Arena: Simulating E-Commer ce Agent Strategies

by
Peter Ree

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science
and Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Ingtitute of Technology
May 22, 2000
Copyright 2000 Peter Y. Ree. All rights reserved.

The author hereby grantsto M.1.T. permission to reproduce and
distribute publicly paper and electronic copies of thisthesis
and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science
May 22, 2000
Certified by
Professor Pettie Maes
Thesis Supervisor
Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Arena: Simulating E-Commerce Agent Strategies

by
Peter Ree

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2000

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Electrical Engineering
and Master of Engineering in Computer Science and Electrical Engineering

ABSTRACT

Arenais a software package intended to help e-commerce strategy researchers and
designerstest buying and selling strategies under different scenarios. It implements and
adheres to a set of design criteriaintended to ensure its simulation ability aswell as
prolonging its usable lifetime. The process of implementing Arenainvolved conducting
background research into current strategies and the requirements they impose on a
simulator as well asimplementing a simple prototype simulator. Arenawas used to
evaluate aspects of Sardine, a system which models an airline selling tickets to potential
buyers. Sardine showed Arena proficiency in implementing systems that provide
meaningful results. However, Sardine also revealed some minor weaknessesin Arena' s
design that would benefit from additional research.

Thesis Supervisor: Professor Pattie Maes
Title: Director, MIT Media Lab Software Agents Group

2.1
2.2

3.1
3.2

41
4.2
4.3
4.4

10

Table of Contents

Introduction

Design Criteria
Simulation Ability Design Criteria
Lifetime Design Criteria

High Level ArenaDesign
Background Research

Satisfaction of Simulation Ability Criteria

Arena Implementation
Java

Development Process
Implementing a Simple Simulator
Simple Design

I mplementation Details

Key Algorithms

I mplementing a Scenario with Arena

Sardine Implementation and Arena Revision

Conclusion

References

1 Introduction

The evolution of the World Wide Web has lead to many remarkable changes in the way
commerce is conducted in today’ s Digital Age. It’'s ability to provide a vast amount of
information in an accessible form is perhaps its most celebrated feature and is often times
also credited for helping e-commerce to grow. Web savvy consumers can now make
better informed purchasing decisions by using the Web as atool. However, the Web's
wealth of information is only one feature among many that has allowed electronic
commerce to flourish. New user interfaces, business models, and software have made
significant and continue to make significant contributions to e-commerce. A common
theme motivating many of these new technologies isincreasing the ease of use for a
consumer when making a Web based purchase. One only has to compare the Web
experiences of usersin the near past to see how today’s users benefit from such
technologies. Today’s Web consumers now have one click ordering, electronic package
tracking, and personalized accounts at their disposal, all of which help to simplify using
the Web to make purchases. This evolution isfar from over and we are beginning to see
the next step in changing the look of e-commerce. The trend of improving ease of useis

beginning to take a new form, as automation has become more prevaent in e-commerce.

One interesting approach to providing increased automation can be seen in agent based e-
commerce systems[1]. We are presented with a good example of thisin Market Maker,

a system that uses agents to represent buyers and sellersin amarket [2]. Users wishing to

buy or sell, create agents by instantiating them with their desired parameters (such as start
price and price changing behavior). Once the agents are created, they are rel eased into
the market. These agents then begin to negotiate with each other until an agreeable price
is found, which is then reported to both parties involved in the transaction. We can easily
see that this system provides many benefits for awide variety of users. A person wishing
to purchase something on the Web may be too busy to do the price negotiating
him/herself, or may not be familiar enough with the Web to make bids on an item.
Another good example of areal world application of agents helping to solve this problem
can be seen in ebay’ s simple bidding agent which automatically make abid if some other
person or agent has the current high bid [3]. The agent continues to place bids until it has
either won the auction or the price of the item surpasses the maximum amount the person
iswilling to pay. Thusthis simple agents alow a person to be represented in the auction
when they might not have the timeto sit at their computer or may not have the patience to
continuously check to see if someone has outbid them. It is not difficult to see that

€l ectronic commerce agents can ease these and many other difficulties.

However, it is difficult to specify certain aspects of an agent’s behavior and thisisa
problem my thesis addresses. Much of an agent’s success is not only dependent on its
own strategy but also on the strategies other agents employ. While the simple ebay agent
provides a certain degree of usefulness, how will this change as automation is increased
and new agents are developed? How will this simple agent fare against other, more
complex, agents when competing for some item offered on ebay? In addition, how can

selling agents best perform when negotiating with varying types of buyer agents using

different kinds of buying strategies? It isimmediately apparent that agent strategies will
have alarge influence on how e-commerce is conducted in the future. In recognition of
the importance of agent strategies, new research has begun in investigating the effect of
different kinds of strategies on markets as well as the success of individual agent
strategies. Much research is currently exploring dynamic pricing strategies where an
agent can quickly change its behavior in response to a changein its environment. For
instance, an agent may wish to alter its pricing behavior in response to itsinventory or in
response to a changing search cost [4] [5]. However, studying these strategies requires a
tool to help understand their behavior. My thesis explores a simulation based approach to
studying e-commerce agent strategies. This paper discusses the design as well asthe
implementation of Arena, aversatile and flexible strategy simulator that provides strategy
designers and e-commerce researchers with atool for observing the behavior of different

agents.

A simulator is not the only solution to help our understanding of agent strategies. In fact
amore exact and accurate solution would be to mathematically model different strategies
and to derive observations through calculations. However, thisis by far no simple task
and presents many barriers to entry to those that would like to study agent strategies. The
mathematical approach might not even produce results for a prolonged time due to the
very complex nature of the problem. For instance, there exists both an infinite number of
scenarios to arrange buyers and sellers and an infinite number of strategies each buyer
and seller can use. While a great wealth of economic theory already exists that may

provide some insight into these calculations, there is no guarantee to how useful these

theories will be when modeling this new Digital Economy. In contrast to the
mathematical approach, a simulator presents a simpler and more intuitive means for
conducting similar studies. Instead of laboring over abstract mathematical
representations of buyers, sellers, and their strategies, literal representations of each can
be simulated in amodel that represents real world interactions. While the results from
these simulations may be less accurate than the mathematical approach, the intuitive
means will make the study of agent strategies available to more people. This may in fact

lead to new theories that help simplify the mathematical approach

2 Design criteria

Any successful ssmulator should conform to certain design criteriato help ensure its
success. However, it isimportant to note that the success of the simulator cannot be
judged simply on its ability to accurately simulate many different scenarios of buyers,
sellers, and their strategies. Success should also be defined by an ability to remain useful
to many different users for a sustained period of time. That is, in the future, we should
not have to duplicate the entire design and implementation process due to any of the
simulator’ s shortcomings. From these observations we can establish that a successful
simulator design should satisfy two sets of criteria: one to ensure its actual simulation

ability and another to ensure its useful lifetime.

2.1 Simulation Ability Design Criteria
This set of design criteriais composed of 3 main objectives that a simulator must satisfy.
1. Modeling Flexibility
2. Behavior Support
3. Statistics Gathering
Modeling Flexibility
Thisis perhaps the most important of the 3 criteria because it details the scenarios a
simulator can and cannot model and thus directly affects alarge part of its success.
However, it isimpossible to account for every single possible scenario and so at the
minimum, a simulator should be able to account for the most common and most useful

scenarios. The simulator should then strive to attain coverage of as many possibilities

beyond these requirements without sacrificing any ability to simulate the common cases.

Behavior Support

It isinsufficient to simply design the simulator to account for a variety of scenarios.
While satisfying this criteriais necessary, we also need to ensure its ability to handle
different agent strategies. In order to do so, the smulator must provide a means for a
multitude of strategies to function properly. Thisincludes providing a simple means for
astrategy to accessits required decision variables. However, similar to the problem of an
existence of an infinite number of scenarios, the ssmulator should first ensure that it can
support the most common and useful strategies before attempting to support other
strategies. Once thisis done, it should then try and account for as many different types of

strategies as it can.

Satistics Gathering

In order to analyze the simulator’ s results, it needs to output useful and correct statistics.
The statistics are important to the user since they will help the user interpret the scenario
being modeled. A perfect simulator that implements a high degree of flexibility and
behavior support is uselessiif it outputs faulty and trivial statistics. The different types of
statistics that a user may wish to gather also covers alarge range of possibilities and so it

isimportant to account for the many types of statistics as best the simulator can.

2.2 LifetimeDesign Criteria

This set of criteria can be mostly satisfied through the observation of sound programming
and software design principles. However, it is useful to explicitly state in this section

which principles we should pay particular close attention to.

Usability

The sole purpose of the simulator is to provide many users with atool to learn more
about the behavior and performance of different strategies. Even if the ssimulator satisfies
all of the above simulation criteria, a complicated mechanism for configuring a scenario
and or testing a strategy will limit its success and may even render it useless. Thusthe
simulator must provide areasonably simple means for allowing a user to both configure

the simulator and build strategies they wish to test.

Modularity

Decomposing the design into several well thought out components will help the system to
survive over time. As better implementations for a component or different user needs
arise, modularity will help address these changes and allow them to extend the

simulator’ s capabilities with minimal change to the rest of the system. For instance, if a
faster algorithm is needed for a certain module, it can be implemented in a new module
which can be then exchanged with the old. Also, if additional capabilities of amodule
are needed, these can be implemented in anew component. It is easy to see how
modularity will help with the “plug-in” nature of testing different strategies with the same

simulator. In this manner, we can use one simulator to test many different strategies.

10

Generality and Interface Use

Modularity will help when well defined and foreseeable components are needed.
However, the software design should also account for and anticipate the changing of
components. For these changing components, arobust set of abstract programming
interfacesis required to help component designers interface their work with the
simulator. Interfaces will allow designers to understand the simulator at a high enough
level to enhance efficiency but will also provide them with a useful set of tools. From the
perspective of the strategy designer we can easily see how interfaces will help make
his/her work easier. A provided interface for the strategy and the simulator will help the
designer quickly develop the strategy itself, instead of having to have full knowledge of

the operation of the simulator.

11

3 High Level Arena Design

This section will discuss ahigh level overview of Arena sdesign and how it satisfies the
criteriafor a successful simulator outlined in the previous section. However, the
evaluation of Arenad s satisfaction of the criteria was done through two kinds of research:
background research and the implementation of a simple system. This section discusses
how conducting background research helped design components to satisfy the design

criteria

3.1 Background Research

Much of my thesis research was done through examining current strategy research and
agent based e-commerce system. This research began with working with David Wang's
Market Maker system. Through thiswork, | was exposed to areal agent based e-
commerce system and was able to gather a great deal of knowledge of the interactions
between buying and selling agents. Another valuable experience was in an earlier project
of mine at the Media Lab which explored an agent based approach for a business to
business hub. This also helped solidify the requirements for the infrastructure of any
system in which buyers will interact with sellers. Many of these requirementsin fact
appear in Arena s architecture, which will be discussed in alater section. Another
helpful resource my research benefited from was as Jeff Kephart's IBM Economics
Agents Group. Kephart’s work was extremely useful in seeing the types of strategies

people were interested in testing and also in how they weretested. This helped to

12

illustrate the capabilities a ssmulator should have in order to suit these strategies [6]. The
strategies themselves hel ped to give me a better understanding of the degree of
complexity strategies have. This exposure to complex strategies helped to extend the
strategies | have been exposed to through my background in economics. Much of this
background includes a knowledge of game theory which helped me to better understand

how many scenarios can in fact be modeled as a game.

From this great wealth of information, | constructed a design for Arenawhich | thought

best satisfied the outlined simulation ability design criteria.

3.2 Satisfaction of the Simulation Ability Design Criteria
Modeling Flexibility
From my research, | discovered that this criteriawould be best satisfied by constructing
an environment that could be configured to account for as many scenarios as possible. |
tried to find a common means for unifying the different types of commerce type
transactions and strategy based negotiation models came across. | found a means for
unifying al of these models through the use of several key entities. Each entity in this
configuration was derived from this research and isincluded in Arena s simulating
environment. They are:

e A variable number of buyers, sellers, and types of goods

The Arena environment can be configured such that a simulation between any

number of buyers and goods negotiating over different types of goods can be used

to test strategies.

» Different types of buyer and seller strategies.

13

Arena can support different types of strategies for buyers and sellers interacting
with each other.

» Different types of goods being sold in the environment.
Sellers can offer multiple types of goods and buyers can be interested in more
than one kind of good.

» Different types of negotiations
Negotiations can be single buyer to single seller or between multiple buyers and
sellers. Negotiations can also involve different types of goods.

» Different types of simulation behavior

The behavior of the simulation with respect to it state can change similar to how
buyers and seller behavior can change as their strategy dictates. For instance,
Arena can vary the number of buyersthat a seller has the opportunity to sell to if
time in the simulation has surpassed a certain point. This may be useful in such
scenarios to reflect changing market conditions, such as an increasing amount of
information available to buyers. Such amodel can be found when examining the
effect of the increasing number of Web savvy people and online sales.

* A notion of time
Arena s environment has the ability to keep track of time. That is, time as seen by
the buyers and sellersinvolved in the simulation. My research showed that
maintaining time in the simulation state was a hecessity since many strategies as
well as simulation behaviors depend on time.
* Simple statistics
Arena s architecture allows for all events and transactions to be logged. This
provides good coverage of the statistics that a user may be interested in.

These design components all help to satisfy the simulation ability set of criteria. The

satisfaction of the lifetime criteriawill be discussed in the next section, along with amore

in depth look at Arena’ s implementation of the components listed above.

14

4 Arenalmplementation

This section will provide amore in depth look at Arena’ s implementation while also
justifying the design decisions made. The approach in this section is more from a
software level and thus will provide insights into the actual code implementation as well
as how the lifetime criteriais satisfied. From the following sections, it will become
apparent how the lifetime criteriais satisfied through the use of an intuitive structure for
the simulator, interfaces that facilitate the testing of different strategies, and a modular

design to help minimize the effort required to modify and maintain Arena.

41 Java

To further enhance Arena s usable lifetime, Java was the language chosen for
implementing Arena. While afaster, native language could have been used, such as C or
C++ which have native compilers, | feel that Javawill help othersto use Arena. Not only
at the Software Agents Group, but also at the Media Lab in general, most undergraduates
aswell asagood deal of graduates seem to be programming in Java. It also seemsthat in
general, an increasing number of people are using Javato write their research software at
the Media Lab. Writing Arenain Javawould help others who are new to it and wish to
useit understand it quickly. Using programming language common to many people will

also promote its maintenance in the future.

4.2 Development Process

15

Arena’ s development process was composed of 3 main stages.
1. Implementing an initial simple simulator
2. Designing and Implementing Arena
3. Revising Arenaafter implementing Joan Morris' research project

At each stage, a significant amount of useful findings were gathered and helped evolve

Arenaintoitsfina form.

4.3 Implementing a Smple Simulator

Stage 1 involved implementing a simulator to model a simple scenario of buyers and
sellers. Inthis scenario, buyers were interested in the type of good al the sellers were
offering. A seller was selected from the pool of sellers. This seller would then locate a
certain number of buyers (a subset of all buyers) and query each to seeif they would like
to purchase from the seller. This decision was based on the seller’ s offering price and the
buyer’s purchasing price. Successful transactions were noted, and the simulation would

then continue by selecting the next seller.

| learned a great deal from this simple model regarding the issues | would need to address
in implementing a more advanced and flexible system. Thiswas done by studying the
components of the model that made the model itself simple and anticipating how
allowing these to be more complex could be implemented. These components were:
Search Width
Thisvalueis the number of buyersthe seller “finds’. Thus aseller that can reach
more potential customers will have alarger search width than one that cannot. In

my simple system, this was implemented as a Gaussian distributed random
number, center at some parameter passed into the system. A more complex

16

system should be able to better specify how each seller finds a potential customer.
For instance, a seller may wish to only search for buyers that satisfy a certain
criteria, such as finding atarget group based on age or gender.

Active Searchers

A closer examination of aseller’s search width revealed that not al seller’s search
for buyers. In fact, often timesit isthe buyer searching for aseller (suchasina
mall or afarmer’s market). There also exists many real world examples of both
parties searching for each other. For instance, many online retailers will send out
promotions to potential customers viaemail or some other means while many
potential customers may also be currently searching for these retailers.

Goods

The simple scenario involved sellers selling a universal “good” which all buyers
were interested in. A more complicated and realistic scenario would conceivably
involve multiple types of goods or similar but slightly differentiated goods.
Likewise, amore flexible simulator should be able to model scenarios with sellers
offering bundled packages of different types of goods.

Negotiation Terms

In this simple model, priceisthe only factor that determinesif a buyer will
purchase from aseller. That is, only the seller’s offering price and the buyer’s
reserve price figure into any kind of negotiating between both parties. A more
flexible smulator should be able to model more realistic scenarios where
negotiations can involve more than just price. Other negotiation terms should be
ableto be handled if the scenario requires them. Thiswould better reflect real
world situations where buyer often concerned with many factors aside from price.
Sellersin the simulation will also benefit from this ability since real world sellers
often differentiate themselves from others by offering different prices aswell as
different negotiable terms to a product.

44 Simple Design

The issues that the simple scenario raised, together with the components outlined in the
satisfaction of simulation criteria section all made up several pieces of aflexible
simulator system. The next task in the development of Arenawas to find a means for
connecting these pieces to form aflexible system that satisfies both the simulation and

lifetime criteria

17

The simple model discussed earlier had a very important structure for linking the buyer
and seller components in that it was simple and intuitive. | wanted to retain this
simplicity in Arena s design for two reasons. Thefirst being that a simple and intuitive
design would be easier to implement since | could take cues from the real world to help
conceive as well as design the interactions between components as well as their behavior.
The second reason was that an intuitive model would be simpler for future maintenance
and use by other Arenausers. Components of Arena represent real world objects that are
familiar to many people and will help future users understand how the system operates
without requiring an intimate knowledge of the software implementation. For instance, |
could have implemented Arena as a system “X” made up of one single component that
could not be decomposed into separate, independent components. However, maintaining
“X” would be difficult since it lacked a comprehendible structure. Instead, if | specified
that Arenawas composed of “buyers’ “sellers’ and “ negotiations’, the model’ s operation
isimmediately more understandable than “X”’s. Thisintuitive design greatly aidesin

satisfying the lifetime criteria of a successful strategy simulator.

In fact, thisis exactly how | achieved Arena’ sintuitive and simple structure. It's
behavior operates around 3 key components that reflect real world transactions. These
three components are:

1. Buyers

2. Sdlers
3. Negotiations

18

However, the intuitive structure of Arena pertains more to the state of the simulator rather
than to the entire ssimulator itself. That is, each instance of these three key components
combine to form a state which by itself does not simulate a scenario. Another key
component to Arenais used to manipulate the state so actually run the ssmulation. This
component contains the main algorithms for the execution of the ssmulation and dictates
how the simulation state changes. However, in order to maintain a safe abstraction
barrier between this component and the simulation state, a third component is used as an
interface between the two. Thus Arena’ s high level structure can be viewed as being
made up of three layers:

The Engine : simulation algorithms

The State Changer : handles all requests to manipul ate the simulation state

The Simulation State : maintains the intuitive model of buyers, sellers, and
negotiations.

wnN e

This also details the hierarchy of Arena s structure. The Engine commands the State
Changer which in turn manipulates the Simulation State. Thisthreetier structure helps
satisfy the lifetime criteriain that any future changesto Arenain any of these three
components will have minimal impact on the other. If in the future a different simulation
algorithm is needed, then the Engine component can be rewritten or extended to
incorporate new features. Since the Engine is de-coupled from the State Changer and the

Simulation State, they will not need to be changed.

19

5 Implementation Details

This section will provide an in depth review of some of the key classesin Arena’s

structure.

Smulation Sate

This class represents the state of the simulation and encapsulates all of the smaller
components of the simulation state such as the buyers, sellers, and negotiations. The
advantage of collecting the componentsin one classisthat it alows Arend s structure to
have a definite state it can refer to. An alternative would be to let each of the smaller
components manage themselves. However, thisloosely joined structure for the state
would make all state manipulationsinvolving different types of components extremely
inefficient to execute. Multiple requests would be dispatched to each of the components
which would need to be located in the system. The Simulation State class provides a
simpler and more efficient means for carrying out such requests. Instead, one request for
a state manipulation can be passed to the Simulation State which has specific knowledge
and control of each of the smaller components. This request can be then efficiently

handled as needed.
The Simulation State will aso aide in any future additions to the system’s state. Any
new component that is added will be added to and managed by the Simulation State.

Most likely, any new component will also introduce new interactions with existing

20

components. The Simulation State centralizes all such interactions and so adding a new

one to the existing set of interactions will not complicate any of the design structure.

Transaction Party Interface

Thisinterface represents all methods that any party involved in atransaction should have.
It is used to reflect that an object implementing the interface can be part of atransaction.
Thisis extremely useful in that two transaction parties negotiating a transaction will
know exactly how to communicate with each other. For instance, a party’ s identification
will often be needed for verifying identity and one transaction party can call the getID()
method of the other transaction party. Other more complex methods are also included,
such as for querying the party if it would like to negotiate with a certain other transaction
party. Defining and interface instead of creating a separate class allows several classesto
implement each interface method as they chose. Thisisimportant since some parties
may wish to implement these methods differently. Currently, the only such parties are
buyers and sellers. However, in the future, it is conceivable that new types of transaction

parties will be introduced into Arena’ s environment.

An aternative choice would be to not use an interface at all and instead |et each object
have its own proprietary interface for communicating during transactions. However, the
disadvantage of this scheme isthat any new party that is added and wishes to be part of a
transaction will have to notify all other parties of its proprietary interface. Not only will
these parties need to record this specia interface, they will also have write new tests for

when to use thisinterface. Each transaction party will have to have alibrary of interfaces

21

and an appropriate test that is used when dealing with another transaction party. This
test will determines which interface in the library to use. Using an interface allows all
transaction parties to treat different classesin a general manner. No testing is required

since al can be addressed by the Transaction Party interface.

Active Searcher Interface

This interface describes parties that actively search for their counterparts so that a
transaction can take place. This allows both buyers and sellers to exhibit this ability and
does away the need to implement two types of buyers and sellers: a buyer that actively
searches for a seller and one that does not and also a seller that actively searches and one
that does not. This allows buyers and sellers some degree of specificity that would be
degraded if these additional variants of each would be needed. Similar to the advantages
of the Transaction Party interface, the Active Searcher Interface also provides all
components that communicate with an active searcher a general interface to use and
removes any need to keep alibrary of interfaces. Thus many different kinds of active
searchers can be efficiently implemented with little need to change or update other

related components.

Buyer and Seller Interfaces

These interfaces describe buyers and sellers in the Arena simulation environment. Using
an interface rather than a specific and concrete class for both componentsis vital for the
flexibility of Arena. It gives acommon means for communicating with different types of

buyers and sellers. For instance, two different buyers implementing vastly different

22

characteristics can be treated in the same manner. Aswith the justification for the above
interfaces, this allows buyer and seller designers to efficiently develop these components
for asimulation scenario. Sinceit isthe goal of Arenato be able to model many different
scenarios, the use of buyer and seller interfaces reflect anticipation of many different
implementations for both components. A hard coded alternative would be to instead
implement both as concrete classes. However, this mistake would definitely cause
problemsin the future. For instance, hard coding a buyer binds all future users to that
implementation and greatly restrict the capabilities of the simulator. An interface based
approach in fact promotes the development of capabilities since designers can assume
that their buyers and sellers will be compatible with Arenaif they correctly implement

the Buyer and Seller interfaces.

Srategy Interface

Similar to the use of Buyer and Seller interfaces, the Strategy interface is used rather than
a concrete class since many different strategies will be used. Asdiscussed earlier, this
provides all the advantages of modularity and a component based design in that a strategy
components can be exchanged with little effort needed for integration. Thisfeatureis
very powerful when you consider that Arena s intended use is to test strategies. A user
can simple swap different strategiesin and out of the system for testing, while leaving the

remaining components untouched.

23

Negotiation

This class encapsulates a negotiation between at least one buyer and at least one seller in
the simulation state. It serves as arepository for all information that is public during a
negotiation and thus buyers and sellers can query it to obtain knowledge about the
negotiation taking place. In addition, the Negotiation can be used to send messages to all
partiesinvolved in the negotiation. Thisis efficiently done via the Observer object
oriented design model [7]. A nice feature of this model isthat it allows for different
types of messagesto be easily added. A new message only needs to be added to the
Negotiation class. When this message is sent out, all partieswill receiveit. Any party
interested in the message will then behave accordingly after receiving the message, all

uninterested parties require no modification since they do not wish to respond to it.

An aternative solution would have been to allow buyers and sellersto simple handle
negotiations themselves. While this may seem avalid solution since many scenarios can
be modeled in this manner, it limits the possible types of negotiations that can be
modeled and puts a tremendous amount of responsibility in the buyers and sellers. For
instance, if we wanted to model a specific buyer in an environment where the buyer
negotiates with a seller, this model would work fine. However, if we then wanted to test
this buyer in a collectively purchasing environment where many buyers collaborate to

make purchases (such as in the now popular web sites www.mercata.com [8] and

www.mobshop.com [9]), we would have to make extensive modifications to the buyer to

handle communication with the seller and its fellow buyers. An even more complicated

scenario would be if we then added multiple sellers to the negotiation. Providing a

24

negotiation class allows us to remove this burden from both the buyers and the sellers. It
allows Arenato provide more flexibility in the types of negotiations possible aswell as
for maintaining the specificity of buyers and sellers (i.e. they encapsulate buying and

selling, not the many types of possible negotiation processes).

Engine

As discussed earlier, the Engine serves as the driving force of the smulation. It houses
the main simulation algorithms for simulation and dispatches commands to the State
Changer to manipulate the Simulation State. This helps to somewhat localize the
simulation algorithms. While not al of the simulations algorithms are found here, many
are also contained in the interactions of the many components of the Simulation State, the
key algorithms for beginning negotiations are. Thisis perhaps one of the most important
eventsinasimulation. Many strategies will depend on the other party or parties involved
in the negotiation and these algorithms will dictate who becomes joined in a negotiation.
It isimportant that these algorithms be isolated so that modifications to them will require

minimal change (if any) to the other components of Arena.

Sate Changer

This class acts as a proxy for all components that wish to modify the Simulation State in
any way. While this currently provides only a small advantage buy adding a clear
abstraction barrier between the Simulation State and the other components of Arena, its
inclusion in Arena s design was with the futurein mind. A situation may arise where a

simulation designer wishes to model a scenario that is beyond Arena s capabilities,

25

however, this scenario can be attained if the Simulation State is augmented. The State
Changer would then act as a proxy for both components and so this addition will be

hidden from all components using the State Changer.

26

6 Key Algorithms

The previous section outlined the key components of Arena and discussed their
responsibilities as well asthe behavior. This section will show how they interact with
each other in Arena’ s structure. The clearest meansto illustrate the many interactionsis

to present Arena s simulation algorithm.

At the highest level, we have the Engine’s simulation while control loop. Thisloop
continues until some specified stop criteriais met. During each iteration of the loop, the
genera ideaisto allow each Active Searcher to try and find their counterpart. That is,
each actively searching Seller is given a chance to find Buyers interested in purchasing its
product and each actively searching Buyer is allowed the same opportunity to find
Sellers. If amatchisfound, then the State Changer requests that a Negotiation is started
between the two matched parties. After al Active Searchers have been given a chance to

search, the simulation time is then incremented.

Engine while control loop pseudo code:

1. whilethe stop criteria has not been met do

2 aso = the active searcher order retrieved from the State Changer

3 while there are more active searchersin aso do

4 active = the next active searcher in aso

5. potentials = the parties active is searcher for, which is retrieved from the
State Changer

6. while potentials has more Transaction Parties do

7. tp = the next Transaction Party in potentials

8. if tp’sinterests matches active' sinterests do

9. ask the state changer to make a transaction between tp and active
10. end if

27

11. end while

12. end while

13. State Changer increments time.

14. end while
Here we notice that the ssimulation designer is given agood deal of control over how the
simulation is executed. Different criteriafor ending the simulation can be given as well
as the order in which the active searchers are allowed to search. Thisis useful in that the
designer may be looking for a specific event to happen and may wish to end the
simulation upon seeing this event. The stop criteria gives the designer this freedom.
Also, the active searcher order alows the designer to implement varying capabilities of
Active Searchers. For instance, perhaps an Active Searcher more adept at searcher is

given two opportunities in the search order to search or perhaps the search order changes

in response to how a currently searching Active Searcher performs.

Line 13 of the while control loop is of special importance. Incrementing time signifies
that around of simulation time has ended. It isimportant to note that although the State
Changer requests the Simulation State to increment time, the round is note quite over yet.
In the pseudo code for the Simulation State’s method to increment time, we see that quite
abit occurs until the actual timein the Simulation State is changed. Two phases occur,
the first being prior to the increment and the second being after time has been
incremented. In thefirst phase, the Simulation State asks each of the currently active
Negotiations to continue negotiating. The algorithmic detail of the negotiating is heavily
dependent on the strategy of all partiesinvolved in the negotiation. The overall goa of
asking a Negotiation to continue negotiating is to get al partiesto strive closer to an

agreement, or to discover that the negotiation isdead. In either the case of a successful of

28

failed negotiation the simulation state is notified so that it can make the appropriate

changes. In the second phase of the time increment, the Simulation State conducts a

cleanup of itself. Buyers and Sellers with expired lifetimes are removed from the current

pool of buyers and sellers. Also, they are removed from any active Negotiation they are

involved. The Negotiation isremoved aswell if it does not have a sufficient number of

parties (i.e. at least one buyer and one seller) to continue.

CoNoORMwWNE

15.
16.

Simulation State increment time pseudo code:

notify each Negotiation to continue negotiating
increment time
remove all Buyers from the current pool of Buyersif their lifetime has expired
if this Buyer was involved in a Negotiation do

remove the Buyer from the Negotiation

if this Negotiation does not have enough parties to continue do

remove the Negotiation from the currently active Negotiations

end if

end if

. remove al Sellers from the current pool of Sellersif their lifetime has expired
. if this Seller wasinvolved in a Negotiation do

remove the Seller from the Negotiation
if this Negotiation does not have enough parties to continue do
remove the Negotiation from the currently active Negotiations
end if
end if

29

7 Implementing a Simulation with Arena

This section will outline the steps needed to implement a simulation using the Arena Java
classes. However, this section only provides the general steps that should be taken. The
reader is encouraged to examine the class definition files for a more specific description
of the general topics discussed here. Before proceeding, it isimportant to note the
distinction between the designer’s model and the Arena simulation he/she wishes to
build. A “model” refersto the outline of how Arena should be configured to represent.
Depending on the capabilities of both Arena and the designer’s proficiency with Arena, a
simulation will have varying accuracy of representing the designer’s model. Building a
simulation consists of 4 main steps that should be done in this order:

Goods sold/sought in the simulation

Representation of time

Active Searchers
Buyer and Seller implementation

Eal SR

Sepl . Goods sold/sought in the simulation

In this simple step, the simulation designer finalizes the goods being sold by sellers and
sought after by buyers. It is necessary that all seller offerings and buyer interests are well
understood before proceeding on to Step 2. A designer must know what each buyer is
interested in buying in the simulation and what each seller is offering in the ssmulation.
This also includes implementing a Matcher to determine whether or not two Transaction

Parties are compatible (one is selling something the other is interested in).

30

Sep 2: Representation of time

A key to designing asimulation is to know the role of time. Given the Engine’swhile
control loop, each increment of time will cause certain deterministic actions to occur.
Thus the designer must know how these actions should effect the simulation state. Arena
helps to simplify this by not associating any unit with the time kept in the Simulation
State. However, it isimportant that the designer know how one unit of timein the

Simulation State corresponds to one unit of time in the designer’s model.

Sep 3: Active Searchers

In any simulation, at least one Buyer or one Seller must implement the Active Searcher
interface so that at least one party will seek out its counterpart. An Active Searcher can
be a Buyer or Seller and should reflect how the party behaves in the model the designer is
simulating with Arena. A buyer or seller in the model which actively looks for another

party should implement thisinterface in the simulation.

Sep 4 : Buyer and Seller implementation
This step requires that the Buyer and Seller interfaces are implemented by some concrete
classes to represent the buyers and sellers of the designer’s model. This aso includes

implementing their strategies as well as determining their lifetimes.

Once al four steps have been completed (again, these are very general steps that need to

be accomplished), they can be incorporated with the Engine and the simulation is ready

31

to berun. However, additional classes are recommended to facilitate easy parameter

passing to run different experiments with the simulation.

32

8 Sardinelmplementation and Arena Revision

After completing the implementation of Arena, my next task was to see how well it didin
practice. Itsfirst trial would be in implementing the seller strategiesin Sardine, Joan
Morris airline strategy scenario [10]. In thisscenario, asingle airline seller wishesto
sell a certain quantity of airline tickets to a population of buyers by a certain deadline.
Every day, a certain number of buyers offer the airline bids for tickets. If agiven bidis
abovethe airline’ s reserve price for that day, then the ticket is sold to that buyer, if not
the buyer is unsuccessful in obtaining aticket. Morriswished to examine the effect of
different market conditions on different classes of selling strategies. So in configuring
Arena, | built adriver classfor Morris simulation which created the pool of buyers and
the airline seller based on a configuration file. These buyers extended the Buyer interface
and implemented only the necessary methods. Likewise, the airline was implemented as

the Sdller.

Here we see an example of Sardine’ sresults for simulating a simple pricing strategy
based on the total quantity sold to date. Asdemand increases, the airline adjusts the
reserve price to the bid level and then follows itsincrease [11].

Reserve Pricing Strategy
with Increasing Demand and Initial RP = $350

800
600 7\

(o]
£ 400 §
o

200

0 5 10 15 20 25 30
Day

—&— Reserve Price —#—Av. Bid

33

However, in implementing Sardine, | noticed a slight problem with Arena’ s architecture.
Specificaly, statistics generation was not quite as simple as | had previously thought.
Initially, | thought that the statistics could be stored with each significant component.
This assumption turned out to be quite naive in that much effort was required to collect
each components repository of statistics. Although Sardine operated successfully with
this cumbersome statistics mechanism, | decided to revise Arena and add a simpler, more
efficient means for statistics gathering. Instead of scouring each component for their
accumul ated statistics, a single repository is used to collect statistics as they come. This

architecture vastly improves Arena’ s statistics generation ability.

34

9 Conclusion

Morris work with Sardine produced some interesting findings and presents us with some
insight into seemingly simple airline selling strategies. Morrisfound that using a strategy
to change the reserve price of aticket based on the quantity sold to date has an ability to
track the demand level quite well. This simple strategy which indirectly tracks demand
in fact outperforms a slightly more complex strategy that adjusts the quantity of seats
released based on the current demand. This adjustment was an attempt to optimize the
number of tickets offered each period and thus increase the airline’ s profits. Sardine has
shown us that our assumption that we can engineer better strategiesis not always correct.
Thisrealization illustrates the power of simulation. What we also seeisthat Arena
succeeds in providing a powerful mechanism for strategy designersto test their ideas.

However, Sardine also reveals some areas in which Arena can be improved.

Specifically, Sardine suffered from a poor user interface. Parameters were passed into
the simulation via a configuration file. While this scheme worked fine, and would suit
most other smulations as well, thisis far behind the user interface standards of most
applications. ldeally, Sardine would be equipped with a simpler means to enter in data
such as a succession of windows and help menus. Since it isdifficult if not impossible to
include a graphical user interface package with Arenadue to the infinite possibilities of
scenarios Arena can model, all Arenasimulations will suffer from this problem. All will
require that some user interface is developed on itsown. This may in fact detract from

the satisfaction of the lifetime criteria established earlier since implementing a user

35

interface will increase the amount of effort for implementing a system. However, |
believe that this problem can be tolerated since user interface design is awell understood
problem and many software libraries currently aide this development and thus Arena’s

user will have ample amounts of assistance.

However, one problem that Arenawould definitely gain from its improvement is the
necessity of recompiling the Java source file for every new simulation. This problem
stems from the decision to use Java, which does not support dynamically linked libraries
as Arenad s language for implementation. One possible solution would be to devise a
scenario-strategy language specifically for Arena. Conceivably, this language would able
to describe al the scenarios as well as al the agent strategies Arena can support. If this
was achieved, then this language could be used to dynamically configure Arena. A
scenario-strategy source file could be parsed and then used to configure Arena’s classfile
which would then execute the defined simulation. In this manner, Arenawould not have
to be repeatedly compiled. However, currently recompiling Arenais not a significant
problem. While this may change in the future, devising the scenario-strategy languageis

a definite major endeavor which would require much research.

However, despite these minor shortcomings, we see in Sardine that Arena provides a
powerful tool for e-commerce agent strategy designers and researchers. |n comparing
seemingly simple strategies against engineered strategies, Morris work shows us that our
understanding of strategies may not quite be asintuitive aswethink. These findings are

from one of many possible applications of Arenaand only hint at Arena’s usefulnessin

36

future projects. It iswhen we become closeto realizing Arena s full potential that the e-
commerce community will posses a better understanding of awide variety of buyer and

seller strategies. With this knowledge in hand, the importance of agents will continue to
flourish and hopefully we will have Arenato thank for helping to continue the evolution

of agent based e-commerce.

37

10 References

1. Maes, P, Guttman, R., and Moukas, A., "The Role of Agents as Mediatorsin
Electronic Commerce." Specia Issue of Knowledge Engineering Review on Practical
Applications of Agents, Edited by Barry Crabtree, summer 1998

2. Wang, David. http://ecommerce.media.mit.edu/maker/maker.htm. 1996

3. http://www.ebay.com

4. J. Morris. P. Ree, and P. Maes. Dynamic Seller Strategiesin an Auction
Marketplace. Submitted to the ACN Ecommerce Conference, 2000

5. J. Kephart, J. Hanson, and A. Greenwald. Dynamic Pricing by Software Agents. In
Computer Networks, March 2000.

6. J. Kephart, J. Hanson, and A. Greenwald. Dynamic Pricing by Software Agents. In
Computer Networks, March 2000.

7. Gamma, Eric, et a. Design Patterns : Elements of Reusable Object-Oriented
Software. Reading, Massachusetts : Addison-Wesley. 1995.

8. www.mercata.com

9. www.mobshop.com

10. J. Morris. P. Ree, and P. Maes. Dynamic Seller Strategiesin an Auction
Marketplace. Submitted to the ACN Ecommerce Conference, 2000

11. J. Morris. P. Ree, and P. Maes. Dynamic Seller Strategiesin an Auction
Marketplace. Submitted to the ACN Ecommerce Conference, 2000

' J. Morris. P. Ree, and Dynamic Seller Strategiesin an Auction Marketplace. May 2000.

38

