
Tangential Browsing

Peter Ree
Advanced Undergraduate Project 6.199

Advisor Glorianna Davenport
February 1999

Abstract
By themselves, current web browsers do not present users with a simple and cohesive means to browse the
World Wide Web. Popular search engines such as Yahoo! and hotbot.com aim to solve this problem by
allowing users to search the Web by matching simple queries with related web pages. However, this
mechanism adds complexity to the actual act of browsing and thus detracts from the intended leisurely
nature of the act. Tangent solves this problem by doing much of the work done by users using traditional
search engines to browse the Web. It simplifies the browsing procedure by eliminating the formal search
engine query while suggesting relevant URLs to the user on its own. However, Tangent is not without
problems of its own. Specifically, the immense size and growth of the Internet presents Tangent with
difficulties searching for material, as well as maintaining it. However, this paper will show that Tangent
succeeds in offering an alternative to using search engines for users that wish to browse the Web in a
leisurely fashion.

Introduction
The World Wide Web contains a vast amount of information that spans almost every topic known to
mankind. Originally, the Internet was built as an information network for the United States government
and was intended to allow key organizations to quickly exchange ideas over long distances. However, with
time, we have seen that the increasing number of households, businesses, and other non-government based
entities connected to the Internet has led to a more diverse group of users. Consequently the needs of this
new diverse body of users has lead to a change in the Internet. Both the actual amount of information
available on the Internet as well as its diversity has grown incredibly. No longer is the Internet primarily a
data bank of "classical" research. Instead, we see that its diverse content reflects the many different
interests and lifestyles of its users. These users are no longer professors or government scientists searching
for a specific technical paper. Rather, they are students, children, and parents, of all ages and nationalities.
Similarly, we have also seen a change in the behavior of these new Internet users. They often do not use
the Internet to search for specific items. Rather, they use it as they would the television. Viewing web
pages on the World Wide Web has become for some as leisurely as "channel surfing" with a television.
However, I believe that the number of these browsing users is only a small fraction of those who would do
it if it was in fact as simple "channel surfing".

It is important to note the distinction between leisurely navigating (browsing) the Web and searching the
Web. A user browsing the Web aims to casually visit various web pages while taking pleasure (or
displeasure) in their content. In addition, the user wishes to move on to a new page when desired.
Netscape and Internet Explorer have been labeled as "web browsers" by the software industry when in fact
they do nothing to help a user browse the Web. Aside from the pre-installed bookmarks, both products
only offer users a URL address bar to command the "browser" where to go. To those users who wish to
actually browse the Web, this is analogous to finding a needle in a haystack without knowing what the
needle looks like! Thus, various solutions have been devised. Portal web pages, such as
www.netscape.com and www.patlifinder.com, contain many links to web pages and present them in a
organized manner. However, these types of portal pages only encompass a minute fraction ofthe
information available on the Internet. The most common solution and tool that users use to browse the
Web is the search engine. However, these Internet mechanisms remain from the time of homogenous users
who knew what they were looking for. While we have seen that these engines are an Internet necessity,
they have been slow to adapt to changing user preferences. Examining their operation quickly reveals the
need for new features or perhaps an entirely new system.

Ifwe begin by studying how a typical user would leisurely browse the Web, we immediately see how the
search engine fails. This problem arises from the fact that the user must browse the Web in the same
manner as if they were searching for a specific topic. He/she must go to a search engine such as Yahoo! or
hotbot.com and enter a topic to be searched for. The search engine then presents the user with a list of
URLs. All engines base their success on the accuracy of matching the user's input with the suggested

URLs. Should a user wish to browse the Web, instead of searching for something specific, he/she would
have to conduct multiple search queries via a search engine. The user would have to think about what
he/she is interested in, enter in an appropriate query for the engine, and finally chose one of the suggested
links.

Netscape user interface

user can enter
query here

user can
browse
topics

Not only is this process complex, it is very inefficient. An example would be a Sunday morning Web
person who chooses to use the popular Yahoo! search engine hoping to browse the Web. This person has
two options: entering a query string for Yahoo! or clicking on a topic link and continuing to click on sub­
topic links until a suitable page has been found. The former method suffers from the fact that a user must
continue entering strings once he/she wishes to view a new topic. A weakness in the latter method can also
be seen if a user wishes to changes topics. For instance, the user may click these topics in succession: Arts,
Performing Arts, and finally stops after clicking Books. Now, the user in effect has traversed a ''topic tree"
and reached a node which he / she is interested in. However, if the user now wishes to change topics, say
to computers, the process of browsing must start over from the initial Yahoo! start page.

A typical search engine "topic tree":

Start page topics

This paper will discuss a design that aims to allow users to browse, not search, the World Wide Web in an
efficient and cohesive fashion that is consistent with browsing. Key design criteria for a successful system
will be outlined and discussed. In addition, a discussion regarding a working implementation ofthe design
criteria (named Tangent) is also included as well as some unexpected findings.

Before continuing on into a discussion of design principles, it is important to note that I have chosen to
limit the scope of my research to examining the effectiveness of Tangent in browsing a set amount of
URLs. While this does not accurately portray the Web and it's immense number of web pages, it serves as
a useful model to help maintain the focus ofthe research. Instead of also designing a system to connect to
URLs via HTTP and load, interpret, and display HTML, existing Web browsing software can be used in
cooperation with a browsing component. Thus, this paper will focus on the design of the browsing
component and the problem of browsing, not retrieving, World Wide Web pages.

Design Criteria
This section will discuss important design criteria in building a system that allows users to browse the
World Wide Web. Although somewhat abstract, the design criteria listed below must be implemented in
any successful system. Specifically, the criteria are:

The system automatically presents a user with multiple URLs that the user is interested in
The system must present URLs that the user is interested in or is relevant to what the user is currently
browsing. Although presenting random material may help discover new interests, the Web's content is
too diverse and contains too many pages to simply present random materials. Doing so would
decrease the chances of presenting URLs that the user is interested in and would thus make the user
worse off compared to using traditional search engines. Consequently, only presenting random
material would defeat the purpose of even building the system.

The system is quick to make suggestions
In addition to providing the user with relevant suggestions, the system should be present them to the
user quickly, so that the user's focus is on the URL he / she is viewing, not on the system itself. The
design should strive to eliminate user interactions with any search engine like interface. That is, use of
the system should not require any extensive involvement by the user. For example, using a search
engine not only requires the user to pause to think what he or she is interested in, but the user is also
forced to try and express these interests in words which must be typed in the search query. Thus

presenting quick suggestions implies transparency of system operations and also minimal user
interaction with the system itself

The system is simple to use and comprehend
Similarly, it is also important that the system is simple to use and comprehend so as not detract from
the actual viewing of the web page, which is the user's initial goal. A simple to use system implies
that the user interface is well constructed, easy to comprehend, and easy to use. This will also help
keep the user's focus on experiencing the web page rather than using the system. One would rather
focus on the "television show" on the current channel rather than the "remote control" used to get
there.

Design Recommendation
This section will outline the general behavior of the Tangent system, a system which implements the 3 key
design criteria discussed above. It is important to first note that Tangent is written as a Java applet which
allows the system to be simply, and transparently loaded by current commercial web browsers (such as
Internet Explorer 4.0) via the Internet. This has allowed the research to focus on browsing, rather than
retrieving, web pages as discussed in the introduction. However, using an applet has introduced some
restrictions to the design that will be later covered in a more rigorous discussion of Tangent. Once Tangent
is loaded, images corresponding to specific URLs are displayed. Moving the mouse pointer over one of
these images causes the corresponding URL address to be displayed on the interface. This conveys that the
cell represents that web page. Clicking on one of these images will cause the corresponding URL to be
displayed in the web browser and will also cause Tangent to suggest new URLs by updating the
URL/image choices available on the interface.

Design Overview
The design of Tangent can be viewed as two independent components: the user interface and the selection
system. It is actually the selection system that is known as and will from here on be referred to as Tangent
while the interface will be referred to as Navigator. The user has no direct access to Tangent and thus is
hidden from its complex features. Instead, the user can use the simpler Navigator interface to indirectly use
Tangent.

Tangent is
hidden from
the user

j}

the user interacts with
Navigator

Navigator communicates with
Tangent

Tangent
Tangent functions on the notion that a user's decision to view a URL is based on evaluating two key
elements. These elements are the URL itself, and the set of attributes that describe it. A person
subconsciously evaluates the attributes of a given web page. Specifically, he/she examines the topics a
URL contains and decides if it is worth viewing. Tangent uses two important objects to encapsulate the
abstract notions of web page content and content topics. Materials are used to represent URLs while
descriptors are used to represent a description of a material's content. Thus each unique material has an
associated set of descriptors.

Materials:

Descriptors: sports news computers

When a user chooses to view a material, Tangent can extract the descriptors associated with this decision.
The system records these descriptors as being viewed by the user. As the user continues to use the system
to browse material, the system can build a set of descriptors that tend to be associated with materials that
the user chooses to view. This set can be viewed as the user's interests. Thus the system is able to make
relevant material suggestions by suggesting materials that share descriptors with the user's interests.

Navigator
The user interface consists of a grid of nine squares where each corresponds to a URL. A given cell in the
grid may contain multiple images. The number of images is dependent on the number of descriptors a
material contains and likewise each image should reflect one of the descriptors. For example, the

descriptor basketball may have an image of Michael Jordan for the URL www.nba.com and an image of
Lisa Leslie for www.wnba.com. Each image is displayed in succession. Moving the mouse over a cell
causes rate of the images to be displayed faster. In addition, the corresponding URL is displayed at the top
of the interface.

It is intended for the user to interpret each image as describing the corresponding URL. Using visual cues
instead of text based cues (such as displaying the word "basketball" for the descriptor basketball) helps to
expedite the user's decision of what URL to chose. In addition to saving time by using images, displaying
descriptors as text may be somewhat vague. The WNBA and NBA example shows that a single image can
immediately inform the user what league the image corresponds to whereas the word "basketball" is
ambiguous.

The speed up effect of moving the mouse over a cell is done for a user who wishes to quickly cycle through
the URL's images. In addition, it alerts the user that the mouse pointer has some significance and that
he/she will be transported to that cell's URL if the mouse is clicked.

The Navigator user interface

clicking the
mouse will
take the user
here

cell containing a
URL

Implementation Details

Tangent

Descriptors
Each descriptor is considered unique and treated as a single object. Thus there is only one basketball
descriptor and it is used to describe www.wnba.com as well as www.nba.com. Each descriptor object
keeps track of how many times it has been activated as a consequence of being associated with a selected
material. In addition, each descriptor has a unique identification value which is implemented as a positive
integer value that is a power of2. This allows the lD number to appear as a single I in a string of bits
(where all other bits are Os). Descriptors also contain a flag to specify weather or not the user is interested
in the descriptor.

Example: name: basketball
ID number: 4 (.... 00100)
times activated: 2
interest?: no

Materials
A material contains its name, the URL it correspond to, an array of descriptors that describe it, an array of
pictures to display, and a descriptor set value.

Example: name: nba
URL: www.nba.com
times activated: 2
interest?: no

The descriptor set value is derived by summing the lD values of each individual descriptor in the material's
descriptor array. Thus we can see why it is important to have the descriptor identification values be powers
of2.

For example, if a material is described by 2 descriptors sports and news:

sports identification value 00001
news identification value 000 I0
(the " " is to denote an arbitrary number of 0 bits preceding the sequence")
set identification value 000 II

Notice that the existence of a descriptor is maintained even after summing many identification values.
Thus examining this value will reveal precisely all descriptors of a material.

When a user chooses to view a material, Tangent immediately loads the material's profile (its URL, picture
array, etc.). Most importantly, Tangent retrieves the material's descriptor set and sets it to be the current
"active" set. This descriptor set represents current user interests and allows Tangent to fetch similar
materials. In addition, Tangent increments the "viewed" counter in each descriptor in this set to reflect that

the user is viewing a material that the descriptor describes. If the counter in any of these descriptors is
above a threshold value, the descriptor is set to being an "interest" of the user. This threshold value is set
when the Tangent system is instantiated. Setting a value of 8 will tag all descriptors that have been viewed
8 or more times as a user's interest, and all descriptors viewed less than 8 times as non-interests. All
descriptors with the interest flag compose a second descriptor set, the "interest" set.

All materials in the system can be searched based on either the active or interests descriptor sets. From the
active set, the system can return materials that are relevant to what the user is currently. Likewise, the
interests set allows it to return materials that reflect what the user has tended to be interested in.

Operation
In order to search for relevant materials, the system creates two values corresponding to each the sets
(interest and active). These values are derived in the same manner as a material's descriptor set value. All
descriptors in a set are summed. Thus one single value can represent current active descriptors while
another can reflect all user interests. Two binary trees are then formed, one for each set. Each tree is
formed by taking one of the set values and comparing it to each material in the system. Specifically, each
material's descriptors value is compared to one of the set values for similarities. From these comparisons,
Tangent can create a binary tree based on a material's similarity with one of the two user descriptor sets.

An example of one
ofthe two binary
trees:

most
relevant
material

least relevant
...----- material

Navigator
The entire system consists of three main components: the applet, a navigator frame, and a Tangent engine.
The applet serves as a starting point for all processes to begin and also serves as the system's link to the
browser. The applet is responsible for executing all requests to load images as well as showing URLs in
the web browser. The navigator frame, referred to as "Navigator" from here on, is the actual user interface
and displays the 9 images. The Tangent engine, whos operation was discussed above, is responsible for
making suggestions. Navigator acts as a layer between the user and the actual Tangent system and allows
simple user actions such as mouse clicks to trigger complex behaviors.

Component

Navigator

Tangent

Applet

Responsibilities

Interacts with the user, responds to user actions
Displays images, changes images appropriately
Passes user selections to Tangent
Commands the applet to show appropriate URL

Maintains and records user's interests.
Returns a list of most active/interested materials to Navigator

Maintains a link to the HTML page that contains the applet

Loads URLs for the user to browse, as well as fetches images
in the background

However, in order to fully understand how the user interface operates, it is important to examine how it
initializes itself.

A special class (discussed later) is used to load information via the Web to initialize the Tangent engine
with the proper set of materials and descriptors. Once this is done, the Tangent engine is ready to be used
and the Navigator frame can now be initialized. Before the frame is displayed, image fetching threads are
created for each material in the Tangent. These threads are responsible for fetching images over the
Internet. Nine update thread are also spawned and have the responsibility of drawing images to the
Navigator user interface. Each of the nine threads corresponds to a single cell in the grid. Thus each of the
nine will also have an image fetching thread that corresponding to the material represented in a specific
cell.

nine update
threads
manage each
of these cells

this update
thread posses
this image
fetching
thread for
Yahoo!

When a user clicks on a material, the Tangent engine is consulted and the most relevant materials are
retrieved from it With this list of materials to display, Navigator (as the Java class is called), retrieves the
image fetching threads responsible for each of the materials. These threads are then passed on to the update
threads which can now draw these new images to the display.

Navigator
and it's
threads

x9
(nine total
update threads)

ifthis material is suggested, it's image
fetching thread will be passe to an update
thread to display its images

Initializing Classes
The special Tangent initializing class mentioned above allows a simple text file to fully define the materials
and descriptors of a new Tangent engine. This file can be placed on the Internet as a web page and thus
allows the engine to be remotely initialized. This saves space in that the applet class files do not have to
fully embody the state of the Tangent. This also allows for many different configurations of Tangent to be
readily available.

Implementation Efficiency
It is important to note the reasons for choosing the before mentioned implementations for Tangent and
Navigator. Specifically, it is important to examine the efficiency of the algorithm responsible for searching
for relevant materials. This process involves searching a binary tree that grows logarithmically with
respect to the number of materials in the system. This feature is quite nice given that a poorer algorithm
may have involved sequentially searching through all materials and would thus suffer from orders of
growth greater than logarithmic. The choice of implementing descriptor identification values as single bits
further optimizes the algorithm. A material's descriptor set can be expressed a single value that can be
compared to another single value (the interest or active descriptor set/value). This comparison only
involves right bit shifts and bitwise AND operations, both are very computationally cheap. This aids in the
speed and efficiency of constructing the two binary trees.

The interface also benefits from a good internal design in its efficient use of time sharing operation. That is
the multithreaded nature of the image fetching allows multiple images to be loaded at the same time. If one
image is taking long to load, other images can stilI be loaded. It is also possible for the Navigator to be
displayed without completely loading all images. When a user is viewing a URL, in other words not
interacting with Navigator, the image fetching threads can still be retrieving images that have not finished

loading. Navigator gracefully handles the problem of a missing, or unloaded image by simply not drawing
the image to the screen. This is rather different than the approach of showing a broken image or an image
with a question mark that most web browsers chose to do in such a situation

However, it is also important to note some implementation shortcomings that lead to inefficient behavior.
The most outstanding weakness in the system is its implementation as an applet. The current restrictions of
an applet do not allow it to connect to any other computer than the web server it came from. Thus,
Navigator's image fetching threads can only fetch images from the web server hosting Tangent and thus all
images must be stored on the web server. This includes visiting the web page and copying the image to the
web server. It would be nice to simply specify the URL for the appropriate image, this cannot be done
now. However, in the future, with the prospect of signed applets and weaker applet restrictions, this is a
definite possibility. The system could have been implemented as a unique and proprietary client and would
thus have very little restrictions. However, this would have greatly increased the development overhead
and would most likely deteriorate the spirit ofthe research.

Criteria Satisfaction
The choice of implementation of a browsing system satisfies the three criteria specified earlier.

The system automatically presents a user with multiple URLs that the user is interested in
All user selections ofURLs are recorded in Tangent and thus allow it to suggest URLs that have
descriptions that the user has tended to be interested in (from past history) or have similar descriptions with
the user's current selection.

The system is quick to make suggestions
The efficient creation of the binary trees, the searching of the trees, as well as the image fetching threads all
allow the system to quickly make suggestions to the user.

The system is simple to use and comprehend
The use of images to convey description requires little explanation to the user. In addition, the "flicker" of
the images when the mouse pointer is over a cell immediately informs the user that the mouse pointer has
significance when using Navigator. The only interaction a user must do in order to use the system is to
click on one of the 9 cells. The text "Go to URL: " is displayed as well as the URL corresponding to the
cell the mouse is currently over. Suggestions as well as updating the graphical interface is all handled by
the underlying system and thus appears transparent to the user. In addition, the interface does not clutter
the display by showing broken or question mark images when an image is not loaded or is missing. This
helps to preserve the aesthetic "tranquility" ofthe interface.

Design Weaknesses
The chosen design exhibits some inherent weaknesses that will be discussed in this section. Specifically,
Tangent has a very weak mechanism for filtering out descriptors that the user is not interested in, but
selects to view. This situation can come about if a user wishes to view a URL, but then decides he/she is
not interested in its content or perhaps he/she accidentally selected the URL. The only means Tangent has
for guarding against marking these viewed descriptors as the user's interests is by use ofthe threshold
value. Thus Tangent relies on a user choosing to view materials with descriptors he / she is interested
frequently while viewing uninteresting materials infrequently. This presents another problem in that a
suitable threshold value must be chosen. This is difficult for a variety of reasons. One significant problem
is that users have different behaviors and will thus tend to browse differently. For instance, one user may
behave "nicely" and select materials that he/she is interested in. However, a different user may chose a
random material from the 9 cells to view. It is difficult to determine what the threshold value should be for
the random user or any other user close to this type. The best solution would be to assign threshold values
specific to each user. However, there is no simple means to do this. One possible solution that I

considered was allowing the user to inform Tangent if they were pleased with the URL after viewing it.
However, I believed that this added an unnecessary and somewhat cumbersome user-interface interaction.

Another weakness in the design is the fixed amount of material a user can see at any given time. Currently,
Navigator shows 9 materials, but what if a user would like to see 16 or 4? This again stems from the
problem of differentiating user behaviors. One solution would be to allow the user to specify an image
"bandwidth" value and would cause Navigator to have more or less image update threads accordingly.
However, I felt that research into this matter and its usefulness should be done at a later time. For the
purposes ofthis project, I found that the 3x3 matrix worked very well.

An interesting weakness that I discovered actually helped to improve my system. This particular design
flaw occurred in cases where many materials were closely related, that is, choosing to view one of these
materials would trigger Tangent into suggesting the others. Thus it is possible for Tangent to only suggest
these materials because choosing one of them does not lead to any materials outside of this group. I called
this a state trap during my research and found that the best way to avoid this was to insure that random
materials were always part of Tangent's suggestions. This in turn, helps the user explore new topics and
thus makes Tangent a more versatile system.

Conclusion
If time permitted, I would have liked to shown my system to more people and added more URLs to the
Tangent initialization file. However, my findings were very positive. Although the design suffers from the
before mentioned weaknesses, I found that it succeeded in improving the leisure nature of browsing the
Web. I found that it replaced the complicated and time consuming process of using Yahoo! with a simple
and somewhat entertaining mechanism. This novel value of actually using Navigator, however, strayed
from the original goal of maintaining the user's focus on the URL, not the browsing mechanism. I found
that I enjoyed interacting with Navigator more than I did viewing the URLs. This however, is probably due
to my heavy involvement with building Navigator and familiarity with the links. I am confident that this
appeal would most likely decline with further use of the system.

It is important to also note the feasibility of actually implementing a real world Web browsing Tangent
powered system as outlined in this paper. This would require many new additions to the current design as
well as changes to current and popular technology. One problem I discovered was that, surprisingly, most
web pages do not have many relevant images. That is, the images they use often do not reflect the
descriptors that were used to describe them. Thus, I resorted to using images that did not reflect a
descriptor. Often times, I found that I had to use business logo images when a suitable image could not be
found. Another problem in attempting to make a real browser capable of browsing all Web links is that
Tangent was designed to handle a fixed amount of content. The fixed amount of content allows us to
define each material and each descriptor. The real Web represents a much more complex and difficult
problem. There is no simple way to correlate each URL on the Web with a set of descriptors and it is even
more difficult to compress all of this information into a single applet. However, I believe that this will be
soon possible with new, soon to be released technologies. One could imagine building a server back end
to "crawl" the web as traditional search engines do. During it's traversal ofthe Web, the server could
examine XML pages and extract relevant descriptors and images. This information could then be passed to
Tangent as needed. While this quick sketch of a design leaves out too many details to actually be
implemented, it does show that we are not too far away from making a Tangent browser a reality. In fact,
the latest version of Netscape already includes a simple mechanism to help users browse. The Netscape
menu bar now contains a "What's related" button that will retrieve links related to the URL the user is
currently browsing.

Although the Netscape mechanism is somewhat limited, it reveals how users should expect to browse the
Web in the future. Soon, Web users will have a simple mechanism that will facilitate leisurely and simple
browsing of the World Wide Web. I hope that the preliminary research I have done on this subject will

give some insight to what browsing will become. Should it not, however, there is no doubt in my mind the
project was a success. I have learned much more than I originally intended. Specifically, I learned many
lessons in software development and project management that I did not expect to learn. In addition, the
very thought provoking nature of the project made the entire project worth working on. In the future, I
know I will be able to apply the lessons I have learned while working on this project, I only hope that I will
have a chance to continue my research. Until then, I hope that I have revealed the interesting aspects about
Tangent and browsing as it was meant to be.

BTree.java

public class BTree {

/* Overview: Class BTree is a data structure used that represents a binary tree.
It contains methods for adding nodes to the tree as well as methods
to manipulate a given node's attributes.

*/

private BTree left;
private BTree right;
private BTree parent;
private Material head;
private int val;
private boolean traversed = false;

public BTree(Material head, int intersection, BTree parent) {
/* requires: head is not null

modifies: this
effects: sets this.head = head, val = intersection, this.parent = parent

*/
left = null;
right = null;
this. parent = parent;
val = intersection;
this.head = head;

}

public void addNode(Material newNode, int newVal){
/* requires: newNode is not null

modifies: left or right
effects: adds a new node to the left branch of this if newVal is 2 to this. val

else adds it to the right branch of this

*/
if(newVal 2 val){

if(left == null)
setLeft(newNode, newVal);

else
left.addNode(newNode, newVal);

}
else {

if(right == null)
setRight(newNode, newVal);

else
right.addNode(newNode, newVal);

Page 1

}
}

public void setLeft(Material newLeft , int newVal){
/* requires: newLeft is not null

modifies: this
effects: sets this.left to point to a new node containing newLeft and newVal

*/
left = new BTree(newLeft, newVal, this);

}

public void setRight(Material newRight, int newVal){
/* requires: newRight is not null

modifies: this
effects: sets this.right to point to a new node containing newRight and newVal

*/
right = new BTree(newRight, newVal, this);

}

public BTree getLeft0{
/* requires:

modifies:
effects: returns the pointer to this' left branch

*/
return left;

}

public BTree getRightO{
/* requires:

modifies:
effects: returns the pointer to this' right branch

*/
return right;

}

public Material getMaterialO{
/* requires:

modifies:
effects: returns a pointer to head

*/
return head;

}

public int getValO{

Printed: February 5, 1999

BTree.java

/* requires:
modifies:
effects: returns val

*/
return val;

}

public BTree getParentO{
/* requires:

modifies:
effects: returns a pointer to this' parent
*/

return parent;
}

public boolean was'Iraversedf) {
/* requires:

modifies:
effects: returns traversed

*/
return traversed;

}
public void make'Iraversedlj]
/* requires:

modifies: traversed
effects: sets traversed to true
*/

traversed = true;
}

}

Page 2

Printed: February 5, 1999

Descriptor .java

public class Descriptor {
/* Overview: this class is used to contain information about a descriptor that

describes a material. descriptors are unique.

*/

private String name;
private int hits;
private boolean interested;
private long ID;

public Descriptor(String name, long id){
this.name = new String(name);
hits = 0;
interested = false;
ID = id;

}

/ / selectors
public String getNameO{
/* requires:

modifies:
effects: returns a pointer to this name
*/

return name;
}

public int numHitsO{
/* requires:

modifies:
effects: returns hits

*/
return hits;

}

public boolean islnterestedf) {
/* requires:

modifies:
effects: returns intersted

*/
return interested;

Page 3

}

public long getID 0{
/* requires:

modifies:
effects: returns ID

*/
return ID;

}

/ / modifiers
public void hitO {
/* requires:

modifies: hits
effects: increments hits by one
*/

hits++;
}

public void fade0{
/* requires:

modifies: hits
effects: decrements hits by one

*/
if(hits > 0)

hits--;
}

public void rnakelnterestedf l]
/* requires:

modifies: interested
effects: sets interested to true

*/
interested = true;

}

public String toStringO{
/* requires:

modifies:
effects: returns a string representation of this

*/
String str = new String("Descriptor: \ t" +name+ "\n");
str+="hits:\t\t" +hits+"\n";

Printed: February 5, 1999

Descriptor .java

str+= "interested: \ t" +interested + "\n";
return str;

}

}

Page 4

Printed: February 5, 1999

FinalApplet.java

import java.net.»;
import java.io.»;
import java.applet.»;
import java.awt.Color;

public class FinalApplet extends Applet {
/* Overview: The starting point for everything. Initialized the GUI and the Tange

engine

*/
private Tangent engine;
private Navigator navigator;

public void initO{
/* requires:

modifies: engine, navigator
effects: creates a new Tangent and a new Navigator

*/

/* requires: navigator is not null
modifies:
effects: displays the navigator's GUI to the user

*/
/ / start up Navigator GUI
navigator .showt};

}

}

Page 5

/ / intialize tangent
setBackground(Color. black);
engine = new Tangent(l);
try{

URL uri = new URL(''http://deepc.mit.edu/Peter / AUP /initFiles/init2");
/ /URL url = new URL(http://deepc.mit.edu/Peter/AUP/initFiles/tange't . init);
InputStream is = url.openfitreamt};
System.out. println ("stream opened");
InitTangent creator = new InitTangent(is, engine);
creator.initf);
System. out. println ("tangent intialized");

}
catch(MalformedURLException e){

System.out. println("malformed uri: "+e.getMessageO);
}
catch(1OException e){

System.out. println("10: "+e.getMessageO);
}

/ / create navigator
navigator = new Navigator(engine, this);

}

public void startO{

Printed: February 5, 1999

IDaageFetcherJava

import java.applet.»;
import java.awt.»;
import java.util.»;
import java.net.»;

public class ImageFetcher extends Thread {
/* Overview: A class that used to fetch images over the web. Contains methods

for an image's loaded status

*/

/ /private Applet dummyApplet;
private Material m;
private MediaTracker mt;
private Image(J images;
private boolean started = false;
private int init;
private Toolkit tk;

public ImageFetcher(Material m, Frame parent){
tk = parent.get'Ioolkitf);
this.m = m;
Vector imageNames = m.getSurfPictsO;
init = imageNames.sizef);
images = new Image[init);
mt = new MediaTracker(parent);

for(int i=O; i<init; i++){
try{

/ / start fetching images
images[i) = tk.getImage(new URL((String) imageNames.elementAt(i)));

}
catch(MalformedURLException e){

System. out. println("malformed URL: "+e.getMessageO);
}
mt.addImage(images[i], i);

}
}

public void runO{
/* requires:

modifies: mt
effects: loops until all images are loaded or until one image fails to

Page 6
be loaded

*/
try{

for(int i=O; i<init; i++)
/ / wait for the images to be completely loaded
mt.waitForID(i);

}
catch(InterruptedException e) {

System.out. println("image fetch interrupted");
}

}

public synchronized boolean isLoaded(int id){
/* requires:

modifies:
effects: returns true if image located at id in mt is completely loaded

*/
if(id <init)

return mt.checkID(id);
else

return false;
}

public synchronized Image getImage(int id){
/* requires: 0:::;id < images. size

modifies:
effects: returns a pointer to the image images[id)

*/
return images[id);

}

public Material getMaterialO{
/* requires:

modifies:
effects: returns m

*/
return m;

}

public int numImgsO{
/* requires:

modifies:
effects: the number of images this is responsible for fetching

*/

Printed: February 5, 1999

ImageFetcher .java

return init;
}

}

Page 7

Printed: February 5, 1999

InitTangent.java

import java.net.»:
import java.io.»;
import java.util.«;

public class InitTangent {
/* Overview: this class can instantiate a new Tangent object from a given

input stream that adheres to a specific syntax

<material name> <material url> {
<descriptorl> <descriptor 1 pict url>
<descriptor2> <descriptor2 pict url >

}

*/

private InputStream initStream;
private Tangent initTangent;

public InitTangent(InputStream initStream, Tangent blankTangent) {
this.initStream = initStream;
initTangent = blankTangent;

}

public void initO{
/* requires: initStream and initTangent are not null

modifies:
effects:

*/
Hashtable dTable = new Hashtablef);
StreamTokenizer st = new StreamTokenizer(initStream);
st.wordChars(33, 126);
String name, url, curD, curDP;
Material m;
Descriptor d;
Vector descriptors;
Vector descriptorPicts;

Page 8

long dCounter = 1;

String term = new Stringf "}");

try{
while(st.nextTokenO != st.TT_EOF){

/ / first token is a word - name of material
name = st.sval;
/ /System.out.println(name: -l-name);

st.next'Iokent};
/ /System.out.println(url: -l-st.sval):
/ / next token is the material's url
url = st.sval;

/ / skip '{'
st.next Token () ;

descriptors = new Vectorf):
descriptorPicts = new Vectorf):

st.next'Iokent);

while(!term.equals(st.sval)) {
/ / read in all the material's descriptors and picts
curD = st.sval;
st. next Token0j

curDP = st.sval;
/ /System.out.println(d name: +curD+ id: +dCounter+ url: +curDP);
/ / need to lookup for existance first
if(dTable.containsKey(curD))

d = (Descriptor) d'Iable.getfcurfr);
else{

d = new Descriptor(curD, dCounter);
dTable.put(curD, d);

}
descriptors. add Element (d);
descriptor Picts.addElement(cur DP);
dCounter«=I;
st.next'Iokent);

}

try{

Printed: February 5, 1999

InitTangent.java

m = new Material(name, uri, descriptors, descriptorPicts);
initTangent .addMaterial(m);

}
catch(TangentException e){

System.out.println("Tangent: "+e.getMessageO);
}
catch(MalformedURLException e){

System.out. println("malformed urI: "+e.getMessageO);
}

}
}
catch(IOException e){

System.out.println("IO: "+e.getMessage());
}

}

}

Page 9

Printed: February 5, 1999

Material.java

import java.net.»;
import java.util.«;

public class Material {
/* Overview: This class is used to represent a material in the Tangetn system

a material reflects a URL on the web an has an associated set of
descriptors that describe it. In addition, it has pictures used
to represent it

*/

private String name;
private URL uri;
private Vector descriptors;
private Vector surfPicts;
private long descriptorIDs;

public Material(String name, String URL, Vector descriptors, Vector pictNames)
this.name = new String(name);
this.urI = new URL(URL);
this. descriptors = (Vector) descriptors.clonet);
surfPicts = (Vector) plct.Names.clonef);
Enumeration e = thls.descriptors.elementst);
descriptorIDs = 0;
while (e.hasMoreElementsO) {

Descriptor d = (Descriptor) e.nextElementf};
descriptor IDs+=d.getIDO;

}
}

/ / selectors
public String getNameO{
/* requires:

modifies:
effects: returns a pointer to name

*/
return name;

}

public URL getURLO{
/* requires:

modifies:
effects: returns a copy of url

Page 10

*/
try{

return new URL(url.toString());
}
catch(MalformedURLException e) {

/ / should never happen
System.out. println("Material.get URL caught MalformedURLException: "+e.getM

}
/ / to get around compiler complaints
return null;

}

public Vector getDescriptorsO {
/* requires:

modifies:
effects: returns descriptors

*/
return descriptors;

rojvs Malformed URLException {

public Vector getSurfPictsO{
/* requires:

modifies:
effects: returns surfPicts

*/
return surfPicts;

}

public long getDescriptorIDsO {
/* requires:

modifies:
effects: returns descriptorIDs

*/
return descriptorIDs;

}

/ / modifiers
public void associateDescriptor(Descriptor d){

/* requires: d is not null
modifies: descriptors
effects: adds d to the set of descriptors that describe this
*/

descriptors.addElement (d);

Printed: February 5, 1999

Material.java

}

public String toStringO{
/* requires:

modifies:
effects: returns a string representation of this

*/
String str = new String("Material: "+name+ "\n");
str+= "URL: "+url+ "\n";
str+= "Descriptors: ";

Descriptor d;
Enumeration e = descriptors.elementsl);
while (e.hasMoreElementsO) {

d = (Descriptor) e.nextElementf};
str+=d.getNameO+" ";

}
str+="\n";
return str;

}

}

Page Ii

Printed: February 5, 1999

Navigator .java

import java.awt.«;
import java.applet.«;
import java.net.»;
import java.util.«;

public class Navigator extends Frame {
/* Overview: This class is the GUI for the applet. It is a frame with a 3 by 3

grid of images. Each image cell represents materials in the Tangent system.
The class allows the user to select a material which will cause the material's
URL to be displayed in the web browser. The GUI will then be updated to
reflect the user's choice and past history

*/

private Tangent engine;
private Image offScreenj
private UpdateThread[] updateThreads;
private Hashtable imageFetchers;
private UpdateThread curUT;
private Font myFont, myFont2;
private Applet parent;

/ / overide update to eliminate flicker
public void update(Graphics g){
}

public void cleanup 0{
/ * requires:

modifies: this
effects: cleans up this. Stops update threads and any image fetcher threads

still running
*/

System.out. println("dispose called");
int len = update'I'hreads.length;
for(int i=Oj i<len; i++)

updateThreads[i] .stopl};
Enumeration e = lmagelietchers.elementsf);
while (e.hasMoreElementsO) {

ImageFetcher imgF = (ImageFetcher) e.next.Elementf};
imgf'.stopf);

}
hider);
super.disposef):

}

Page 12

public Navigator(Tangent engine, Applet parent){
super("Tangent Navigator"};
this.parent = parent;
setResizable(false) j
setSize(300, 400);
myFont = new Font("TimesRoman", Font.BOLD, 14);
myFont2 = new Font("TimesRoman", Font.PLAIN, 12)j
setBackground(Color.black);
this.engine = engine;

/ / initialize image fetchers
imageFetchers = new Hashtablet):
Enumeration e = engine.get.Materialst};
System. out. println("materials fetched from engine");
while (e.hasMoreElementsO) {

Material m = (Material) e.nextlslementf);
ImageFetcher imgF = new ImageFetcher(m, this);
imageFetchers. put(m.getN amef), imgF) j
/ / start pre-fetching
imgF .startf);

}

System.out.println("image fetchers spawned") j

/ / initialize update threads
updateThreads = new UpdateThread[9];
Enumeration materials = engine.getlvlaterialst};
Vector curf'icts;
int counter = 0;
for(int y=Oj y<3j y++){

for(int x=Oj x<3j x++){
/ / requires materials has at least 9 elements
Material m = (Material) materials.nextElementf);
ImageFetcher imgF = (ImageFetcher) imageFetchers.get(m.getName());
updateThreads[counter] = new UpdateThread(this, imgF, x*100, ydOO+100, l(

updateThreads[counter] .startf) j
counter++;

}
}
System.out.println("update threads spawned");
curUT = updateThreads[O];
showf);

}

Printed: February 5, 1999

return true;

Navigator .java

public void paint(Graphics gH
/* requires: g is not null

modifies:
effects: paints the Go to URL in white

*/
/ /offScreen = createImage(400, 400);
/ /Graphics g2 = offScreen.getGraphicsO;
g.setColor(Color. white);
g.setFont(myFont);
g.drawString("Go to URL: ",30,80);

}

private void updateChoicesO {
/* requires: engine is not null

modifies: engine, update threads
effects: gets the 3 most active materials, 3 most interested materials, and

3 random materials from engine. Sets these 9 to be displayed by
getting their image fetcher threads and passing them to update
threads.

*/

Vector choices = engine.getMateriaIChoices(3, 3);
int counter = 0;
Material m;
while (counter<3) {

m = engine.get.RandomMaterialf};
if(!choices.contains(m)) {

choices.addElement(m) ;
counter++;

}
}

int r1, r2, r3, r4, r5, r6;
r1 = (int) (Math.randomt) * 8);
r2 = (int) (Math.randomt) * 8);
r3 = (int) (Math.randomt) * 8);
r4 = (int) (Math.randomO * 8);
r5 = (int) (Math.randomO * 8);
r6 = (int) (Math.randomO * 8);
/ / randomize each material's location in the GUI
Material m2;

Page 13

m = (Material) choices.elementAt(r1);
m2 = (Material) choices.elementAt(r2);
choices.setElementAt(m, r2);
choices.setElementAt(m2, rl);
m = (Material) choices.elementAt(r3);
m2 = (Material) choices.elementAt(r4);
choices.setElementAt(m, r4);
choices.setElementAt(m2, r3);
m = (Material) choices.elementAt(r5);
m2 = (Material) choices.elementAt(r6);
choices.setElementAt(m, r6);
choices.setElementAt(m2, r5);

for(int i =0; i<9; i++ H
m = (Material) choices.elementAt(i);
ImageFetcher imgF = (ImageFetcher) imageFetchers.get(m.getName());
updateThreads[i] .setFetcher(imgF);

}
System.out. println("choices updated");

}

/ / java 1.0 even model for maximum compatibility
public boolean mouseDown(Event e, int x, int yH
/* requires: e is not null

modifies: engine, updateThreads
effects: triggers the material, if any, located at (x, y), then redraws

a black square where the material images used to be. Shows
the selected material's URL in a HTML frame

*/

if(y> 100H
UpdateThread ut = getUTAt(x, y);
Material m = ut.getFetcherO.getMateriaIO;
engine. trigger Material(m.getN ameO);
updateflhoicest);
Graphics g = getGraphicsO;
g.fillRect(O, 100, 300, 300);
AppletContext ac = parent.getAppletContextO;
ac.showDocument(m.getURLO, "main");

}

}

Printed: February 5, 1999

Navigator .java

public synchronized boolean mouseMove(Event e, int x, int y){
/ * requires: e is not null

modifies: updateThreads
effects: displays the URL of the material the mouse is over, sets that

material to flicker in the display
*/

if(y>100){
UpdateThread ut = getUTAt(x,y);
if(ut= =cur UT)

return true;
/ / correct the speed of the square the cursor used to be in
curUT .setDelay (1000);
/ / curUT .deactivatef):
/ /curUT.explicitDrawO;
/ / speed up the display of the square the cursor is in
System.out. print In("mat name: "+ut.getFetcherO .getMaterialO .getNamefj);
curUT = uti
curUT = getUTAt(x, y);
curUT .setDelay (100);
Graphics g = gerGraphicsf};
g.setColor(Color.black);
g.fillRect(lOO, 0, 200, 100);
g.setFont (myFont2);
g.setColor(Color .yellow);
g.drawString(curUT.getFetcherO .getMaterialO .getURLO.toExternalf'ormf}, 11

}
return true;

}

public boolean handleEvent(Event e){
System.out. println("handle Event");

switch(e.id){
case Event.MOUSE..DOWN:

return mouseDown(e, e.x, e.y);
case Event.MOUSE-MOVE:

return mouseMove(e, e.x, e.y);
case Event.WINDOW..DESTROY:

System.out. println ("window destroy");
cleanup(};
break;

}
return true;

}

Page 14

private UpdateThread getUTAt(int x, int y){
/* requires: x>O, y>O

modifies:
effects: returns the updateThread corresponding to the image at (x.y). If

no such thread exists, returns the thread at (0,0)
*/

int xDiv = x / 100;
int yDiv = (y-100) / 100;

switch (yDiv) {
case 0:

switch(xDiv) {
case 0:

return updateThreads[O];
case 1:

return updateThreads[l];
case 2:

return updateThreads[2];
}

case 1:
switch(xDiv) {
case 0:

return updateThreads[3];
,80); case 1:

return updateThreads[4];
case 2:

return updateThreads[5];
}

case 2:
switch(xDiv) {
case 0:

return updateThreads[6];
case 1:

return updateThreads[7];
case 2:

return updateThreads[8];
}

default:
return updateThreads[O];

}
}

Printed: February 5, 1999

Q)
Q)
Q)
1""'l

10

»

'10

~

1""'l

:::J

Q)

""

b.O

.0

ell

~

Il.

.t;
Q)

=.""
""Il.

Tangent.java

import java.util.«;

public class Tangent {
/* Overview: This class can take a manage a set of Materials that each have

an associated set of descriptors. As a materials are selected,
the system can be queried as to which materials it thinks are
most relevant to the user's interests based on past history.

*/

private Hashtable descriptors;
private Hashtable materials;
private Vector activeDescriptorSet;
private Vector interestDescriptorSet;
/ / determines how many hits a descriptor requires before it is set to interest
private int interest Threshold;

Page 16

key = d.getNamef);
/ / only add new descriptors
if(descriptors.get(key) != null)

descriptors.put(key, d);
}

}
}

public boolean trigger Material(String materialN arne) {
/* requires:

modifies:
effects: returns false if the material named materialName does not exist
*/

Material m = (Material) materials.get(materiaIName);
if(m == null)

/ / material does not exist
return false;

public Tangent(int interestThresh){
descriptors = new Hashtable(20);
materials = new Hashtable(30);
activeDescriptorSet = new Vector(3);
interestDescriptorSet = new Vector(lO);
interest Threshold = interestThresh;

}

/ / run calculations to adjust Tangent state
activeDescriptorSet = m.get.Oescriptorsf);
Descriptor d;
Enumeration e;
/ / fade each descriptor
e = descriptors.elementsf};
while (e.hasMoreElementsO) {

d = (Descriptor) e.next.Elementf);
d.fadef);

}
public void addMaterial(Material newMaterial) throws TangentException { / / hit each active descriptor
/* requires: descriptors, materials e = activeDescriptorSet.elementsO;

modifies: while(e.hasMoreElementsO) {
effects: adds newMaterial to the system. d = (Descriptor) e.next.Elementl};
*/ d.hitt};

String key = newMaterial.getNameO; / / hit a second time to compensate for the previous fade (optimization)
if(materials.get(key) != null) d.hitt};

throw new TangentException("Tangent.addMaterial: "+newMaterial.getName)+" aJteadsimoof'<}fthe descriptors are a person's interest
else { if(d.numHitsO 2:interestThreshold){

/ / add the material if(!d.islnterested()) {
materials. put (key, newMaterial); d.makelnterested 0;
Enumeration e = newMaterial.getDescriptorsO .elementst); if(!interestDescriptorSet.contains(d))
/ / add the descriptors that describe it interestDescriptorSet.addElement(d);
while (e.hasMoreElementsO) { }

Descriptor d = (Descriptor) e.next.Elementj}; }

Printed: February 5, 1999

Tangent.java

}

/ / Material triggered
return true;

}

public Material getRandomMaterialO{
/* requires: materials is not null

modifies:
effects: returns an random material stored in this system

*/
int total = materials.sizet);
double mat = Math.randomt) * (double) total;
int index = (int) mat;

System.out.println("index: "+index);

Enumeration e = rnaterials.elementst};
Material m;

m = (Material) e.nexrElementf}; / / to get around jdk compile warning/error
for(int i=l; i< index; i++)

m = (Material) e.nextlslementf);

returnm;
}

public void treeTraverse(BTree node, int numNodes, Vector nodes){
/* requires: node is not null, nodes is not null, numNodes ~O

modifies: node, numNodes, nodes
effects: retrieves numNodes amount of the greatest elements in node (tree)
*/

if(numNodes == 0)
return;

Material m;
if(node.getLeftO == null IInode.getl.eftfj.was'Iraversedfjj]

if(node.getRightO == null IInode.getldghtfj.was'Iraversedtjj]
/ / either at a leaf node or a node that has already been added to nodes
if(!node. was'Iraversedtj) {

m = node.get.Materiall};
/ / only add the material if it's not already in nodes
node.make'Iraversedj};
if(!nodes.contains(m)) {

nodes.addElement(m);

Page 17

treeTraverse(node.getParentO, numNodes-l, nodes);
}else

/ / no right branch or right already added in nodes
treeTraverse(node.getParentO, numNodes, nodes);

}else
treeTraverse(node.getParentO, numNodes, nodes);

}else{
/ / no left branch or left already added in nodes right side can be searched

if(node.getltightf]. was'Iraversedjj)
tree'Iraversetnode.getl-arentt), numNodes, nodes);

else{
m = node.getlvlaterialt};
node.make'Iraversedl);
if(!nodes.contains(m)) {

nodes.addElement(m);
treeTraverse(node.getRightO, numN odes-I, nodes);

}else
treeTraverse(node.getRightO, numNodes, nodes);

}
}

}
else

treeTraverse(node.getLeftO, numNodes, nodes);
}

public Vector getMaterialChoices(int numActive, int numlnterests){
/* requires: materials contains at least one element

modifies:
effects: returns numActive amount of materials that are most active (based

on current active material's descriptors) and numlnterest
amount of materials that are most active (based on past history)

*/

/ / calculate the long representation of the user's interests
Vector choices = new Vector(numActive+numlnterests);
long activeDescriptorVal=O;
long interestDescriptorVal=O;
Descriptor d;

Enumeration e = activeDescriptorSet.elementsO;
while (e.hasMoreElementsO) {

d = (Descriptor) e.next.Elementf};
activeDescriptor Val+=d.getIDO;

Printed: February 5, 1999

Tangent.java Page 18

}

e = interestDescriptorSet.elementsO;
while (e.hasMoreElementsO) {

d = (Descriptor) e.nextlslementf):
interest Descriptor Val+ =d.getID 0;

}

/ / fill choices with materials corresponding to active descriptor and
/ / interest descriptor sets

long intersect = interests & descriptorSet;
int hits = 0;
int bit = 1;
while(bit < 65){

if((intersect & 1)==1)
hits++;

intersect»=l;
bit++;

}
return hits;

}

*/

/ / put each material in a binary tree according to the descriptor
/ / intersection

activeTree.addNode(m, newActiveVal);
interest Tree .addN ode (m, newInterest Val);

}
System.out.println("trees created");

while (e.hasMoreElementsO) {
m = (Material) e.nextlslementf);
int newActiveVal = intersection (active Descriptor Val, m.getDescriptorIDs());
int newInterest Val = intersection(interestDescriptor Val, m.getDescriptorIDsO);

public String toStringO {
/* requires:

e = materials.elementsf): j modifies:
Material m; effects: returns a string representation of this
m = (Material) e.next.Elementj}; */
BTree activeTree = new BTree(m, intersection(activeDescriptorVal, m.getDescri torIBt(Yr}grmtl):;:new Stringf):
BTree interest Tree = new BTree(m, intersection(interestDescriptorVal, m.getDes riptiIihIiiU(~tIiaH~ = descriptors.elementsf};

str+="<--- Descriptors --->\n\n";
Descriptor d;
while (e.hasMoreElementsO) {

d = (Descriptor) e.nextlslementt):
str+=d.getNameO+ "\n";

}
str+="\n<--- Materials --->\n";
Material m;
e = materials.elementsj};
while (e.hasMoreElementsO) {

m = (Material) e.next.Elementt};
str+=m. toStringO+ "\n";

}
str+="\n<--- Active Descriptor Set --->\n";
e = activeDescriptorSet.elementsO;
while (e.hasMoreElementsO) {

d = (Descriptor) e.nextlslementf):
str+=d.getNameO+ "\n";

}
str+="\n<--- Interest Descriptor Set --->\n";
e = interestDescriptorSet.elements 0;
while (e.hasMoreElementsO) {

d = (Descriptor) e.nextlslementj};
str+=d.getNameO+ "\n";

private int intersection(long interests, long descriptor Set){
/* requires: interests and descriptorSet >0

modifies:
effects: returns a long representation of an intersection between the

sets represented by interests and descriptor Set

/ / traverse the tree to retrieve the most relavent nodes
treeTraverse(interestTree, numInterests, choices);
treeTraverse(activeTree, numActive, choices);
System.out. println("choices len: "+choices.sizeO);
return choices;

}

Printed: February 5, 1999

Tangent.java

}
str+="\n";
return str;

}

public Enumeration getMaterialsO{
/* requires:

modifies:
effects: returns an enumeration of all materials stored in this

*/
return materials.elementsl};

}
}

Page 19

Printed: February 5, 1999

TangentException.java

public class TangentException extends Exception {

public TangentExceptionO {
superf);

}

public TangentException(String msg){
super(msg);

}
}

Page 20

Printed: February 5, 1999

TestApplet.java
import java.util.«;
import java.net.«;

public class TestApplet {

public static void main(String args[]){
Tangent engine = new Tangent(l);
System.out. println("tangent instantiated");

Material ml, m2, m3, m4, m5, m6, m7, mS, mg;

Descriptor dl, d2, d3;

dl = new Descriptor("dl", 1);
d2 = new Descriptor("d2", 2);
d3 = new Descriptor("d3", 4);

Vector dVec1 = new Vectorf);
Vector dVec2 = new Vectort);

dVecl.addElement(dl);
dVec1.addElement(d2);
dVec1.addElement(d3);

dVec2.addElement(d2);
dVec2.addElement(d3);

Vector pVec1 = new Vectorf);
Vector pVec2 = new Vectorf);

String eye = new String(''http://deepc.mit.edu/eye.gif'');
String tubby = new String(''http://deepc.mit.edu/tubby.jpg'');
String elway = new String(''http://deepc.mit.edu/elway.jpg'');

pVecl.addElement(eye);
pVec1.addElement(tubby);
pVec1.addElement(elway);

pVec2.addElement(tubby);
pVec2.addElement(elway);
try]

ml = new Material("ml", ''http://deepc.mit.edu'' , dVec1, pVec1);
m2 = new Material("m2", ''http://deepc.mit.edu'' , dVec2, pVec2);

}

Page 21

m3 = new Material("m3", ''http://deepc.mit.edu'' , dVec1, pVec1);
m4 = new Material("m4", ''http://deepc.mit.edu'' , dVec1, pVec1);
m5 = new Material("m5", ''http://deepc.mit.edu'' , dVec2, pVec2);
m6 = new Material("m6", ''http://deepc.mit.edu'' , dVec1, p'Vecl);
m7 = new Material("m7", ''http://deepc.mit.edu'' , dVec1, pVec1);
mS = new Material("mS", ''http://deepc.mit.edu'' , dVec1, p'Vecl);
m9 = new Material("m9", ''http://deepc.mit.edu'' , dVec2, pVec2);

engine.addMaterial(ml) ;
engine.addMaterial(m2);
engine.addMaterial (m3);
engine .addMaterial (m4);
engine.addMaterial (m5);
engine.addMaterial (m6);
engine.addMaterial(m 7);
engine.addMaterial (mS);
engine.addMaterial(m9) ;
System.out.println("materials added");

}
catch(TangentException e) {

System.out. println("tangent exception: "+e.getMessageO);
}

catch(MalformedURLException e){
System.out. println("malformed urI: "+e.getMessageO);

}

Navigator n = new Navigator(engine);
System .out. println("navigator instantiated");

}

Printed: February 5, 1999

TestApplet2.java

import java.util.«;
import java.net.»;
import java.io.»;

public class TestApplet2 {

public static void main(String args[]){
try{

Tangent engine = new Tangent(l);
URL uri = new URL(''http://deepc.mit.edu/Peter/ AUP /initFiles/init2");
InputStream is = url.open'Streamt);
System.out. println("stream opened");
InitTangent creator = new InitTangent(is, engine);
creator.init 0;
System.out. println("tangent intialized");
Navigator n = new Navigator(engine);
System.out. println("navigator instantiated");

}

catch(MalformedURLException e){
System.out.println("malformed uri: "+e.getMessageO);

}
catch(IOException e){

System.out.println("io: "+e.getMessageO);
}

}

}

Page 22

Printed: February 5, 1999

TestTangent.java

import java.net.»;
import java.io.«;

public class TestTangent {

private static Tangent engine;

public static void main(String args[]){

j j interest threshold
j j some of these should be moved to the navigator
engine = new Tangent(l);

try{
URL url = new URL("http:j j deepc.mit.edujPeter j AUP jinitFilesjtangent.init'l);
1nputStream is = url.openfitreamt};
System.out. print In("stream opened");
1nitTangent creator = new 1nitTangent(is, engine);
creator.initt}; I }
System.out.println("tangent intialized");

}
catch(MalformedURLException e){

System.out. println("malformed url: "+e.getMessageO);
}
catch(IOException e){

System.out.println("10: "+e.getMessageO);
}

j jSystem.out. print In(engine. toStringO);
j jsleep(3000);
test'Iriggerf};
j jSystem.out.println(engine. toStringO);

testGetMaterial Choices0;
testllandomf);

}

public static void testRandom() {
for(int i=O; i<40; i++)

System.out.println("rand mat: "+engine.getRandomMateriaIO .getNamefj};

}

public static void testGetMaterialChoicesO{
engine.trigger Material ("m1");
engine.getMateriaIChoices(1,2);

}

public static void testTriggerO{
engine.trigger Material ("m1");
engine.trigger Material ("m2");
engine.trigger Material ("m4");
j jengine.triggerMaterial(m3);

}

public static void sleep(long t){
try{Thread.sleep(t); }
catch(1nterruptedException e) {}

}

Page 23

Printed: February 5, 1999

U pdateThread.java

import java.util.«;
import java.awt.«;
import java.lang.Thread;
import java.applet.«;

public class UpdateThread extends Thread {
/* Overview: this thread is responsible for updating the image in a cell on

the GUI. It has a helper image fetcher threads that takes care
of the images it is responsible for painting on the GUI

*/

private ImageFetcher curl-etcher;
private int x, y, height, width;
private Navigator gui;
private Graphics g;
private long delay;
private int len = 0;

public UpdateThread(Navigator parent, ImageFetcher fetcher, int x, int y, int heig
curFetcher = fetcher;
gui = parent;
this.x = Xj

this.y = Yj

this.height = height;
this. width = width;
delay = 1000;

}

public void runO{
/* requires: curFetcher, gui are not null. x.y.height.width.delay c-O

modifies:
effects: squentially paints all images that curFetcher has completely loaded

waits delay amount of time before painting the next image

*/
len = curfetcher.numlmgsf);
Image img;

while (true){

for(int i = 0; i<len; i++){
synchronized(curFetcher){

if(curFetcher .isLoaded(i)){

Page 24

img = curFetcher.getImage(i);
draw(img);

}
}
try]

sleep(delay) j

}
catch(InterruptedException e){

System.out. println("interrupted: "+e.getMessageO) j

}
}

}
}

public void draw(Image img) {
/* requires: img is not null

modifies:
effects: paints img to the GUI in this' cell

*/
t, irg,owigbhgftGraphicsO;

g.drawImage(img, x, y, width, height, gui);
g.disposei);

}

public synchronized void setDelay(long newDelay){
/* requires:

modifies: delay
effects: sets the wait time in between image updates to newDelay mill. sees.
*/

delay = newDelay;
}

public synchronized void setFeteher(ImageFeteher newFeteher){
/* requires:

modifies: eurFetcher
effects: sets this' image fetcher to newFetcher, thus changing the images

to be painted
*/

eurFeteher = newFeteher;
len = newl'etcher.numlmgst);

}

public synchronized ImageFetcher getFetcherO {
/* requires:

Printed: February 5, 1999

U pdateThread.java
modifies:
effects: returns this' image fetcher
*/

return curFetcher;
}

}

/ *public void explicitDrawO {
Image img = curFetcher.getImage(O);
draw(img);

}*/

Page 25

Printed: February 5, 1999

