Video Decoder is the Cheops
imaging system(described in more detail in chapter 2). Cheops has the ability to compose
2-D, 2 1/3-D, and 3-D objects in real-time. The audio decoder is SSSound running on a
DEC Alpha 3000/300 running under OSF 3.0. Both the video decoder and the audio
decoder receive their information from a local database. Cheops has the ability to store up
to 32 Gigs of data in RAM, thereby speeding up the fetch cycle of a raw video data request.

Most of the information stored in this database comes from Sequence and Shot
Design. This art has not been perfected yet since the technology has only recently come to
the attention of the motion picture industry. Somehow one must shoot the necessary raw
data so that all reasonable and possible dimensions of the movie can be available for the
user to interact with. Once these shots are recorded and placed in the database, an intelligent
script must be written to provide the backbone of the movie. The script is fed into an
interpreter along with the system setup, and the dynamic user input. The interpreter is
responsible for sending the appropriate instructions to each of the decoders. The Video
Decoder would receive an instruction such as "Render background 'a' from viewpoint 'b'
and compose actor frame number ‘¢’ in position 'd’ in the frame", while the Audio Decoder
would get an instruction such as "Start playing sound 'a’ at position 'd’, starting at time

'b’, using parameters of the room 'c'".

& 1 Introduction 11

Sound

Video Decoder:

Decoder:
Cheops

35Sound on
Alpha

Real-Time
Render:
Onyx??

[Interpreter

f Database

User Input

Sequence and Shot Design

Figure 1-1: A Generic Structured System. The original data is first sorted and stored in
a database. Then a sequence shot iz transformed to a script and fed inte and interpreter
which Here the bold arrows represents the data pathways, while the narrow arrows are
control instruction data paths.

S | Introduction 12

‘I 2 This thesis will produce a system

setup such as Figure 1-2. Here the

Thesis Overview

audience is in the middle of the

actual room interacting with the system using a user-input. The screen is a projected screen
of the Cheops Imaging system, while the two modeled speakers are receiving audio
samples from an Alpha LoFi card. In the original model, there are supposed to be 6
speakers, however, because of the constraints of the system, only two speakers can be
modeled(more details in section 4.1.1), The system can handle more speakers, with a
maximum of two speakers per Alpha machine.

This thesis will present in Chapter 2 an overview of the Video Decoder used in the
Media Laboratory. Chapter 3 outlines the techniques of the Sound Localization methods
used in placing the sound. Then Chapter 4 discusses the details of the Audio Decoder, with
particular emphasis on the specific constraints of the system used in the Media Laboratory.
Chapter 5 describes the external functions available for systems to communicate with
SSSound, and it goes into some detail on the implementation of the Isis script interpreter
currently in development at the laboratory. Finally Chapter 6 outlines the results and

conclusions of this thesis,

5 | Introduction 13

| Video Source: Screen
f:'igf’f) Audio Source:
SSSound on

| Alpha

Modeled Speakers .~ . .. /

Audience

" Non-Modeled .~
Speakers -

= @@T 1 !

J

L _— —_ - . —_

Figure 1-2: A structured imaging system virtual space, Here the video inputs are
received from the Cheops imaging system, while the audio inputs are from an Alpha
machine running 53Sound. Note: only two speakers are modeled because of system
constraints though more could be easily added.

Y 2

g Video Decoder

The initial breakthroughs in structured systems have been in the video domain. A
structured video 1s a representation of a movie or moving image made up of raw building
blocks composed together at the user end in real-time. These raw building blocks are
derived from the current system of viewing moving images. They come in three levels of
complexity. These objects can be frames with constant depth (2-D), surface maps of
objects from particular view points(2 1/2-D), computer graphics objects (3-D). or layered
objects with associated intensity, velocity and opacity maps (2-D or 2 1/3 D). Objects in a
structured system are assembled at the user end using a scripting language which defines
every object’s Jocation and orientation at every point in time. The system needs great
flexibility to manipulate all these types of raw data together into one uniform output. For
example, the system should be able to place a moving 2-D image of an actor in a 3-D

schematic of a room and to view it from different locations in the room at different times.

2 1 A structured system should have the

. . ability to process 2-D, 2 1/-D, and
The pipeline

3-D objects and to present one

output. This process can be difficult because each of the objects needs a different form of
data manipulation. For example, a 3-D object such as a particle database would need
rendering to a specific viewpoint and scaling to the appropriate size, while a 2-D, or 2 1/2-D
object might need scaling and/or warping. A generic structured video decoding
pipeline[Bove 94] is suggested in Figure 2-1. Each of the object classes can be manipulated
by the system and other object types can be added as they arise. It is assumed that there is a
higher process controller that decides what to do with each object in the system, and gives

appropriate instruction to the elements in the pipeline at appropriate time. This higher

RS 2 Video Decoder 15

Prediction for naxt frame

_____ ———————
Explicit ¢

| |
oo —>oLi> o
— e compress | phiects Composie 9?1—)

| Render 9@_]—_14

| [|

e o - A1 I

Figure 2-1: Structured video display processing pipeline This pipeline handle all the
hard-core processing, while the scripting language(not shown) gives the instructions as
to when/where/how each object is.

process controller can be thought of as the bounding language, such as a scripting language
as described in section 5.2. It is at this higher level of abstraction that interactivity can be
introduced. This allows other parts of the structured system, such as the audio decoder, to
respond to the interactivity in an appropriate manner. All the decisions are made at the
scripting level, while the hard work is done at the composing pipeline level.

Each of the different object require different data manipulation.

» 2-D objects: The raw data is arrays of pixels, which the scripting language
would assign a depth value to, to facilitate in layering. They may have
transparent holes through which other object can be seen through these holes.

» 2 1/2-D Objects: These are 2-D objects with depth associated to every pixel.
These depths are stored in what is called a z-buffer. 2-D objects become 2 1/2-D
objects after the script adds a constaﬁt depth value to them, while a 3-D objects
become a 2 1/3-D objects after being rendered from a particular camera
viewpoint.

* 3-D Objects: These are regular 3-I computer graphic representations of
objects, ranging from particle databases to texture mapping. Particle databases
are used in the Cheops system (described in the next section) because of
hardware design features.

* explicit transformations: This is an explicit spatial transformation of pixels,
otherwise referred to as warp. These may be of different forms such as a dense

optical flow field, or a sparse set of motion vectors.

Y

2 Video Decoder 16

Hybrid
Predictive
Decoder Explici \

Transformations Fre |
I - pply
2-D, 2 1/2-0, Transfar-
Compressed obiaCts
Data Stream De- | ODJBCIE] mations Display

Prediction for next frame

— > compress —
Error
Layered 2-D
14 Prediction far next frame
Breecg)lgte“:e Explicit &_ T _I _______ |
Transiormations Aol | |
2-D, 21/2-D, T for-
S [apareo | Mo -
—_— Euer;mress . Composite ﬁ'——%
Errar : I
e e e e . I
Fully 3-D
Decoder with
Error Signal
Compressed] |
Data Stream Da- . B _ Display
)W compress | opaets Composite |
Render
Error |
Combined 2-D,
Pradiction xt f
2 1/2_D, 3-D, rediction for na ra"lf_ ______]
Decoder Explicit Y

Transiomations

Apply
2:0,21/2-0. | Transtor-

Compressed ’
Data Siream Lbi% mations —Ia- Display
_— De- 3-D Compasita
COMPress | objects
—»-
Render |

Figure 2-2: The video decoder pipeline showing a variety of possibilities of decoding
different forms of structured videe objects. The Gray data paths are inactive, while
dashed data paths interconnect in an algorithm-dependent manner.

& 2 Video Decoder 17

» error signal: These are 2D arrays of pixel values which could be added to the
result of the transformation or rendering, or even to the composite result at the
end.

As shown in Figure 2-2, different structured video objects follow different paths

through the pipeline. Therefore, many types of decoders could be used to compose many

objects into one output.

2 2 The Television of Tomorrow Group

at the Media Laboratory has been

Cheops: o
. . very active in the research of new
An 'mplementqhon concepts of video acquisttion,

processing and display. They have developed the Cheops Image Processing System for

this very purpose. Cheops has real-time capabilities to scale, warp and composite 2-D, 2
l/5D and rendered 3-D objects. It also has the capability to hold up to 32 Gigs of RAM,
which can store all the raw data needed for most movies. Cheops is modular in form, in
that it divides up the work into small and computationally intensive stream operations that
may be performed in parallel and embodies them in specialized hardware.

Using Cheops, Brett Granger developed a system to decode and display structured
video objects in real-time[Granger 92]. This system was used to decode and display a
structured movie, named The Museum, dcvelopéd by the Television of Tomorrow Group
of the Media Laboratory. This movie was shot and developed with the purpose of showing
flexibility and user interactivity. The plot 1s as follows: A man walks into a muscum where
in the middle of the room is a statue and a frame in front of the statue. The man walks
around the statue and is intrigued by it. He finally looks through the frame and the statue
becomes alive and motions the man to come forward. Once the man responds, he turns into
a statue, and the statue becomes a man and walks out of the scene.

The acquisition of the raw data for this movie was done by two methods. The first
model is the background. From three normal pictures of a museum, a 3-D model of the

gallery was extracted using Shawn Becker's semiautomatic 3-D model extraction technique

& 2 Video Decoder 18

[Becker 95]. Then, using texture mapping, the frame was added into the middle of the
room as part of the room. The second model was the actors, Here the actors were video
taped from three directions in front of a blue screen performing the actions in the script.
The actors were extracted out into a set of 2-D objects. These two object types are the
building block of the movie, along with the scripting language.

The scripting language allows the users to control the location of an object, scale,
frame and view position. The location of the objects could either be a 2-D location on the
screen (in which case scale would be needed to ensure relative height), or a 3-D location in
the simulated space (where scale 1s not needed since it can be calculated from the camera
parameters and the 3-D location). Frame refers to the temporal frame number from the
sequence of video still captured on tape. Since there might be more than one recording of
an cvent from different locations, the view position is used to control which one of the
multiple views is needed depending on the current view direction. The scripting language
also controls the view parameters, which are the location and direction of the camera, the
focal length and the effective screen dimensions.

All the above parameters could be dynamically controlled by the script, or even
placed under user control. This allows flexibility in the viewing of the movie. For example,
the system could change the location of the camera by simply turning a knob (as user

input),

19

2 Video Decoder

A

S
SR

FQ@D\
Ol

- i- i
i.!

NN

r

Figure 2-3: A rotation in The Museum movie. Here the user is requesting a rotation along

an axis, and thereby the output is four shots of a rotated view of the room.

20

2 Video Decoder

&

L f
e e eSS e o e
- e

ﬂ s T

Figure 2-4: A zoom in The Museum movie. Here the user is requesting a zoom out, and the

output is four shots of a zoom out of the room.

Y 3

1/
¥/ 4
; Sound Localization

This thesis concentrates on the idea of Structured Sound. A system such as this
requires a mode of delivering the sound in real-time so as to appear that it is coming from a
certain location. If an image appears on the left side of the room two meters in front of the
audience, so should the sound appear to be coming from the left side of the room, two
meters in front of the audience. This procedure is called localization of sound.

Engineers for years have tried to design a system to synthesize directional sound.
The rescarch in this field is split between two methods of delivering such directional sound.
The first uses binaural cues delivered at the ears to synthesize sound localization. While the
second uses spatial separation of speakers to deliver localized sound. A binaural cue is a
cue which relies on the fact that a listener hears sound from two different locations - namely
the ears. Localization cues at low frequencies are given by interaural phase differences,
where the phase difference of the signals heard at the two ears is an indication of the
location of the sound source. At frequencies where the wavelength is shorter than the ear
separation, phase cues cannot be used; interaural intensity difference cues are used, since
the human head absorbs high frequencies. Thereby, using the knowledge of these cues and
a model of the head, a system can be implemented to give an illusion of sounds being
produced at a certain location. Head Related Transfer Functions (HRTF) [Wenzet 92] have
been used extensively to deliver localized sound through head-phones. The HRTFs are
dependent on ear separation, the shape of the head, and the shape of pinna. For each head
description, the HRTF systermn produces accurate sound localization using headphones.
However, because of the system's dependence on ear separation, o two people can hear
the same audio stream and "feel” the objects at the same location. There would need to be a
different audio stream for each listener depending on his/her head description.

One of the requirements of this thesis was to produce sound localization for a group

of people simultaneously. Therefore, the author could not use binaural cues to localize

& 3 Sound Localization 22

sound sources. The second method of sound localization was used, that is the delivery of
Jocalization cues using the spatial distribution of speakers. Here the system does not rely on
the fact that the audience has two ears, rather the system relies on intensity panning
between adjacent speakers to deliver the cue. Thus an approach developed by Bill Gardner
of the Media Laboratory's Perceptual Computing Group was adopted. Gardner developed a
design for a virtual acoustic room [Gardner 92] vsing 6 speakers and a Motorola 56001
digital signal processor for each speaker, on a Macintosh platform.

This work 1s not identical to Gardner's. Because of design constraints, the author
was limited to Digital's Alpha platform, and to the LoFi card [Levergood 9/93] as the
primary means of delivering CD-quality sound. The LoFi card contains two 8§ KHz
telephone quality CODECs, a Motorola 56001 DSP chip with 32K 24-bit words of
memory shared with the host processor. The 56001 serial port supports a 44.1 KHz stereo
DAC. Thus using only one Alpha with one sound card limited the number of speakers to be
used to two!. Those two speakers would have to be placed in front of the listener, which
might limit the locations of sound localization. Gardner's model assumes that the listener 1s
in the middle of the room and that sounds could be localized anywhere around him; he uses
6 speakers spaced equally around the listener for this purpose. However, from a visual
standpoint, people view three dimensional movies through a window, namely the screen.
The audience is always on one side of the window and can only sec what is happening
through that window. Therefore, it may not be oo much of a restriction to limit sound
localization to the front of the avdience. The system would have two real speakers and one
virtual speaker behind the listener that is not processed, but is needed to ensure proper
calculations.

There are two major processes that are executed to render sound localization from
the spatial location of speakers. The first is the simulation of the carly reverberation
response hereafter referred to as the Echo process. This is the modeling of the direct

reflections from the walls of a room. The Echo process will produce an FIR filter for every

| More LoFi cards could have been placed in the system, however the precessing required for two speakers
takes up all of Alpha's processing power. The sampling rate could have been halfed, to accomodate two
other speakers; however, the author decided to keep to the full 44.1KHz for clarity in the high frequencies.

S 3 Sound Localization 23

speaker representing the delay of all the virtual sources in the room. The second is the
simulaton of the late reverberation, or diffuse reverberation, hereafter referred to as the
Reverberation process. This models the steady state room noise from all the noises in a
room and their Echoes. It is not directional such as the Echo is, but rather it creates the

general feel of the acoustic quality of a room.

3] The echo process 1s an attempt at

simulating all the virtual sound

The Echo Process

sources resulting from the sounds

bouncing off walls. The echo process is divided up into three procedures. The first is for
every sound source in the room, to calculate the virtual sources beyond the room because
of the reflections off the walls. The second is for every sound source and speaker, to
calculate an FIR filter representing the delay of the virtual sources that are needed to be
projectéd from that speaker. The third is the pruning stage for real-time purposes, where
the FIR filter is pruned to reduce the number of taps, and thereby calculations, needed in

the real-time rendering of the sound streams.

3.1.1 | The first stage of the Echo process is to compute all the

Virtual Sources virtual sources in the room for every sound stream in the

room. Since this system is confined to rectangular rooms (see section 4.1.2 for more
detail), the procedure is simple (Figure 3-1). The program loops through the number of
reflections, from zero to the user defined max_reflections for the room. For every number
of reflection, the program loops through every possible reflection on the x-axis walls, and
calculates the z-axis wall reflections necessary. Once the program has defined x-axis and z-
axis locations, then it needs to calculate the attenuation coefficient for every location due to
the reflections off the walls. The result depends on the number rather than the order of
reflections on each wall. To calculate the number of reflections on each wall, the program
would divide the axis location by two and the whole number result is that number of paired
reflections on both walls on the axis, and the remainder is used as an indicator of any single

reflection apart from the pair reflections. The sign of the remainder defines which wall the

& 3 Sound Localization 24

A + |+ +
Wall 0

5 E =

ot |+ % + |2+ +

5 =

3,1 n Walz_ | T

'

— } t t —>-
- O x-reflect ! 2

Figure 3-1: Echo effects of sources in a rectangular room. The BOLD lines represent the
actual room and source location, while the normal lines represented the echoed
rooms/source locations. The axis is the number of reflections on the perpendicular
walls. For example, x=3 means 2 reflections on wall 2 and 1 on wall 4, NOTE; The

walls are marked in clockwise order starting from minus-z location, and the listener is
facing the minus-z direction.

reflections occurred; for example, remainder of x = -1 would mean a bounce off wall 3 (the
minus-x wall) and not wall 1(the plus-x wall}. As a general example assume the program is
calculating 11 reflections, and it happens to be on x-reflect-axis -5, and z-reflect-axis +6.

The program computes the following:

X-reflect-axis Z-reflect-axis
5 +6
> ==2+rem{—1) ?=+3+ rem(0)
Numbe Sign Number

2% [ref _coef(walll) + ref foef(wall3)]
+{3 *[ref _coef (wallQ) + ref _coef(wall2)]}
+ ref _coef (wall3)

The above summation is the attenuation coefficient of the virtual source, where ref_coef is
the reflective coefficient of a wall. The attenuation coefficient is multiplied by the tap

amplitude of that virtual source.

3.1.2 | The next step in the process is to create an FIR filter for
Speaker Sound each speaker, representing the delays from all the sources

¥

3 Sound Localization 25

in the room. From the list of the virtual
sources, the program picks out the sources
that could be projected from each speaker,
and uses intensity panning between
adjacent speakers to achieve the desired
spatial localization of the virtual sources
[Theile 77). Moreover since the listener is
not constrained to any particular
orientation, it is unclear how to use phase
information to aid in the localization of
sound.

The diagram on the right (Figure

3-2) depicts one of the virtual sources in

the system between two speakers. This

virtual source F

listener

Figure 3-2: Intensity panning between
adjacent speakers.

virtual source will contribute a tap delay to both the speakers A and B, but not to any other

speaker. The tap delays are proportional to the difference of the distances from the listener

to the speaker and to the virtual source. The tap amplitudes are dependent on the same

distances as well as the angle spans.

The formula for this system is as follows:

A, Btap delays =
A tap amplitude = aicos(zﬂ'?—)

B tap amplitude =

a=Hl"j

ies

where :

d 1s the distance to the source In meters,

r is the distance to the speakers in meters,

¢ is the speed of sound in meter per second,

a is the amplitude of the virtal source
relative to the direct sound,

5 is the set of walls that sound encounters,

and

T is the reflection coefficient of the jth wall.

'Y 3 Sound Localization 26

There are a couple of comments that are worthy to be noted:

+ The value of @ was calculated when the program found each echoed source, and
it was stored in the sound source description.

» Ths result assumes that the listener, speaker and virtual sources all lie in the
same horizontal plane, and the speakers are all equidistant from the listener.

* The speaker locations are fixed with respect to the front of the listener.
Therefore if the listener is facing a direction other than minus-z in the virtual
space, then the speaker locations need to be rotated by that same amount and

direction before any of the above calculations could be performed.

3.1.3. | A typical system setup of a rectangular room might have
Prumng the Filters the maximum reflections of the room set Lo eight. This

would give us 64 filter taps. While there is no direct system limit on the number of taps, the
more taps the filter has the longer the program would take to compute the result of the filter
over the sound samples. In a real-time environment, every possible care should be taken to
force the system to compute a reasonable result as fast as possible. Therefore to enhance
real-time performance, the procedure used to intelligently reduce the number of filter taps is

as follows:

* Adjacent filter taps within 1 millisecond of each other are merged to form a new
tap with the same energy. If the original taps are at times tg and t), with
amplitudes ag and a), the merged tap is created at time tp with amplitude ap as
follows:

3 2

te,” +Ha
_ ot 144 _ [2
I, =—7—5- d, =4, +aq

2 2
a, +aq

» Filter taps are then sorted by amplitude. A systern defined number of the highest

amplitude taps are kept.

The pruning process tends to eliminate distant virtual sources as well as weak taps

resulting from panning. This process should not affect the system quality if the maximum

& 3 Sound Localization 27

filter taps is set to at least 50 or so. The higher the max-number-taps, the better the system
quality. However if real-time performance is hampered, lower max-number-taps would be

advised.

32 Rooms do not produce just direct

The Reverberqﬁon Process | reflection off of walls, they also

have a general steady state noise

level from all the sounds produced in the room. This noise is a general feeling of the
acoustic quality of the room, and is referred to as Reverberation. Rendering this reverberant
response is a task that has confounded engineers for a long time. It has been the general
conception that if the impulse response of a room 18 known, then the user can compute the
reverberation from many sound sources in that room. A system that Moorer determined to
be an effective sounding impulse response of a diffuse reverberator is an exponentially
decaying noise sequence [Moorer 79]. Rendering this reverberator requires performing
large convolutions. At the time of Gardener's system development, the price/performance
ratio of DSP chips was judged 1o be too high to warrant any real-ime reverberator system
al reasonable cost. Perhaps the ratio is now low enough to allow for real-time reverberator
systems at reasonable cost. If a system incorporating these chips is implemented, input
would have to be convolved with an actual impulse response of a room, or a simulated
response using noise shaping. However, no such DSP chip exists for the Alpha platform.
Thus the system implements efficient reverberators for real-time performance. This requires
using infinite impulse response filters, such as a comb and allpass filters.

Two considerations were present when choosing which of the many combinations
of filters to implement. The first consideration was the stability of the system at all
frequencies. The second was that the system would increase the number of echoes
generated in response to an impulse, since in a real room echoes, though they subside,

increase in number. Thus, nested allpass filters are chosen as the basis for building the

& 3 Sound Localization 28

reverberator, since they Y
satisfy both the parameters. -g
For more detail on the T

mathematics and the creation

of different reverberator X G(Z)

refer to [Gardner 95] and

[Gardner 92]. ®4
The design of the g

nested allpass filters used in

Figure 3-3: Allpass flow diagram with samples taken

the system is modeled in from the interior of the allpass delay line,

Figure 3-3, where X is the

input, Y is the output, g is gain and G(z) is simply a delay. This allpass filter is the building
block. The result of cascading these filters together is not a good sounding reverberator; it's
response is metallic and sharp sounding. However, when some of the output of the
cascaded allpass system is fed back to the input through a moderate delay, great sounding
reverberators are achieved. The harsh and metallic feel of the systems without the feedback
is eliminated partly because of the increased echoes due to the feedback loop. Moreover,
adding a lowpass filter to the feedback loop would simulate the lowpass effect of air

absorption. This newer system would be of a form as shown in Figure 3-4,

(D D Y

a0 al a2
X
(1) pl APl —e—m AP AP
@4 LPF |¢——
g

Figure 3-4: A generalized allpass reverberator with a low pass filter feedback loop, with
multiple weighted output taps.

'S 3 Sound Localization 29

The system represents a set of cascaded allpass filters with a feedback loop
containing a lowpass filter. The output is taken from a linear combination of the outputs of
the individual allpass filters. Each of the individual allpass filters can themselves be a set of
cascaded or nested allpass filters. The system as a whole is not allpass, because of the
feedback loop and the lowpass filter. Stability would be achieved if the lowpass filter has
magnitude less than 1 for all frequencies, and g (gain) < 1.

From this general structure, many systems can be designed. The key to creating
good sounding reverberators 18 not mathematics, but rather it is the ear. The basic decision
criterion for finding a good reverberator is whether or not it sounds good. Since the ear is
good at detecting patterns, the job of a good reverberator is to elude this pattern recognition
process. Therefore the reverberators used in $5Sound have been empirically designed to
sound good. They are taken from Gardner's Masters thesis{Gardner 92]. None of them are
mathematical creations, rather they are the result of laborious hand tweaking, so as to
produce good sounding reverberators.

In order to simplify the representation of nested allpass reverberators, a simplified
schematic representation was used as shown in Figure 3-5. The top of the figure (3-5a) is
the procedure used to perform the allpass filtering. Here the feed-forward multiply
accumulate through -g occurs before the feedback calculation. While figure 3-5b shows a
simple nested allpass system (for instructional purposes only). The input enters a delay line
at the left side, where it is processed with a single allpass followed by a double nested
allpass. The allpass delays are measured in milliseconds, while the gains are positioned in
parenthesis. The system first experiences a 20 milliseconds delay, then a 30 millisecond
allpass with a gain of 0.5. Then the system passes through another 5 milliseconds of delay,
followed by a 50 millisecond allpass of gain 0.7 that contains a 20 millisecond allpass of
gain 0.1.

In a general reverberator such as the one described in Figure 3-4, the only variable
in the system is the gain of the feedback loop. Tweaking this gain would give us different
reverberation responses. However, just this variable is not enough to simulate alf the sizes

of rooms a system can encounter. Thus it is highly unlikely that such a reverberator could

3 Sound Localization 30

— &+ ¢

~R—

-g=-05

g=05
— Y
aal I S -
I 30ms ___+|
N e
T
input " output
// —_- ¥ 50(0.7)
/80(0.5) \\ 20(0.1)
f
20 s -
\ /
\H_//
Figure 3-5: A detailed description of the all pass procedure and an ¢xample of a

reverberator system. a} (top) a schematic of the allpass procedure, where the forward
multiply accumulate {(of -g) happens before the feedback calculation through +g. b)

{bottom) instructional allpass cascaded system.

be designed to simulate all the types and sizes of rooms. Gardner suggested three

reverberators, one for each small, medium and large sized rooms. The acoustic size of the

room can be established by the reverberation time of the room. The reverberation time of

the room is proportional to the volume of the room and inversely proportional to the

average absorption of all the surfaces of the room.

The following formula 1s a method of calculating the reverberation time (T) of a room:

where:
Vv ..
T= _ﬁ)LP =0161— T is reverb time in seconds,
1.085¢ca’ a
c is the speed of sound in meters per second,
a = 5[-2.30log,, (1~)] V is the volume of the room in meters cubed,

a'1s the metric absorption in meters squared,

& 3 Sound Localization 31

o= S S is the total surface area in meters squared,
o is the average power absorption of the room,
S=8+5+....+5, Si. o 1s the surface area and power absorption of
wall 1, and
a=(1-T7% I"is the pressure reflection of a material.

The above formula is used to calculate the reverberation time of the room so as to know
which reverberator to use. The following table shows the reverberation time range for each

TOOITL

Reverberator Reverberation Time (sec)
small 0.38 > 0.57

medium 0.58 -> 1.29

large 1.30 -> infinite

Figure 3-6 shows the three reverberators used in $8Sound.

& 3 Sound Localization 32

Small room reverberator

output
input
0.5 0.5
35(0.3) ? 66(0.1)
22(0.4) 8.3(0.6) 30(0.4)
ORI N || S S S |
r LPF
4.2 kHz
RDet—
gain
Medium room reverberator output
'_;fl\
input
0.5 0.5 input 0.5
35(0.3) 39(0.3)
8.3(0.7) 22(0.5) 30(0.5) 9.8(0.6)
67
I R T P
93'” LPF
2.5 kHz
R4 i
gain
Large room reverberator output
*ﬂl
input :
0.34? 0.14 0.14
87(0.5) 120(0.5) 7
8(0.3) 12(0.3) 62(0.25) 76(0.25) 30(0.25)
iiu 1417 & 1 313¢ 14' l
A '
LPF
2.6 kHz
— R |
gain

Figure 3-6: Diffuse reverberators used in SSSound for small, medium and large rooms.
See figure 4-5 for detailed explanation of the schematic. These reverberators were
designed by W. Gardner [Gardner 92].

ST

4

0
u
7

d

Sound Decoder

The heart of SSSound is the "Engine”. The Engine is the part of the code

responsible for plugging through the mathematics and computing the final output result. Tt

runs on a three thread system, a Play thread, a Setup thread and a Comm thread (Figure 4-

1). The Comm thread gives the instructions to SSSound. It could be a scripting language

that has been adapted to run SSSound, or it could be a decoder that receives messages over

a socket and runs instructions used by SSSound (in-depth discussion in chapter 5). The

Setup thread handles the setting up of the structures that describe the location of the sound

sources, description of the room,
and other minor details. Setup
gets its information from Comm
thread, and produces a structure
that is sent to the Play routine for
processing. This thread is
involved in handling the detailed
timing aspect of the sound
projection. When the Setup
decides it is time, the Play thread
will process and project the
information immediately.

The Play thread is the
most power-intensive and time-
critical thread. Play takes the
structures that are produced by
Setup and puts them in a cycle of

read / echo / reverb / play for each

(Shared Memory j
S S
I ’l ‘

‘

Figure 4-1: The three threads of SSSound. Play
thread does all the processing, the Setup thread does
all the timing and setting and the Comm thread
holds higher-level programs such as a scripting
language. All the threads share the same memory.

& 4 Sound Decoder 34

speaker. Each cycle processes manifold samples of sound, defined by the variable
COMPUTE_SIZE . Currently COMPUTE_SIZE is set to 4410 samples(100ms), which is
small enough to pass user input into the stream relatively quickly, but it 1s large enough not
to be affected by the cycle overhead. Moreover the system is limited to two speakers per
DEC Alpha computer (Alpha 3000/300 running under OSF 3.0), since the computation
required for two speakers takes up most of the processing on the Alpha. The speaker limit
is bound by two factors: first the computational limit; reverberation takes up two thirds of
the processing for S55ound, while Echo takes up another 20%. Each speaker needs one
reverberation routine, thereby cutting the limut of speakers to 2. Second the hardware limit;
gach LoFi card has only two outputs (left and right speakers) and it uses Alpha's Hi-speed
Turbo channels, which are in high demand. The computation for the two speakers is
conducted on separate pipelines (Figure 4-2). The processing for the first speaker is the
more complete process, since all computation must be done from scratch, while the

processing for the second speaker uses information already computed from the first.

4.1 The Play Thread is responsible for

The Play Thread

It's processing pipeline is as described in Figure 4-2. The first element the program checks

the real-time computations and

} projections of the audio samples.

1s the status of the system: has the state of the system changed in any way? The Play
Thread 1s merely concerned with checking global variables it receives {from the Setup
Thread.

For the general case, let us assume that the state had changed. Play would get the
new dimensions of the room, listener position/orientation, sound locations and/or other
variables from the Setup thread. Using this information, Play calculates the filter taps for
each speaker it is processing (described in more detail in Chapter 3). The filter taps are the
end result of every state of the environment. Therefore, if the environment does not

change, Play would skip to the process step of the cycle routine.

4 Sound Decoder 35

Once the program has obtained

—— Signal Setup
the filter taps, either computed fresh
| Capture Any Changes from the new information or reused
— Create Virtual Sources from the previous compute, then it 1s
|| READ from file able to process the samples. Play
f would process every available stream
_| Create FIR Filter Taps by first reading COMPUTE_SIZE
for Speaker 1
samples of the stream from the stored
h — ECHO1 file into local memory. Then it would
—i REVERB 1 apply the echo filter taps calculated
from the state of the system. The result
—— PLAY 1 Y

of the echo is added into a play stream.

Create FiR Filter Taps After Play does this to every stream,

tor Speaker 2

the resultant stream would go through a

ECHO 2 Once per reverberation process, which adds the
Speaker

appropriate reverberation to the stream

— REVERB2

E% Repeated per depending on the characteristics of the
i

| PLAY 2 X Stream

simulated room. All these processes are

Figure 4-2: The PLAY process pipeline described in the next subsections in

according to speakers and streams. Speakers 1| .. derail
and 2 have different pipelines in order to} '
conserve computational power.

4.1.1 | Having calculated the filter taps for each speaker, the
Read from file | program is ready to read the samples from the file into our

processing stream. The sound data files are stored as 16 bit integers in raw format (CD
format). Every cycle, Play reads COMPUTE_SIZE integers into its read buffer (named
read_buf) - which are COMPUTE_SIZE large. These integers can be accessed using two

character reads, one offset by 8 bits. They then are converted to floats and stored in the

'S 4 Sound Decoder 36

read_buf[O] L read_buf[n] | IS | “r an e NN

fread_buf[0] AATIIAY

70T T T 8 f—

fread_buf[n]

process_buf Lol
COMPUTE_SIZE (100ms)
BUFFER_SIZE (2sec)
write_buf Kol n number of streams

Figure 4-3: The Play Thread Buffer sizes and processing pipeline. First 16-bit integer
samples are read into read_buf{1...nj. They are then converted to 32-bit floats and saved
into the appropriate section in fread_buff1...nj. The ECHO process is applied on the
fread_buff1..n] and the result added into the current section in process_buf. When all
the streams have added their echoes result, REVERB is applied to the current section in
process_buf and the result saved as 16-bit integers in write_buf. Those samples are then
sent to the audio server to be played.

appropriate portion of the float read stream buffer (named fread_buf, length =
BUFFER_SIZE). BUFFER_SIZE is currently set to 2.0 sec.

The rest of the processing is done in floats. Float to integer conversion is a
computationally costly process, so it is not performed until the play cycle. 16-bit integer
storage in character form is not feasible. Character access of 16-bit integers requires two
memory accesses, a shift and an addition. The choice was left between storing the samples
as 32-bit integers, or 32-bit floats. Floats were chosen as the method of storage for two
reasons. First, because of the design of the Alpha chip, float calculations are on the average
20% faster compared to integer calculations [Alpha 92]. Second, float calculations allow

the most significant digits to stay with the number, otherwise the system would be bound

NS 4 Sound Decoder 37

by certain limitations on integer calculations. This second reason also enables the program
to have better estimates of the filters taps needed for processing. The Play thread is
computationally very intensive; 112 shifts, 31 multiplies, 156 additions and 38 bitwise and
operations are needed for every sample the program reads/plays. Therefore, any cycles

saved will assist in program efficiency.

4.1.2 | Once the samples are copied into the float read buffers, a

Echo | process called Echo is applied. Echo adds the effect of
sound reflecting off the simulated walls. This is an important consideration since all walls
are somewhat reflective. The required information for the Echo process is :

» the specification of the room,

+ the reflective coefficients of each wall,

* the maximum depth of reflective sources to be computed,

» the maximum number of reflections to be computed,

+ the location of the sound source,

s the location of the listener,

+ the orientation of the listener to the room,

* the location of the speakers.

The Echo process takes the above parameters and computes a set of filters for each
speaker and for each stream. Each filter is essentially a set of delayed taps. Echo applies
these filters over the read buffer for each stream. Here the particular implementation of the
echo process is described.

The room description specifies the size and shape of the virtual room to be
simulated. To reduce the computation, the room is restricted to being simply rectangular in
shape. Thus only the length and the width of the room are needed (assuming the origin of
the virtual world is the center of the room). The system is designed such that new types of
room descriptions, such as polygonal rooms, can easily be implemented. Polygonal room
descriptions are more effective since the do not restrict the shape of the room. However, it

requires much more computation to actually find all the source reflections in the room

& 4 Sound Decoder 38

[Borish 84]. This thesis is more concerned with the general aspects of SSSound—the
application of this technology to polygonal rooms is left for later studies.

The reflective coefficient of each wall is a number between 0 and | specifying the
ratio of the reflected pressure to incident pressure. A coefficient of zero represents no
reflection of sound. Each room has a general maximum number of reflections associated
with it, and each stream has a maximum depth associated with it. These two parameters
together add some control to the whole system so as to customize the acoustic environment
more precisely.

The location of the sound source represents the point from which sound prejection
is simulated. It is described as a point in the z and x plane. In most cases, the sound
location is the same as the location of the projected image in the virtual room. However,
this could be overridden in the script so as to allow for sounds to appear from places where
the image might not be, such as a call from behind the person, or from another room.

The location of the listener describes the position in the virtual room where the
listener is, while the orientation of the listener describes what direction the listener is
with respect to the room (the counter-clockwise angle from the minus-z axis). These two
elements together correspond to the location and orientation of the camera/viewer in the
visual domain.

The location of the speakers is the only dimension in the system that has any
physical meaning. What this defines is the location of the speakers in the real world with
respect to the front of the listener. The z direction is defined as the normal to the screen,
therefore, if the listener is directly in front of the screen, he is looking in the minus-z
direction. The speaker location is defined with respect to this axis system.

Sound locations in front of the speaker actually produce a negative tap delay—-
which in reality implies the need for a sound sample before the program has read it,
However since the system does not read sources before they happen, a delay line was
added to account for this phenomena. Echo sets a COMPUTE_SIZE delay to the pipeline—
a tap at delay zero is actvally a tap COMPUTE_SIZE away. Therefore the smallest tap
delay the system can handle is minus COMPUTE_SIZE, which implies a source 3.42

& 4 Sound Decoder 39

meters in front of the speakers (if COMPUTE_SIZE is 100ms). This represents the
maximum distance between listener and speakers for a full rendering of all the possible
sound locations.

Echo receives COMPUTE_SIZE integer samples, and changes those to
COMPUTE_SIZE float samples, saving them in a BUFFER_SIZE long buffer. The
BUFFER_SIZE (2 sec) buffer is needed to ensure that echo sounds are stored to be used
for echoed samples. For example, because of echoes, a sample might be needed that was
actually projected 100ms before. This sample 1s stored in the fread_buf stream. Echo adds
the above filtered stream into the reverb buffer (process_buf). Since this happens for every
sound stream, the result of all the Echo routines is a single stream which contains all the

sounds and their echoes from all the streams.

4.1.3 | Reverberation is the general sound level that resides in a

Reverberation room from all the sound sources. No room is totally

reverberation-free therefore the program needs to simulate some form of reverberation for a
realistic effect. Most reverberators require large memory allocation and intensive
computation, more than a general purpose processor can offer for real-time purposes. To
circumvent this problem the program utilized nested all-pass filters (described in chapter 3).

Reverb receives the stream of the result of all the echoes as described above and a
description of the room, and outputs a reverberated response to the sounds. The buffer
used for reverberation 15 the same size as the Echo buffer, which also includes a 300ms
extra buffer space at the beginning. The extra space 1s important to ensure continuous
running of the system, without infinite memory. Whenever the program reaches the end of
one buffer for echo or reverb, it copies the last 300ms of the buffer to the beginning and
then returns the pointer to just after that 300ms. This ensures that not much data is lost in
this transition. For the echo, 300ms for sound corresponds to about 100m, and most
rooms are smaller than that. While for reverb, the biggest reverberator the system vses has

a span of less than 300ms.

& 4 Sound Decoder 40

Reverb transforms the float echoes response to a single COMPUTE_SIZE play
buffer of 16-bit integers. Float results of reverberation are never saved. As soon as a

reverberated sample is computed it is typecast as integer and saved in the play buffer.

4.1.4 | The main function of the play cycle is to project the

PlGY computed sound samples over the speakers. The server the

program uses is the AudioFile(AF) server from Dhgital [Levergood 8/93]. AF handles all
the play requests: it copies the samples into its own buffer, so the client can utilize its own
buffers once the play function returns. AF also handles the play time requests. Requests for
play at time before current time are ignored, while requests for play at time after current
time are stored up. Thereby the play cycle is a simple cycle of informing AF where the
information is, how long it is, and when to play it; the program then resumes its normal
processing.

Timing is very tmportant to the play cycle, as well as to the whole system. The
system should not compute a sample after its intended play time has passed. If it takes
longer for the computer to process the required information than it does for it to play the
samples (i.c., 1.2 sec processing time for 1 sec sample length) it is necessary to discard the
previously computed samples and jump ahead to real-time. Nor should the system compute
samples too far ahead of current time, to ensure quicker interactive response. SSSound's
answer to this problem is to compare the current process-time to the real-time at the
beginning of every cycle. If process-time is ahead by MAX_AF_STRAY (set (o
3*COMPUTE_SAMPLES = 300ms) then the program delays by calling the setup thread
again, until real-time approaches process-time by at least 300ms. The author has found
300ms to be a reasonable time 10 ensure continuous play in a non-real-time system such as
Unix. Since Unix operating systems run clean-up routines that override most routines, the

300ms lead provides a good buffer to fall back on when these routines are executed.

S 4 Sound Decoder 41

4-2 .
runs alongside the play thread. The
The Setup Thread | Setup thread deals with all the

synchronization and the communication to the external interface. In essence, Setup knows

The setup thread is the thread which

everything and tefls Play what to do only when Play needs to know. Setup sees two sets of
variables: serup variables and now_vartables (Figure 4-4). The setup_variables are
assigned by an outside system, such as a scripting language, that calls the functions
provided by SSSound (see section 5.1). The now_variables are set by the Setup thread and
looked at by the Play thread.

Whenever the main

i sss_function,
setup_variables thread calls an sss_

that function changes the

WAIT
for a wakeup
signal from Play

U

RECEIVE
Changes from
Comm to local
memory.

state of the serup variables.
The Setup function, once

every 100ms at least, looks

cTC~0W
S300

at the serup_variables and
sees which ones have
changed, and copies that

information into its local-

EVALUATE
changes to see -
if any state has
changed

memory. Then Setup
analyzes those user changes

and formulates a system

SEND
updated

infarmation
to Play

change if one is needed. For

example, if a new sound

< —"0

should be played, then

now variables

Figure 4-4: The SETUP process pipeline and its
communication with the Comm thread usging
setup_variables and with the Play thread using
now_variables.

Setup checks if the time to

play it has come. If so, it

detects a system state

change (i.e. from waiting to

& 4 Sound Decoder 42

playing). Once a change is detected, Setup would capture the mutex between setup and play
and write that change into the now_variables. Thus a complete setup cycle has been
accomplished, and all changes are passed on to Play.

Setup then sleeps until Play signals the start of its new cycle. Then Setup 15 allowed
another cycle through its Receive, Evaluate and Send processes. This eliminates any undue
processing, as Play can only read the information every 100ms. Setup is also allowed to
wake up whenever process-time is ahead of real-time by 300ms (as described in section
4.1.4).

One of the advantages of this multi-thread system is that the system has a thread
which controls its setup, and another that performs all the processing. This allows Setup to

control any synchronization needed to achieve real-time results.

43 Real-time synchronization for

playback to users falls into two

Synchronization

categories. The first is

synchronization in a single stream, where each packet of information needs to be put out
exactly after the one before it (serial synchronization). The second category is
synchronization between two or more streams, such as an audio and a video stream. This
type of system, where a packet from one stream needs to appear at the same time as a
packet from another stream, is called parallel syn'chronization. SSSound's synchronization
problem lies in the latter category.

S§S8Sound in its most general form, as discussed in section 1.1, is part of a multi-
media system. SSSound handles only the audio, while another platform, such as a system
like Cheops [Bove 94], would handle the video. The distinction between a structured
system such as S5Sound, and a traditional or even interactive traditional system is that the
structured system cannot predict what the next frame/sound will be. In a structured system,
the video and audio frames are put together instantaneously, without prior knowledge of
how they might be put together. In a traditional system, the frames are pre-computed and

the only aspect of synchronization is to fetch and play the frames together. For a traditional

'Y 4 Sound Decoder 43

interactive system, all frames are pre-computed, and at run-time, only the ordering of the
frames changes. In this manner, a system could be set up to intelligently predict certain
paths of interaction and pre-fetch the frames [Rubine 94]. In a structured system however,
one can only pre-fetch original sound/image sources. The structured system takes these raw
data and merges them together for every image frame or sound sample, according to certain
rules defined in the scripting language.

A synchronization system proposed by Fabio Bastian and Patrick Lenders [Bastian
94], bridges the gap between the more traditional approach to videos, and the new
structured approach. Bastian and Lenders assume their streams are completely independent
of other events, and thus propose a formal method for specifying parallel synchronization:
Synchronized Session. "A synchronized session could be described as multiple
independent, but related data streams, bound together by a synchronization
mechanism that controls the order and time in which the information is presented to
the user. " [Bastian 94] In order to achieve this, they set up a synchromzation file that
requires certain events in the multiple streams to occur at the same time (Figure 4-5a). A
system is set up to process the data and the synchronization files to achieve a synchronized
output.

In a structured system, a similar setup to Bastian and Lenders 1s achieved by having
the scripting language handle all the synchronization (Figure 4-5b). That is, the language
knows when events should happen in both the andio and the video domain. The scripting
language ensures that the instructions to process the video and the audio of a certain event
are sent at the same time. Each of the audio and the video processors, then, attempts to
process the information as quickly as it can. The information could be skewed if one of the
streams processes the request faster than the other, although an allowance could be made in
this event by adding certain delays in the particular pipelines of the scripting language. A
somewhat reasonable result could be achieved with a system such as this, though not as
good as certain synchronization techniques for more traditional video systems.

A constraint of this system is its inability to use other synchronization techniques

because the two streams are never together except at the moment of conception. That is

& 4 Sound Decoder 44

once the scripter gives instructions to process frames, it has no control over when the actual
frame is created and delivered with respect to other types of frames. Both the audio and
video processing units are on different platforms, and as a result, the two sections never
meel except at the user. A system could be designed so that another synchronization
process 1s added immediately preceding user reception using more tradition approaches

[Ehley 94]. However that is beyond the scope of this thesis.

Y 4 Sound Decoder 45

Pre-computed Synchronization Pre-computed
Video Media File Audio Media
Units ¢ Units

Synchonization
Event

IR Synchonization
d Event

Traditional Sychronization

Structured Synchronization

Raw Raw
Video Audio
Data Data

SCRIPT

¥
Video

Compositor

Audio
Processor

Processed Processed
Video Audio

Figure 4-5: A comparison of the two types of synchronization processes.

a) the Traditional System, like a Batian and Lenders system (top), has pre-computed
frames and synchronization is only performed right before the audience views the
results. b) the Structured System (bottom)} computes the frames on the fly according to the
seript and user input. Synchronization is attempted by giving the Audie and Video
processing instructions simultaneously,

5
External Interface

o

SSSound runs on a three thread system as discussed in chapter four. The third

thread is the main thread, or Comm Thread (Figure 4-1). This thread is the thread

responsible for running the section of code that gives instructions to the Setup thread using

a pre-defined set of functions available to the user. The Comm Thread could either be a

comprehensive scripting language or it can be an open socket which stays idle until it

receives an instruction, whereupon it decodes it and runs the appropriate $SSound

instruction as described in the following section.

5 'I The origin of the instructions does

not influence the action of the

External Functions

program; the instruction is simply

carried out. The first instruction to be executed is the following:

int sss_sound initialize(int speaker(, int speakeri);
This instruction sets up the two other threads, and decreases the Comm thread's
priority to the Jowest available so that the other threads can do all the time critical
processing effectively. Once the two threads are created and all the buffers
allocated, the two threads remain idle until they receive a starting signal from the
Comm thread (sss_start_play). This allows the program to receive instructions
off-line and to be ready to process them at the starting signal. This function also
identifies for which speakers it is processing audio samples. This is useful if
S5Sound is running on more than one machine because it allows the simulation of
more than two speakers. Each machine can then be given the same instructions, so
long as the corresponding speaker numbers are supplied to

sss_sound_initialize. The speaker numbers index a list of speaker locations.

& 5 External Interface 47

Once the initialization routine is completed, the program is ready to accept any other
instructions. However, the speaker locations need to be specified before the starting signal
is sent,
. int sss8_add speaker(float xpos, float zpos):
This instruction is to be executed for every physical speaker in the system. The
speakers are to be added in clockwise order. The order in which they are added
should correspond to the speaker number specified by sss_sound_initialize,
such that the first speaker added is number O, the second number 1, and so forth.
The positions are in meters, and are relative to the listener, where the plus-x 18 to
the right of the listener, and minus-z is to the front of the listener.
NOTE: If only two speakers are added into the system, a third one is automatically
created on the other side of the listener equidistant from the two physical speakers.
Once the speaker locations are defined, the program can start. However, it is recommended
that all sounds be registered before the starting, and that some form of room description,
listener position, and other general characteristics be supplied.
. int ssg start_play():
This instruction starts the loop in the play-echo-reverb-play pipeline. Before this
can be executed, all speakers need to be added into the system.
Once sss_start_play is called, any of the following functions can be called in almost any
order.
. int Bes_reagister sound(char * filename):
This instruction registers a filename and returns a sound_id. Whenever the
filename 1s needed, the sound_id is used to identify the filename so as to reduce the
non-critical information passing between the threads. Thus it is recommended that
all the registering of sound be done before the sss_start_play.
RETURN: sound_id representing the filename.
. int s8s play sound{int sound id, float xpos, float ypos, float
zpos, float start_time, float stop time, fleoat max_depth, float

volume db, int play mode);

&

5 External Interface 48

This instruction requests that a specified sound be played. It takes 1n a sound_id
from the registration process, and the location (xpos, ypos, zpos in meters) of
the sound source. Tt also takes max_depth of the sound, which represents the
maximum allowed depth from the listener to any of the virtual sources, and a
volume_db which is the relative volume in dB of the source. The timing of the
sounds in the system comes in many forms (the capitalized text are modes (0 be
'or'ed with play made).
There arc two ways to start the sound :

- now: S8S_START NOW [no starr_rime needed]

- atstare_time:SSS_START_TIME
There are three ways to end the sound:

- atfile end: SSS_END FILEEND [no end_time needed]

- at stop_time: S85_END_TIME

- at stop_time with looping: SSS_END TIME_LOOP
The start mode and end mode are ‘or'ed together to make up the play_mode.
e.g., SS§_START_END_DEFAULT mode is SSS_START_NOW |

SSS_END_FILEEND
There are two modes of projecting sound. The normal mode is to localize the sound
source as described in this thesis, The other mode is surround mode, where the
same sound source comes from every speaker at the same volume. This is the
SSS_PLAY CIRCULAR mode which can be 'or'ed in with the play_mode as
above. This mode ignores the location information, and only uses the volume db
variable to define how loud this sound source should be from every speaker.
RETURN: play _sound id, which is a unique id for this sound play request.
NOTE: Before this function is called, the room descriptors, the listener position and
the speaker position need to have been defined.

int sss_change sound(int play _scund_id, int change_mask, float

xpos, fleoat ypos, fleat =Zpos, flecat start_time, float

stop_time, float max depth, float volume_db, int play mode);

5 External Interface 409

This function changes the current sound description by taking a piay_scund_id,
which is the sound id returned from sss_play_sound request, and change_mask
which is an 'or'ed number of the following:
SSS_CHANGE_XPOS
SSS_CHANGE_YPOS
S8S_CHANGE ZPOS
SS5S_CHANGE_START_TIME
SSS_CHANGE STOP_TIME
SS5S8_CHANGE_DEPTH
SSS_CHANGE _VOLUME
SSS_CHANGE_MODE
The rest of the inputs are as described in sss_play_sound.
RETURN: | if successful, 0 if not.
int ses delete_scund{int play sound_id);
This instruction takes a play._sound_id and stops it. If for some reason the sound
has already stopped (if it reached the end of the file in a SSS_END_FILEEND
mode), this function does nothing.
RETURN: 1 if successful, O if not.
int sss_set_room desc(float x wide, fleoat v wide, float =z_wide,
int max reflect, float ref__coef_o, float ref_coef 1, float
ref coef_2, float ref_coef 3,float ref_coef top, float
ref_coef hottom);
This function sets the room description dynamically. x_wide, y_wide, z_wide
is the length of the room in meters in the x-, y-, z- directions. It is assumed that the
origin is the center of the room. max_reflect is the maximum number of
reflections/echoes to consider 1n calculating the virtual sources.
ref_coef_[0,1,2,3] are the pressure reflective coefficients of the vertical walls
in the room in clockwise order starting from the minus-z axis (which is the wall

facing the listener). ref coef [top, bottom] are the pressure reflective

5 External Interface 50

coefficients of the ceiling and floor, respectively. (ref coef(..] is a number
between 0 and 1, where O 15 no reflection).
RETURN: 1 if successful, O if not.
NOTE: Only horizontal information is used for actual position calculations. The
vertical height (y_wide) and the ref_coef_[top, bottom] are used only to
calculate the acoustic quality of the room.

int ses_set_other{(float room_expand, float scound expand, float

reverb gain);
This instruction sets the variables as follows:

- room_expand 18 a coefficient that expands the seeming size of the room

with respect to the center of the room,
- sound expand 1§ a coefficient that expands the seeming location of the
sound source with respect to the listener’s position.

~ reverh_gain is a coefficient that defines how much reverb to have.
NOTE: For any reverb_gain lower than MIN_GAIN_FOR_REVERB (setto .1 in
sss.h) there will be no reverb applied to the stream.
RETURN: 1 if successful, 0 if not.

int sss_set_listner (fleoat xpos, float zZpos, float angle);
This function sets the listener location (xpos, zpesz) in the virtual room with
respect to the center of the room. It also sets the angle which is the direction the
listener is looking, taken counterclockwise from the minus-z axis in radians from
-pi to +p1.
RETURN: 1 if successful, 0 if not.

float =ss_get timel):;
This function returns the current processing time (in seconds) of the system.
RETURN: time of SSSound system (in seconds).

int sss_set_time(float time);
This sets the current processing time to £ime in seconds.

RETURN: 1 if successful, 0 if not.

5 External Interface 51

volid ssg8 set_verbose(int verbose):
This function sets the verbosity of SSSound as follows:

level -1: only iming information.

level 0: no verbosity.

level 1: main instructions but without sss_change_sound calls,

level 2: add sss_change_sound calls

level 3: add timing information, buffer ends,

level 4: add yield calls

volid ss88_yield_to_sound();
This function is a command which allows the Comm Thread to yield its hold over
the CPU to the sound thread. This is needed when it s apparent that the Comm
thread is taking up too much of the processing power, and thereby hindering the
time-critical processing of the Play and Setup threads. One way to definitely test the
Comm thread load is to run a profiler over this program; if the programs in Comm
thread are using more than 20% of the CPU cycles (normal numbers are closer to
10% or less), then the Comm thread is using too much power. When this call is
executed the Comm thread gives up its hold over the processor to the other two
threads, so that the other threads can do their time-critical jobs. Assuming that it
requires much less computation to calculate the state of the system than to actually
process it, the Comm thread should not compute states faster than the decoder can
process them.
NOTE: when the program runs sss_sound_initialize, the priority of the Comm
thread is reduced to minimum, while the priority of the Setup and Play threads are

increased to maximum.

'Y 5 External Interface 52

5 2 Using the above instructions, one

can dynamically change the state of

An Example: Isis

| any of the sounds, as well as the

room quality and other characteristics. S8Sound is not intended as a stand-alone system. It
is intended to be hooked onto a higher level program that can handle the sound as another
aspect of a structured object. The higher level program could be a script interpreter.

The current system in the Media Laboratory uses a script language named Isis
[Agamanolis 96]. This scripting language was modified to accept and send audio
instructions. In just a few lines, one can describe a room and design a system where any of
the characteristics of the room or sound can change.

Below is an example of an Isis script that sets up a room and moves one sound
source left and right in cycles. The lighter and smaller font is the actual script, the bolder

font is the explanation,

This is an audio test script.

{(load "strvid.isis"}
Loads a script which creates special data types for the system.

T T T T T T T T e e T T T T T T T T T e A T T T e e e e e e e e A e e e T T T
Initialize zound with speaker positions

(initialize-audio)
Creates two other threads, and waits for setup information and for

the starting signal. (= sss sound initialize)

{set-sound-verbose 0)
Sets the verbosity level to no verbosity. (= sss_ser_verbose)

Register sound files

(set soultattoo
(register "/cheops/araz/sound_file/soultattoo.raw"
"Sound 1" ft-raw-sound})

K'Y 5 External Interface 53

Registers the sound and sets the variable sowltarroo to an
identification number for that sound. (= sss_regisrer_sound)

Set speaker positions

leet-speakers (Poszligt (Pos -1.0 0.0 -1.0)
{(Pos 1.0 0.0 -1.0})1)

Calls sss_add_speaker twice with two speaker positions in
clockwise order. (= sss_add_speaker)

¥ Create structures

These next few tnstructions create Isis internal structures.
(set movie (new-internal-mowvie))
(set scene {new-internal-scene))
(set stage (new-internal-stage))
(set view (new-internal-view))
{get disp (new-internal-display))
{set soundl (new-internal-sound))

{update movie
mev-name "The Sound Tester Movie”
nov-scene scene
mov-display disp)

A movie is composed of a scene and a display.

{update scene
sc-name "The only scene 1n the movie"
sc-view view
sc-stage stage
sc-gounds (Addrlist soundl))

A scene is built up of a view, a stage, sounds and actors.
{update stage
st-name "The wacko stage"
st-size (Dim 5.0 3.0 5.0)
st-reflection-coefs {(Coeflist 0.5 0.7 0.5 0.7 0.5 0.5}
st-max-reflections 10
st-gize-scale 1.0

st-dist-scale 1.0
st-reverb-scale 0.0)

The stage represents a certain description of a room. The author can
create many stages, and can switch from one stage (with its varying

acoustic qualities) to another, by simply entering a different stage

name. (= sss_set _room_desc)

{update view

& 5 External Interface 54
vi-ref-point (Pecs 0.0 0.0 0.0)
vi-normal (Pos 0.0 0.0 1.0)
vi-up (Pos 0.0 1.0 0.0
vi-eyedist 1.0)
Represents the computer graphics method of expressing where the
user is looking. The normal is a vector that points towards the
viewer.
B oo e o i ————

¥ Set up to play some sounds

(update soundl

snd-
snd-
snd-
snd-
snd-
and-
asnd-

{zet posl

{key posl
(key posl
(key posl

sound-object scultattoo
start-time =1.0

end-time 10000.0

positicn (Pos -1.0 1.0 -1.0)
volume 0.0

max-depth 100.0

loop True}

Sets up an internal sound structure to play a sound with certain
characteristics. (= sss_play sound)

NOTE: start-time = -1.0 in Isis means start row.

{(new-timeline (Pos 0.0 0.0 -1.0}}}
Creates a new timeline, which is a special data structure for
specifying time-varying quantities.

0 (Pos -3.0 0.0 -1.0))

i0 (Pos 3.0 0.0 =-1.0} linear)
20 {(Pes -3.0 0.0 -1.0) linear)

Defines positions in time, sets their locations and asks the interpreter
to interpolate linearly between those points. In this case, the position
at time Os is 3 meters to the left and | meter in front. Then at time
10s, the position reaches 3 meters to the right, and then 3 meters to

the left again at time 20s.

Start the sound server

{start-audio)

{(set time

Sends instruction to begin sound processing. (= sss_start_play)
0.0)

Sets local time to 0.0sec.

{while True

Loops through the following without stopping.

& 5 External Interface 55

{begin
{set time [(get-sound-time)}

Gets the SSSound time and makes the variable :ime equal to it.

(= ss55_ger_trime)
(update soundl
snd-position (posl time))

Updates the internal structure with its new position for that point in

time. (= sss_change_sound)
{build-frame movie)))

Sends all the changes made during this time loop to the sound

SErver.

6
Thoughts and Conclusions

_w e

The audio rendering system described in this thesis is implemented at the MIT
Media Laboratory. The audio system operates in real-time with four sound source
localizations and reverberanons for each of the two speakers at a rate of 44.1 KHz. The
locations of the sources, the room characteristics and the listener perspective can be
dynamically changed based upon user input. SSSound runs with a scripting language,
called lsis, developed for interactive enviroﬁments. All the structure for the synchronization
described in this thesis is implemented. At the time of this thesis deadline however, the
scripting language was not in a state that made it feasible to test the synchronization.

QOverall the system runs smoothly. There are some problems with this system -
mainly dealing with the non real-time operating environment. The user needs to be careful,
when running the audio rendered, with his interaction with the operating system (UNIX).
Any action performed by the user that causes UNIX to stop its operation for more than
300ms in response, causes a momentary audio interruption.

The current system delay includes 100 milli-seconds for the objects that should
appear in front of the speaker (described in section 4.1.2). The delay also incurs a 300ms
buffering delay which is not apparent to the user if instructions are pre-computed; however
it is apparent in interactive instructions. Moreover in interactive systems, since instructions
are only processed every 100ms, there is also a delay associated with the time the
instruction is given in the 100ms cycles. Therefore for non-interactive instructions, the
delay is 100ms(for the objects in front of the speaker), while for interactive instructions the
delay is 400-500ms. In reality not many users of the system noticed the delay.

The system could undergo improvements in a couple of areas. One improvement is
to have more than two speakers to increase spatial localization cues. This could be achieved

in one of the following ways:

& 6 Thoughts and Conclusions 57

* The system could be processed at half the sampling rate of 44.1KHz in order 1o have
enough processing power to process data for four speakers. Because of hardware
limitations! though the system would still have to use a LoFi card on another machine.
Therefore a connection would need to be opened to this other machine and sound
samples need to be sent there.

* The system could have two Alpha workstations connected to each other both running
S$SSound, but with only one running the scripting language. And a socket could be
opened between the scripting language program and the $SSound program on the other
machine. With this configuration, every time the language gives an instruction to the
first render, it sends an 1dentical instruction to the render on the other machine (as long
as the two renders were initialized with the right speaker values as described in section

5.1).

Another area worth examining would be the use of other methods of performing
reverberation or localization of sound. This system setup uses an Alpha workstation's full
power to achieve a real-time rendering for two speakers at 44.1 KHz. It could be possible
with advances in technology and technique to process more than two speakers. The field of
real-time localization 1s relatively new, and therefore there is potential for better results with
more research.

Synchronization is another aspect worth examining. The question of
synchronization has been studied and discussed extensively; however, not much work has
been done in the area of interactive synchronization. The limitation lies in the interactive
system's inability to predict the next audio or video frame. It is possible, though, to
implement a synchronization step right before user viewing. However, this might increase
the interactive delay of the system because the system would need to buffer to ensure that

the audio or video frames are synchronized.

DAl the Alpha workstations in the Laboratory are equiped with three Turbo slots. One is used for the video
display, one is used for network connection, and only one is left to be used for audio. There are Alpha
workstations equiped with more than three Turbo slots; however, they are beyond the budget constraints of
this project.

7
Bibliography

R

Stefan Agamanolis, High-level scripting environments for interactive multi-media

systems, SM. Thesis in writing, MIT, February 1996

Alpha, Alpha Architecture Handbook, Digital Equipment Corporation, Maynard Ma.
1992

Fabio Bastian and Patrick Lenders, Media Synchronization on Distributed Multimedia
Systems, Proc. IEEE International conference on Multi-Media Computing and

Systems, May 1994 Pg. 526

Jeffery Borish, "Extension of the Image Model to Arbitrary Polyhedra,” J. Acoustical
Sociery of America. 75 (6), 1984.

V. Michael Bove, Jr., Hardware and Software Implications of Representing Scenes as
Data, Proc. International Conference on Acoustics, Speech, and Signal Processing

1993

V. Michael Bove, Ir., Brett Granger and John A. Watlington, Real-Time Decoding and
Display of Structured Video, Proc. IEEE International conference on Multi-Media

Computing and Systems, May 1994 Pg, 456

V. Michael Bove, Jr., and John A. Watlington, Cheops: A Reconfigurable Data-Flow
System for Video Processing, IEEE Transactions on Circuits and Systems for

Video Technology. VOL. 5, NO. 2 April 1995

Dolby Surround Sound, Dolby Surround Sound Past, Present, Future,
http://www.dolby.com/ht/ds& pl/ppf-cont.html

RS 7 Bibliography 59

Lynnae Ehley, Borke Furht and Mohammad Ilyas, Evaluating of Multimedia
Svnchronization Technigues, Proc. IEEE International conference on Multi-Media

Computing and Systems, May 1994 Pg. 514

William G. Gardner, The Virtual Acoustic Room, SM. Thesis, Massachusetts Institute

of Technology. September 1992

William G. Gardner, Reverberation Algorithms, in M. Kahrs and K. Brandenburg
(Eds.), Applications of Signal Processing to Audio and Acoustics, Kluwer

Academic Press 1995 (in press)

Brett Granger, Real-Time Structured Video Decoding and Display, SM. Thesis, MIT,
February 1995

T. M. Levergood, A. C. Payne, J. Getts, G, W. Treese and L.C. Stewart, AudioFile: A
Network-Transparent System for Distributed Audio Applications, CRL
Technical Report 93/8, Digital Equipment Corporation, Cambridge Research Lab,
8/1993

Thomas M. Levergood, LoFi: A TURBOchannel audio module. CRL. Technical Report
93/9, Digital Equipment Corporation, Cambridge Research Lab, 9/1993

James A. Moorer, About This Reverberation Business, Computer Music Journal, Vol.

3, No 2, 1979

Dean Rubine, Roger Dannenberg, David Anderson and Tom Neuendorffer, Low-Latency
Interaction through Choice-Points, Buffering, and Cuts in Tactus, Proc. IEEE
International conference on Multi-Media Computing and Systems, May 1994 Pg.
224

Irene Shen, Real-Time Resource Management for Cheops: A Configurable, Multi-
Tasking Image Processing System, SM. Thesis, Massachusetts Institute of

Technology, September 1992

& 7 Bibliography 60

G. Theile, and G. Plenge, Localization of Lateral Phantom Sources,). Audio

Engineering Society, Vol. 25, No. 4, 1977.

Barry Vercoe, and Miller Puckette, Synthetic Spaces - Artificial Acoustic Ambiance
from Active Boundary Computation, unpublished NSF proposal, 1985. Available
from Music and Cognition office at MIT Media Lab.,

E. M. Wenzel, Localization in virtual Acoustic Displays, Presence: Teleoperators and

Virtual Environments, 1992, 80-107

LR

