“iTheater” Interface Design:
Integrating an educational user interface with a non-linear story engine

by

Alon Mozes

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May 5, 2000

The author hereby grants to M.L.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author % %ﬁ"/

Department of Electéf:al Engineering and Computer Science
May 0

/5% —
Certified by / N anx | R IM

Glorianna Davenport
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

“iTheater” Interface Design:
Integrating an educational user interface with a non-linear story engine

by

Alon Mozes

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May 5, 2000

ABSTRACT

User interface design is an important part of any software application, especially
educational programs. iTheater is a powerful application development tool created by
Echo Bridge Productions. It is used to implement non-linear interactive stories. This
thesis involves enhancing iTheater to allow for video components for the stories, which
should greatly improve the user interface for the resulting projects. Taking advantage of
the new features, iTheater is then used to create an educational program for health care
professionals. The result is effective, although the program does not take full advantage

of iTheater’s non-linearity.

Thesis Supervisor: Glorianna Davenport
Title: Principal Research Associate, MIT Media Laboratory

1. INTRODUCTION

From the early days of interactive video, an effective interface for such videos has
been critically important. . Recent developments in compression algorithms for
sound and video have broadened the range of applications and audiences for
interactive video and allowed for more immersive interfaces. Clinical education, in
particular, will be increasingly facilitated by powerful multimedia processors with
broadband networks that can deliver applications to the home or office. However,
many of these applications have not been fully explored, and the state of computer-
based professional education is one of unrealized potential (Henderson 1997). New
educational applications that seek to take advantage of this technology should follow
some primary development principles, and pay attention to user interface lessons
learned in the past.

User interfaces can enable users to quickly grasp the purpose and power of
various applications, or, if poorly designed, can prohibit the use of even the simplest
programs. VisiCalc, a spreadsheet program developed in 1978, is one of the first
applications with an interface design transparent enough for an ordinary user to easily
understand its functionality. Despite the complexity inherent in spreadsheet
programs, VisiCalc provides an intuitive interface for users to perform calculations

that had never been previously computerized.

Since this milestone in interface design, other developments have utilized
advances in processing power. Apple developed its QuickTime movie player, which
displays digital movies with a controller. This controller provides an intuitive
interface for playing the movie. It takes advantage of elements from older interfaces,
like the symbols on a VCR, while applying it to an entirely new domain. These
precedents will likely affect the future of interface design, and have played an

important role in this thesis.

2. DESIGN PRINCIPLES

This thesis involved the design and development of enhancements to iTheater,
which is a non-linear software development tool, and the creation of a clinical
training application, “Understanding Partner Abuse”, using iTheater with its new
enhancements. User interface design was a critical part of developing the
enhancements and application. Principles extracted from concepts in scientific
visualization, user-centered design, and graphic design allow one to create and

evaluate user interfaces. Some basic principles include:

e Develop a metaphor

e Keep it simple

e Make changes clear and consistent
o Design within constraints

e Design an interface that teaches

2.1 Develop a Metaphor

An excellent way to begin to design a user interface is to identify a
metaphor, something in the real world that the application resembles. A user
interface that acts as a metaphor can provide instant information about the

functionality of the back end software. A successful metaphor requires two

elements: the metaphor must be identifiable and well understood by the user; the
metaphor must be appropriate for the software it represents. The first is achieved
by selecting a metaphor that is prevalent in everyday life and that one could
reasonably expect a user to understand. The second principle is more difficult to
realize. For example, TV broadcasting has been used as a metaphor for a
newspaper publishing business. While there may be some similarities, the user
could be “led astray” by the implication that newspaper businesses involve
instantaneous transmission of data like television. In reality, newspapers have
delivery delays (Erickson 1990).

iTheater uses a metaphor of a stage play to enable the construction of non-
linear stories. Characters are placed on a stage and perform scenes in which they
may say a line or take action. They are puppets that can be controlled by the
computer or the user. Each story is represented as a separate theatrical production

played out in the theater that iTheater creates.

2.2 Simplicity

One of the most basic principles is to “keep it simple” (Kobb 1994). As
software becomes increasingly complex, user interfaces also tend to be more
complex in order to give users access to the full functionality of the software.
Unfortunately, this can easily result in a totally incomprehensible interface.

Achieving an effective, simple interface means that a designer must strip away all

superfluous features and graphics, leaving only the most basic functions displayed
in a clear way.

Interactive educational applications are especially tricky because users
may not be technically savvy. There may be many options and settings that are
non-intuitive. Tutorials, help files, and instruction pages can all aid in explaining
how an application works, but in and of themselves these methods are employed
to clarify an obscure user interface design. A good user interface, in contrast,
allows users to dive into the application and learn from the software, rather than
having to take the time to learn about the software.

The user interface for an iTheater application is simple so unnecessary
features do not distract the user. The user answers a few simple questions to set
up the game, like choosing a character, and then begins the game. This allows the
user to be immersed in the story rather than worry about setting software

parameters.

2.3 Clear and Consistent Changes

One of the essential characteristics of a good user interface is consistency.
This principle asserts that “mechanisms should be used in the same way wherever
and whenever they occur” (Tognazzini 1990). Inconsistency can be detrimental
to a user’s understanding of an application. For example, an infamous
inconsistency exists in the Macintosh interface. A user deletes files by dragging

them to the trash can, an understandable metaphor. Ejecting a disk from the

floppy drive, a very different operation, requires a similar method of dragging an
icon into the trash can. This inconsistency can be confusing to a novice user who
may worry that they are erasing files on a CD-ROM when dragging it to the trash.
In new interactive educational programs, users are often unfamiliar with
the mechanics of the application. At the onset, many applications require the user
to make a decision, like choosing a direction to navigate or choosing an object to
pick up, and then communicate that decision to the machine. The method for
decision making should be obvious and consistent throughout the experience.
Changes following each decision should be very clear. After a navigational
decision, for example, there should be a change of view on the screen. The
latency of the change should be kept to a minimum, so the user can make a clear
connection between the action and the consequence. The user should be able to
understand immediately what effect the decision has had and understand how a

similar decision will affect the program in the future.

2.4 Design Within Constraints

Paying attention to software constraints can simplify the developer’s task
of taking an idea from theory to practice. Common constraints in a distributed
application are found in the operating systems of the client and host computers
and the brand of browser used to display the application. Different operating
systems and browsers often have different performance results as well as

graphical displays. Some applications are better suited for particular platforms.

For example, a QuickTime application could be significantly faster on a
Macintosh machine since that is its native platform. Also, a Java panel in an
applet has inconsistent results when displayed in Microsoft Explorer and Netscape
Communicator.

These differences can be discovered during testing, but it may be too late
at that point to debug unwanted side effects. Testing can also present a difficult
design choice. Ideally, application developers conduct user testing by getting
people to use the final product before it is released. However, this sort of testing
can take an extensive amount of time as revisions and retesting is conducted.
Therefore, deadlines should also be taken into account when designing an
application so that enough time remains to fully test the program.

Distributed programs may face problems with constraints of accessibility.
The ideal situation would be to allow users to run an application from any
computer. Two problems interfere with achieving this. First, not all computers
have Internet access, which is necessary to access remotely located files. Second,
even those computers that do have Internet access do not necessarily have a
connection that matches the performance required by the application. A CD-
ROM application could avoid these problems, but using a CD-ROM involves
distributing physical hardware rather than just sending bits over a network. Such
tradeofTs are best determined in advance (Mountford 1990). Designing with these
choices in mind can prevent having to deal with surprises caused by different
operating systems, deadlines, and accessibility issues later in the development

process.

2.5 Designing an Interface for Learning

The user interface can be the key to clarifying the functionality of the
program. Menus, for example, can quickly convey many of the features of an
application without overloading the interface. An interface can also act as a coach
or guide for a user. Prompting the user with questions and providing clear error
messages are important parts of using the interface as a coach. Instead of
inundating the user with a screen of various parameters, the application can ask
the user a series of questions, one by one, to make sure that the user is aware of all
the options. Also, error messages that explain the error and how to avoid it may
teach the user about the program. The http protocol demonstrates a poor message
with its response for a failed page-load, “404 ERROR: FILE NOT FOUND”,
which could imply a missing file, a typo in the URL, or a downed server. More
detail in the message could help the user discover the source of the problem. An
example of a coach is the popular paper clip guide in Microsoft applications. It is
always available to teach the user about various features and also prompts the user

with questions in order to verify the user’s understanding of their actions.

10

3. BACKGROUND

Although many applications have taken the leap from text to video, it is useful to
analyze this new interface for iTheater applications within the context of clinical
training. Clinical training videos provide a forum for teaching healthcare
professionals, thus augmenting the clinical one-on-one interactions with patients. .
Videos can offer realistic scenarios and can be produced to simulate one-on-one
interaction or third person viewing. Learners can use the video repeatedly to practice
interviewing techniques and diagnostic skills and to ensure knowledge retention.
Various designs for these training videos have been used, ranging from a simplistic

multiple-choice video game to a more complex simulation of patient interactions.

3.1 “Condom Conundrum”: An Interactive Sexual Education Program

In the spring of 1999, I worked with Gillian Steel, a student at the Harvard
School of Public Health, to develop an interactive game to teach teenagers about
public health issues, focusing on the realm of sexual education. Gillian developed

a script with a Mission Impossible plot and with the “in-your-face” style of You

Don’t Know Jack by Bezerk Software. We, along with the help of the Interactive

Cinema Group of the MIT Media Lab, filmed the live action scenes and combined
them with graphics and animations in Macromedia’s Director 7.0. The result was

an entertaining, educational game on CD-ROM.

11

There were a few limitations to “Condom Conundrum”. The story was totally
linear so that the user only learned about how well they performed by reading a
score, rather than experiencing varying outcomes. This simplicity was designed to
appeal to teens of all educational levels. A non-linear story, while more complex,
would seem to be a more immersive approach, especially with the inclusion of
some simulated interactions with STD patients.

Also, the application was developed on CD-ROM, which meant that any user
must have a copy of the disc and install it onto their computer. An Internet
application that is freely available on a browser would be an easier form of

distribution.

3.2 “Virtual HIV Clinic”: An Interactive Health Training Video

“Understanding Partner Abuse”, the application developed with iTheater, is an
interactive application that will be used to teach professional health care workers
about domestic abuse. Joseph Henderson, a doctor at the Dartmouth Medical
School Interactive Media Lab, has conducted a significant amount of research at
the lab on the subject of using technology to train health care professionals. One
of the major projects, the “Virtual HIV Clinic”, explores the training of health
care professionals to interact with HIV patients in various stages of the disease.

The application’s layout is broken down into several rooms in a clinic, each

containing the patient at different stages of the disease and one room for learning

12

resources. Navigation is achieved by either clicking on the master navigational

map (Figure 3.1) or by travelling “inside” the clinic (Figure 3.2).

Figure 3.1: Overview of the clinic

Figure 3.2: User’s perspective for navigating the clinic

13

Once inside one of the rooms, the application uses a range of interactive
methods to train the user. One method includes displaying recorded video for
“mini-lectures” and case presentations. Some of the more interactive “computer-
based” methods include unscrambling jumbled lists, labeling diagrams,
categorizing challenging statements, and other similar puzzles. Through these
modes of interactivity, the application simulates “learning through experience”

(Henderson 1997).

14

4. iTHEATER

4.1 iTheater Introduction

iTheater is a software tool developed by Echo Bridge Productions, which
can be used to easily develop non-linear interactive stories and games. The
metaphor of a theater allows developers to quickly understand and use it. A
development team (including an author, producer, programmer, film crew, and
any others involved in design and development) design the story by creating
characters and scenes. A character in iTheater is treated just like a character in a
theatrical play, and has a name, description, and optional “states of being”. For
example, the developer can use these states of being to attribute characteristics
such as skill or trust to a particular character. A scene contains a character
performing an action, saying a line, or entering a room. The interface for entering
the data into iTheater is a text file, which contains all the characters (see Figure
4.1) and scenes (see Figure 4.2).

iTheater is designed to allow developers to create scenarios which play out
differently depending on specific actions of an audience participant. iTheater
enables the developer to provide criteria that determine which scene should
become active. The story engine uses these criteria, often based on character
states or scene order, to determine which scenes should be selected next in the
story. For example, a level of trust, which is a possible character state, can be a

criterion for determining whether a secret should be revealed. If a computer-

15

controlled Actor A does not trust a human-controlled Actor B, then Actor A will
never reveal a secret to Actor B. These criteria are input by the developer when
creating the text file.

<character>
ID=6
stage =1
title = Dr.
firstname = Reginald
lastname = Doctor
referent = the doctor
description = the doctor in charge of this case

Figure 4.1: Text to create a character in iTheater

<scene>
ID=14
stage =2
name = doctor chooses
character = 6
lastScene = 13
criteria = *
factor = 4,trust,>=,B
movieline = 4, http://localhost/upa/sport.mov , 0, 6
movieline = 6, http://localhost/upa/crossfad.gif , 0, 0
description = You say, “Tell me what happened”
nextCharacter = 3

Figure 4.2: Text to create a scene in iTheater

iTheater also allows for user interaction in the story. The user can choose
to play any of the characters and alter the story by making decisions. For
example, by controlling Actor A, the user may be able to persuade Actor B to

trust him and reveal the secret.

16

4.2 iTheater Advantages

Other software tools exist that allow developers to easily script interactive
stories. Many of these products have inherent disadvantages that iTheater
improves upon. Macromedia Director is a popular example of such an application.
Director 7.0 requires a movie score (though the latest versions just released may
not), which adds a built-in timeline to every project. Lingo is Director’s scripting
language and can be used to control elements within the score as well as the flow
of the entire application. Using Lingo, developers can use certain keywords to
integrate loops or sidestep the timeline, but such non-linearity can quickly get
convoluted and difficult to program. Doepel, principal investigator at Echo
Bridge Productions for “Understanding Partner Abuse”, explains the disadvantage
inherent in Director’s linearity:

“[Director] requires programmers to create all possible decision branches
in the ‘score’ (i.e. timeline) of the program and to use ‘go to’ commands to direct
the program to the appropriate next step. Any additions, deletions, or changes
made to the logic tree would then have to be tracked and re-programmed
individually throughout the entire program resulting in a time delay and potential
anomalies in the program (requiring additional debugging time). (Doepel 1997)”

iTheater has no requirements about where a character or scene can be
entered. This development preference allows for a nearly unlimited cast of
characters and events that can be entered into the text file in an arbitrary order.

This lack of structure enables the creation of the most random stories along with

the creation of strictly linear stories.

17

iTheater’s versatility has a number of benefits. Janet Murray, former
Director of the Program in Advanced Interactive Narrative Technology (PAINT)
at MIT, describes the “multiform story” and provides some insight into the
possibilities of nonlinear stories. These stories include a “single plotline in
multiple versions”. As implemented by iTheater, users can investigate these
“alternate realities” through interactive decision making. iTheater can trigger
different scenes depending on what decisions the user makes, bringing the user
through a different path to different conclusions each time a story unfolds
(Murray 1997).

The user also has the choice of which character to play. In a game like
Zork, developed at MIT’s Lab for Computer Science, a user generally plays the
role of a single main character and goes through the interactive adventure, with
one of the ultimate goals to slay a dragon. Using iTheater, it is easier to build a
story in which a user can choose to play one of several characters; the goals of the
game change according to the character’s perspective. This would be the
equivalent in Zork of playing the dragon and assuming the new goal to avoid
being slain by the main character.

Applications are also easily extensible with a tool like iTheater, unlike
with some Director productions. If a developer wishes to add characters or
scenes, these new elements are simply appended to the end of the text file. In
Director, by contrast, a developer must keep track of where other elements are in
the score in order to know where to place new pieces. This is a direct result of the

built-in linearity of the score metaphor, an unwanted feature that iTheater avoids.

18

4.3 User Interface for iTheater Applications

iTheater applications begin with users choosing the character they wish to
control from a list of controllable characters in the story (see Figure 4.3). Users
can choose to control any of the main characters. While in the current version,
this choice is made by selecting from a list-box in which the user sees all possible

characters, one could, if appropriate, use icons or other selection methods.

Figure 4.3: iTheater applications allow
users to select their characters

For a health training application, selecting a point-of-view is an especially
useful feature. One can choose to be the doctor and try to earn the patient’s trust,
or one could choose to be the patient and reenact a scenario they may have
experienced in real life. A user can also choose to play an “outsider” and just
watch the story unfold. This feature allows the user to set the appropriate skill
level, in the form of a standard letter grade (see Figure 4.4), of other characters in
the story so that one can learn from mistakes in addition to learning from a well-

handiled situation.

19

Figure 4.4: Users can select the skill level
of computer controlled characters

Once characters are chosen and skill levels are set, the story begins. The
story continues until it is time for the user to make a decision. A user makes
decisions in iTheater applications through an interactive multiple choice panel
(see Figure 4.5). The choices are displayed when the presentation reaches a point
at which multiple scenes can be triggered. For example, if the user is controlling
the character of a doctor, and it is the doctor’s turn to say something to the patient,
there may be a few different lines from which the doctor can choose. If the
computer were controlling the character of the doctor, then it would select a line

automatically, based on various criteria, such as a character’s skill level.

Figure 4.5: Users make decisions through a multiple choice
panel

20

These decisions are limited to the few selections that the story engine
presents to the user. The application is not open-ended, but the application frames
the lesson with limited responses in a productive way to teach the user the lesson.
The developer essentially preprograms these options when the text file is initially
created. This format limits both the number of branches in the story and the
amount of input that the user has. The advantages of such a format are that the
designers can control what lessons are presented to anyone who uses the
application.

iTheater is intended to create interactive stories for an educational goal.
The pedagogy of current applications in iTheater provides the user with surrogate
experience. More open-ended interactivity has been used with some success in
earlier developments like Eliza (Murray 1997). These applications use rule-
generated behavior in order to respond to users’ open-ended textual responses.
As an entertainment tool, this open-ended decision format may have been a better
design choice. Howeyver, as an educational medium, a more limited format seems
to be more effective. Doepel describes the advantages of limited branching over
open-ended role-playing:

“Programmed branching in the ‘virtual visit’ scenario anticipates potential
correct and incorrect choices the learner can make and provides the opportunity to
explore these pathways with appropriate ‘teaching’ feedback along the way.
Furthermore, using interactive educational media, educators can avoid the
limitations of traditional role-play teaching. Research has shown that role plays
are typically not standardized, making the learning experience of different
learners inconsistent. Verbalizations can change in nuance and content, thereby
changing the potential outcome of the interaction. And often role plays focus on

generic skills rather than on specific knowledge or skill (Neimayer and Pfeiffer,
1994).”

21

S. ENHANCING THE UI FOR iTHEATER AND iTHEATER

APPLICATIONS

The crux of this thesis involved improving iTheater and using the improvements to
iTheater to develop an interactive healthcare training video. The improvements to
iTheater included the addition of a movie component to the user interface, whereas the
only previous output format was text-based. The healthcare training video was a group
effort as medical professionals, writers, editors, and programmers worked together to
create the project. The script and all film work were completed by Echo Bridge

Productions; my role was to use iTheater to construct the final product from those pieces.

5.1 iMovieLine and MoviePanel: the interface in iTheater for displaying movies

iMovieLine is a Java class that adds the capability to store information that
can later be used for display in MoviePanel, a class that allows for the display of
QuickTime movies. On the first design pass, this information took the form of a
local file. The application would reference the file and create an instance of a
Movie (found in QuickTime for Java). The problem with this design was that an
applet would generate a security exception if it tried to reference a local file on a
client machine. Applets are inherently untrusted by client machines and therefore
any attempt to reference a local file will cause a show-stopping error. One way to

avoid the problem was to design the program as a local application, which could

22

be run from a CD-ROM, rather than an applet. However, in order to be displayed
from any browser, the application needed to take the form of an applet.

This led to the design of an applet that uses streaming movies, or movies
that are located on remote hosts and are “streamed” into the display environment.
iMovieLine was revised to accommodate the use of URL’s instead of local file
references. The MoviePanel class would then create a DataRef object (see Figure
5.1), so that the URL will ultimately be streamed into a displayable Canvas object

(Maremaa 1999).

//The following code creates a data reference object from a text
//object that represents a URL. A movie object is then created
//from the data reference object, and then a movie player is
/lcreated for the movie. The movie player is then added to the
//canvas

DataRef dr = new DataRef(firstSegment.getMovieURLJ());
currentSegment = currentSegment.fromDataRef(dr,1);
movPlayer = new MoviePlayer(currentSegment);
myQTCanvas.setClient(movPlayer,true);

Figure 5.1: Code to display movie streamed from a URL

Using streaming movies avoids the security problem of the applet and
adds the ability to store the QuickTime movies on any host reachable by the
Internet. This implementation adds a delay in the playing of the movie. The
delay is caused by the attempt to stream the movie, which potentially references
another machine to retrieve the movie. This method is generally slower than

referencing a local file. The delay depends on the size of the movie being

23

streamed, but it averages a few seconds. While the user waits the few seconds for
the movie to load, the last frame of the previous movie is displayed in the viewing
area, which is preferable to a blank screen (This is primarily a function of
“QuickTime for Java” and not a design choice). Following the delay, it
successfully displays the movie in the movie panel.

Once the basic functionality for displaying a movie was created, the next
step was enabling the user to choose from multiple points-of-view. This is a
simple task if the display is entirely text-based. As far as the interface is
involved, a user that plays the role of the doctor has the same perspective as any

other character (see Figure 5.2).

[Maria whispers, "My arm is broken?" and begins crying again.

1 INurse Green leaves. Dr. Baker sits down, facing Maria, hands her atissue,
and says, "Yes, butit's a clean break so sefting ittodaywon't be a problem,
According to the nurse's notes here, you said you hadnt had any other broken | :
bones, butyour x-rays show.."

SRR

5 ", umim... | suppose | fargot. Mv‘,a_rm was broken a couple of years ago. I'm
; [sorry. | cant believe | fargot that. Silly.."

"It's okay. Pain can do strange things to your memory. Mrs. Barros, I'm
' lconcerned about these injuties. Your notes state that you fell on the stairs.”

Figure 5.2:Text panels can only offer a third person point-of-view

24

Figure 5.3: The patient explains her injury to the
user, who is acting as the doctor

However, the introduction of movies to the display adds a new dimension
to the interface. Ideally, if a user plays the role of the doctor, the movie should
portray all the scenes from that viewpoint, meaning that the doctor should never
be visible in the movies (see Figure 5.3). This implies that separate movies must
be created for each point-of-view and that the software should be equipped to
choose from multiple movies for the same scene. This code (see Figure 5.4) is
added to the applet rather than the MoviePanel in case multiple users open the
application.

//checks if the character controlled by the user is the same as the
//POV of the character in the current movie about to be displayed

if (this.humanControlled == movieline.getPOV()) {
//display the movie since it is from the user’s POV

Figure 5.4: Code to select movies with the appropriate
POV

25

Users will have their own applet open, which allows control over any
character they choose. Each applet will determine which movie has the
appropriate point-of-view for that particular user.

The next development regarding the addition of movies to the interface
benefits the developer. Since so many different QuickTime movies would be
necessary to achieve any point-of-view for any version of the story, a simpler
design would allow a developer to create one master QuickTime movie and input
start and stop times to indicate which segment is appropriate for the scene. These

times can be added along with the URL reference in the text file (see Figure 5.5).

movieline = 6, http://localhost/upa/crossfad.gif , 3 , 9

Character POV URL for movie source Timein Time out

Figure 5.5:Adding a movieline to a scene

The “time in” and “time out” indicate the start and stop times for the
movie referenced. In figure 5.5, for example, the movie will play from the third
second in the clip until the ninth second. The only reference that would be
necessary would be one master movie that includes a compilation of all the
scenes. This makes film editing much easier since the programmer can
essentially do much of the film editing in the text file. The downside is that
QuickTime for Java is slow to pre-roll movies to a particular point. This
significant trade-off implies that the clips should be separate movies for the sake
of the user’s experience.

26

5.2 Applying iTheater: “Understanding Partner Abuse”

iTheater was used to implement an interactive healthcare simulation
entitled “Understanding Partner Abuse” (UPA). This simulation is designed to
teach emergency room professionals to recognize signs of domestic violence. The
story was developed by Echo Bridge Productions and involves a doctor, a nurse, a
female patient, and her husband. The user can control the doctor or patient, or the
user can take an outsider’s perspective and not play any of the characters.

The plot in this simulation concerns the patient, Maria, who comes to the
hospital to have the doctor look at her arm. As the doctor, the user can influence
Maria and how much information she divulges. If played well, the user learns of
past fractures that Maria has suffered, gets Maria to admit her husband abuses her,
and convinces Maria to consider using a hotline or marriage counseling. If played
poorly, the user simply makes Maria eager to have the examination completed so
she may leave the hospital.

The user also has the opportunity to play the part of Maria. Maria has no
choices to make in the story, as there is only one response for any action that the
doctor takes. The importance of choosing Maria is that the user has Maria’s “on-
stage” point-of-view in the story (see Figure 5.6), meaning that the doctor appears
to be speaking directly to the user. This interpersonal point-of-view is important

for the inclusion of the user in the role-playing format.

27

Figure 5.6: The patient’s POV in “Understanding
Partner Abuse”

The third option is to play the role of the outsider. Again, the outsider has
no decisions to make so the entire story unfolds. The difference from this point-
of-view and Maria’s point-of-view is that in this case the user sees the master
scene, in which the user views all characters involved. The user, as a passive
observant, can watch the doctor speak to Maria.

If the user chooses either the patient or the outsider, then the user is
prompted with a choice of skill level for the doctor. This determines how “well”
the computer-controlled doctor interacts with Maria. This is an effective option
since the user can choose to watch the doctor handle the situation well and
convince Maria to get counseling or choose to watch the doctor demonstrate what
not to do.

Even though “Understanding Partner Abuse” allows for some user

interaction, it is not as powerful as it could be. It does not fully take advantage of

28

iTheater’s potential to create non-linear stories. It contains few factors upon
which to base computer generated decisions. A greater variety of variables in the
story could make for a more interesting application when played over and over.

The story is fairly linear and branching is minimal (see Figure 5.7).

Maria takes a
victim hotline
number

sympathetic . Maria opens up laid-back

Maria is eager / Maria will
to leave accusatory ™ “consider”

counseling

aggressive

Figure 5.7: A simplified flow chart of UPA. The same end point
is reached through minimal branching, though different
paths imply different results.

However, “Understanding Partner Abuse” does successfully demonstrate
iTheater’s capability to easily construct a non-linear story, and it displays

iTheater’s user interface and use of decision making.

29

6. EVALUATION

Many features and improvements were not included in this project for
various reasons, including time constraints and limited resources. Alternatives to
some of the design choices could be used for future developments in order to
make the application more immersive and user-friendly. In particular, some ideas
that occurred to me during the development of this thesis include real time

movement and navigation, continuous decisions, and multi-player forums.

6.1 Real Time Movement and Navigation

In Understanding Partner Abuse and other iTheater applications, there is
no place for any spatial navigation. In Henderson’s Virtual HIV Clinic, there
exists some spatial geometry but movement is in discrete mouse clicks as a user
can move from one room to the next. An improvement on these methods would
be to create a Virtual Reality environment through which a user can move in real-
time. This continuous time navigation would better simulate real life situations
and enhance the user’s experience. A story could include multiple patients
waiting in different rooms, giving the user different cases to handle. It could
provide a more realistic space, enabling the user to truly feel as if the setting was
a hospital or doctor’s office rather than a computer screen.

Some prohibitive limitations may interfere with such a development,

namely computer resources and performance. A virtual reality environment is

30

significantly more taxing on an individual computer’s resources, let alone in a
distributed environment where the simulation must be sent over a network. In
addition, handling continuous movement throughout the story is a significantly
more complex task for the underlying story engine. The potential for

improvement, however, would make this a worthwhile endeavor in the future.

6.2 Continuous Decisions

Currently, in iTheater applications, decisions are made in a multiple-
choice panel. These decisions cause a distinct break in the telling of the story.
The text will stop scrolling and the movie will stop playing so that the user has
time to read and think about the options. While this may provide the user with
some benefits, it detracts from the reality of the experience.

In order to avoid this pause in the action, decisions could be made such
that a delay in decision making has an effect on the story. This could keep the

user aware of how time can affect decisions made in real life.

6.3 Multi-Player Forum

One of the benefits of having an application written in Java and available
on the web is that it is easily extensible into a multi-player forum. When iTheater
was created by Echo Bridge Productions, it was intended to ultimately be a tool to

create applications that could include many players simultaneously. Due to the

31

complexity involved in multi-threaded applications, a multi-user forum was not
included as part of this thesis. Future developments, however, should allow for
multiple players.

The benefits of a multi-player system to the realm of clinical training
would be tremendous. Healthcare professionals could work together in
counseling a patient or take adversarial roles as one professional plays the part of
the patient while the other plays the doctor. As a web-based application, it would
allow learners to work together across any distance. It could potentially team up
skilled doctors with eager students that would otherwise be unable to work

together. Multiple opinions could provide a better learning experience for users.

Using movies and Internet distribution to enhance user interaction is an important
next step in educational simulations. With rapidly progressing technology, the
possibilities for real-time decisions, virtual spatial navigation, and multi-player forums
become more likely. The potential for immersive technology grows with computer and

network performance and soon will only be limited by reality itself.

32

7. BIBLIOGRAPHY

Ambron, S. (1990). Learning with Interactive Multimedia. Redmond, WA, Microsoft
Press.

Ambron, S. (1988) Interactive Multimedia. Redmond, WA, Microsoft Press.

Bolt, R. (1984). The Human Interface. Belmont, CA, Wadsworth Inc.

Chan, P. Lee, R. (1998). The Java Class Libraries Second Edition, Volumes 1 and 2.
Reading, MA, Addison-Wesley.

Doepel, D. (1997) “Understanding Partner Abuse.” Proposal for government grant to
National Institute for Mental Health. Miami, FL.

Eckstein, R. (1998). Java Swing. Sebastopol, CA, O’Reilly & Associates, Inc.

Erickson, T. (1990). “Working with Interface Metaphors.” The Art of Human Computer
Interface Design. B. Laural. New York, NY, Addison-Wesley.

Halliday, M. (1993). Digital Cinema — An Environment for Multi-Threaded Stories.
Cambridge, MA, MIT.

Henderson, J. (1997) “Comprehensive, Technology-Based Clinical Education: The
Virtual Practicum.” Interactive Media Lab, Dartmouth Medical School, NH.

Kobb, M. (1994). Simplifying the Graphical User Interface. Cambridge, MA, MIT.
Kim, U. (1990). A Graphical User Interface for Lucy. Cambridge, MA, MIT.

Maremaa, T. Stewart, S. (1999) QuickTime for Java: A Developer’s Reference. San
Diego, CA, Academic Press.

Mountford, J. (1990). “Tools and Techniques for Creative Design.” The Art of Human
Computer Interface Design. B. Laurel. New York, NY, Addison-Wesley.

Murray, J. (1997). Hamlet on the Holodeck. Cambridge, MA, MIT Press.

Nicol, A. (1990). “Interfaces for Learning: What Do Good Teachers Know That We
Don’t?” The Art of Human Computer Interface Design. B. Laurel. New York,
NY, Addison-Wesley.

33

Nelson, T. (1990). “The Right Way to Think About Software Design.” The Art of Human
Computer Interface Design. B. Laural. New York, NY, Addison-Wesley.

Norman, D. (1982). Learning and Memory. San Francisco, CA, W. H. Freeman and
Company.

Norman, D. (1986). User Centered System Design. Hillsdale, New Jersey, Lawrence
Erlbaum Associates.

Ravden, S. Graham, J. (1989). Evaluating Usability of Human-Computer Interfaces: A
Practical Method. New York, NY, Halsted Press.

Tognazzini, B. (1990). “Consistency”. The Art of Human Computer Interface Design. B.
Laurel. New York, NY, Addison-Wesley.

Tufte, E. (1983). The Visual Display of Quantitative Information. Cheshire, CT, Graphics
Press.

Tufte, E. (1990). Envisioning Information. Cheshire, CT, Graphics Press.

34

