A Digital-Video Storyboarding and

Sequence-Visualization Computer Program
by

Eugene J. Rhough

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Electrical Science and Engineering
at the Massachusetts Institute of Technology
May 1993

Copyright Eugene J. Rhough 1993. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part,
and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science
May 17, 1993
Certified by
Associate Professor Glorianna Davenport
Thesis Supervisor
Accepted by

Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses

A Digital-Video Storyboarding and

Sequence-Visualization Computer Program

by

Eugene J. Rhough

Submitted to the

Department of Electrical Engineering and Computer Science
May 17,1993

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering

ABSTRACT

A computer program has been implemented that allows a user to prototype and
experiment with different digital-video movie sequences. The computer
program, written on an Apple Macintosh computer, explores new interface
mechanics that better exploit the non-linear, low-latency characteristics of digital
movie files. The program allows a user to organize, annotate, and sequence
movie clips. Final sequences can be saved as pointer-based files, allowing further
fine-detail editing with other programs.

Thesis Supervisor: Glorianna Davenport
Title: Associate Professor of Media Arts and Technology, MIT Media Laboratory

Acknowledgements

I would like to thank Professor Glorianna Davenport for her
tremendous help, support, and encouragement these past four years.
This thesis could not have been completed without her insight and
guidance. I would also like to thank Hans Peter Brendmo for
encouraging me to think critically of digital video editing.

Table of Contents

Overview

Background
Film

Analog Video

Digital Video

Thesis Introduction

Scenarios

Applications Survey

Adobe Premiere

DiVA VideoShop

Storyboarding

Functional Specification

The Visual Bins

The Storyboard Sequencer

Integrating the Storyboard Stage
Summary

Technical Specification

The Application Shell

The Menus Library

The Storyboarder Library

Further Ideas

Conclusion

Further Reading

Appendix A: Source Code Samples

8

N WwW N

& & X

27

Overview

This research thesis concerns the new challenges and possibilities that digital video
sequencing provides. It consists of eight sections: “Background,” in which we place
recent advances in digital video technology in context by briefly reviewing the his-
tory of film and video; “Introduction,” which outlines some general thoughts on
digital video and discusses the motivations behind this thesis project; “Scenarios,”
which fleshes out some of the motivations of the previous section by describing
detailed, specific situations in which new ideas, like those of this research thesis, may
be helpful; “Applications Survey,” which looks at current, commercial responses to
digital video; “Functional Specification,” which discusses the functional, mechanical,
and interface features of a computer program that has been implemented to specifi-
cally address some of the concerns raised in “Scenarios;” “Technical Specification,”
which describes the interesting engineering and implementation issues encountered
while coding the computer program; “Further Ideas,” which e¢xplores possible re-
sponses to some of our motivating problems that were not implemented in our com-
puter program; and “Conclusions,” which reviews the lessons learnt from this thesis

and attempts to generalize ideas that may be of use in future work.

Background

This section provides a very brief history of film and video, emphasizing the close
relationship between the technology and expression of film and video. We will focus
specifically on the claim that the expressive capabilities, creative environment, and
aesthetics of the moving-image art have been, and continue to be, indivisibly inter-
twined with the functional mechanics and technical requirements of moving-image
capture and reproduction. This section provides a context with which to evaluate the
proposed motivations for this thesis, which we discuss in the next section. We divide

the releva: = history of film and video into three chronological categories: film, analog

2

video, and digital video.

Film

The story of moving-image capture and reproduction begins with film, an invention
of the mid-nineteenth century. Static film cameras used chemical technology to
capture and store the light and features of an image, imprinting high-resolution,
sharply-defined images onto special film stock. A number of inventors, perhaps
spurred on by the suggestive experiments of Edward Muybridge, soon began toying
with the notion of “animated” film, or moving-pictures. Moving-pictures, or “mov-
ies,” exploited the limited nature of human vision: a succession of static images, if
presented rapidly enough, could present the illusion of smooth and natural anima-
tion. By the turn of the century, motion-picture film cameras, devices which concep-
tually remain essentially unchanged, were being used to modest success, and the

foundation for the film art was firmly in place.

Basic Technical Features of Film

The basic mechanics of motion-picture film capture and reproduction are simple. A
motorized camera, fed a long strip of film, is used to capture a long succession of
images in time. The earliest motion-picture film cameras could capture several min-
utes of animated footage. Cameras typically capture 24 frames-per-second, an anima-
tion rate that can comfortably trick the human eye into perceiving real motion.
Sound cameras also record sound information, which is usually placed next to or on
top of the film image on the film strip. Editing footage requires physically cutting
and re-ordering segments of film in a film strip. Film footage is displayed through a
projector, which runs through a film strip while throwing light through each frame,
usually maintaining a constant time rate that matches the same time rate used to

capture with.

The Relationship between Technology and Movies

Over the years, some of the most distinctive, salient characteristics of film pieces have
remained closely tied to the technology of film. Physical constraints always limit
what images a movie-creator may capture, and the functional mechanics of editing
similarly constrain how a movie-creator may present a piece: so while a person is free
to mentally visualize anything his or her imagination can create, a person is con-
strained to filming and presenting only what is technically possible. We might say
that these technical consiraints partly dictate what images are captured and how
stories are told, and that they help direct the maturation of film style and aesthetics.

Technology plays an important role in how movies are conceived and realized.

We can illustrate these thoughts by reviewing some examples of how changes in film

technology directly, and sometimes dramatically, altered the film experience:

* Early motion-picture pieces by the Lumiére brothers were short tableaus, quick
glimpses of life and people. Limited in length by the size of the film reels, and
lacking sound, these shorts resembled postcards or paintings. Their stories were
events or scenes: women leaving a factory at the end of the day; a wall falling;
children swimming; people play cards. By 1920, films had become considerably
more expressive: they used multiple reels to provide more playing time, offering
more complex narratives and sophisticated stories. Films became a vehicle for
mass story-telling. Films tended to be shot in the open-air, a requirement of
insensitive film stock. Lacking sound, films also developed a visual and commu-
nicative vocabulary uniquely suited to the silent film, inspiring dramatic visual
styles like Expressionism, Dadaism, and Surrealism.

* The introduction of sound a decade later would significantly change the nature of
movies. Sound would change established film dramatics, forcing a new look at

critical issues like storytelling, continuity, and aesthetics. The sensitivity and

bulkiness of sound equipment would initially destroy the emerging fluidity and
freedom of camera placement and motion.

* Improvements in on-location synchronized sound and film recording would allow
film pieces to move on from cannel'l, controlled shoots to more unpredictable,

observational or news-reporting shoots. ’

There are also some technological constraints and influences on the general environ-
ment of film-making whose impact cannot be directly measured. Consider the “no-
feedback” nature of film shooting and the high costs of film editing. Cameramen
cannot immediately see what they are filming, since there is no direct feedback, and
footage must be sent for processing before it may be reviewed. Cameramen can only
attempt to predict how lighting, film exposure, and other factors will affect the final
image. Film editors are “penalized” in time and effort for attempting to experiment
with multiple cuts of a sequence, since source footage is physically cut up when
sequenced, and each cut requires new source footage and physical construction work.
Editing requires manual handling, which results in footage wear-and-tear, and it may

be difficult to “back up” or undo bad decisions.

Analog Video

If we accept that technology has played a critical role in the evolution of movies, then
we raise the interesting possibility of influencing movies by changing the technology.
The introduction of analog video, an electronics-based system of movie capture,
transmission, and display, did just that: analog video changed the nature of the

movies by offering a new, unique set of capabilities and limitations.

Analog video differs from film in a number of ways, and has advantages that allow it
to operate as the low-cost workhorse of movie production. In many ways, it offers a

more flexible, and less expensive, creative environment:

* First of all, analog video permits the live capture, broadcast, and display of syn-
chronized audio/visual images: we can now instantaneously see images, as they
occur, from thousands of miles away.

¢ Analog video is relatively cheap, and has “democratized” movies. For little
money, amateurs and enthusiasts can use VCR'’s to copy and.play their own mov-
ies from their own library, as well as use low-cost camcorders to record their own
stories and family activities. Analog video has allowed non-professionals to
express themselves with an art form that had been previously inaccessible.

* Analog video provides direct-feedback for camera operators.

* Analog video has simplified the postproduction process, while opening up new,

low-cost possibilities like easily-accessible special effects.

Basic Technical Features of Analog Video

Analog video is superficially similar to film, except that it involves electronics. A
video camera converts an image into a series of electrical signals. If the camera is tied
directly to a television, the television will “read” the signals to drive an electron gun,
which will produce an image on a monitor screen. If a video camera is recording to
video tape, the camera translates the electrical signals to magnetic information on the
video tape. A video cassette player would reverse the process, converting the mag-
netic information on a tape into an electrical signal, which is then sent to a television

or monitor for display as an image.

A simple editing situation would involve three video cassette recorders (VCR’s). We
would have two decks with source footage, “Deck A” and “Deck B,” and we would
have a record deck. An edited sequence would be produced by copying footage from
the source decks A and B to the record deck. There is no physical, manual cutting-
and-taping, as there is with film editing. We can now generate multiple sequence

cuts while retaining our original source footage, we can pre-specify and automate the

6

assembly of sequences, and we can re-use our video stock. We also have an easy way
of introducing effects like wipes and fades, since special-effects generators are easy to

add within the editing process.

Analog video has some disadvantages. It has a lower resolution than film, resulting
in images that are less sharp. It has a smaller information bandt'vidth, which means
that video has a more difficult time dealing with extreme light gradients or ranges.
New analog video technologies like High Definition video have begun to address

these deficiences.

Summary

Analog video’s main contributions have been: live broadcast, a sharp decrease in
operating costs relative to film, a simplification of editing and production, and the
introduction of sophisticated, low-cost special effects. It has increased participation
in motion-picture production, and because of its low expense, has allowed a greater

flexibility for experimentation and variety.

Digital Video

Digital video represents a quantum leap over film and analog video technologies, and
holds the potential to significantly change how we perceive and work with motion-
pictures. We'll first take a look at what digital video is, then examine what possibili-

ties digital video offers.

Basic Technical Features of Digital Video

Digital video, like analog video, is an electronics-based technology, and represents
images as electrical signals. There is a basic difference, though: analog video repre-
sents images as continuous voltage curves, while digital video translates an image
into a series of zeros and ones. This discrete characterization of image information

allows us to use computers to manipulate and display digital video. The use of

7

computers, as we will later see, offers powerful possibilities.

Digital video movies can be acquired by using regular analog video cameras. An
analog video camera would translate a movie into a series of continuous voltage
signals. These signals would be sent to an Analog-to-Digital Converter (ADC), a
microchip which translates this information into a series of one’s and zero’s. These
one’s and zero’s would be sent to a computer, which could then store the information
on magnetic media (disk or tape drives) or in electronic memory (computer RAM).
To display a movie, a user would run a computer program which would be able to
read the digital video information and translate it into a movie on the computer

screen.

Promises of Digital Video

The integral use of computers in digital video reflects an important change in the
technology of moving-image capture and reproduction: the replacement of a number
of specialized, single-purpose film/video editing/display devices with a single
powerful, flexible, and programmable machine — a computer. This introduction of
flexible computational power offers an opportunity to radically change the capabili-
ties of movies, and allows us to critically re-examine the experience of movie-watch-

ing and the mechanics of movie-creation.

Changing the Movie Experience

With analog video, as we noted, we deal with a number of specialized, “dumb” ma-
chines, and the machines we deal with depends on who we are. A movie-creator has
a video camera, editing decks, editing computers, special effects generators, an edit-
ing controller, expensive monitors, and high-end video-cassettes. A movie viewer
might just have a black-and-white TV. With digital video, there is no such distinc-

tion: both a movie-creator and a movie-viewer just need a single, general-purpose

machine — the computer. The consequence is that both movie authors and viewers
have access to the same editing and movie-creation capability. For now, at least, the
same digital-video tools a creator uses to create a movie are also available to a viewer
— which allows us to begin to blur the line between movie creation and consumption.
A viewer has the potential power to alter movies, to participate in the creative pro-

cess.

Computers also offer a way of imbedding “intelligence” into movies. Movies could
be given information that allow them to respond to viewer cues: a viewer could thus
interact with a movie, influencing and codirecting his or her movie experience. If
movie-creators create rich, multi-threaded stories specifically for digital video, we
might envision digital stories where the viewer actively cooperates to create a unique

movie experience.

Changing the Mechanics of Movie-Creation

Digital video and computers also offer the opportunity to rethink how we create
traditional, linear movies. The introduction of analog video necessitated a different
editing paradigm to better exploit and utilize the new technology: it seems reasonable
to begin exploring how we might better exploit digital video to enhance the creative
process. Digital video offers numerous powerful capabilities, including: instanta-
neous access to any location in any clip; video duplication without any generational
quality loss; discrete-time signal processing for filters; the spatial arrangement of
video streams; and relational indexing for hypermedia cross-referencing. These new
capabilities suggest a number of interesting questions. How can we bring these new
features to bear? Does the traditional analog editing process adequately present or
help exploit these capabilities? How can these features contribute to a new editing

philosophy and process that better encourages creativity and productivity?

Thesis In

This thesis explores some of the interface and procedural issues digital video intro-
duces. As we noted in the previous section, digital video motivates some interesting
and significant questions on the nature of our traditional editing processes; is there a
way that better exploits the power of digital video, a process that better encourages

creativity and productivity?

This thesis seeks to begin to answer this question. We note that while the “movie-
creation process” includes numerous stages — pre-production (planning), production
(shooting), and post-production (editing) — we will focus specifically on digital

video in the post-production process.

A couple of software companies — Adobe and DiVA — have already begun to seri-
ously explore the role of digital video in post-production. Hans Peter Brondmo, the
Director of Engineering at DiVA, divides the digital-video postproduction process
into four stages: the acquisition of video, the management of video, the editing of
video, and the presentation of video. The ideal movie-creation process would pro-

vide a powerful, suggestive, elegant, and integrated solution for all four stages.

There is another important stage, however, that has received little to no attention: the
“storyboarding,” or story-visualization, stage. The four-stage editing model clearly
addresses the mechanics of movie creation: one first digitizes a pool of video, arranges
them for reference, edits them into a sequence, and then shows the movie. The
movie-creator though is constantly grappling with a number of creative issues as
well: the movie-creator must make hard decisions on what to show, when to show it,
and for how long — and he or she doesn’t necessarily know exactly what best
“works.” The storyboarding stage, stage “two-and-a-half,” is an opportunity for the

movie-creator to experiment with the gross ordering of a sequence; the movie-creator

10

can juxtapose different shot selections, different sequence orderings, and different
soundtracks. The storyboarding stage encourages creative experimentation and
visualization by allowing a movie-creator to make non-binding decisions that illus-

trate different sequence possibilities.

We use the term “storyboarding” in a very particular way. Storyboarding tradition-
ally refers to an initial, pre-production process of story visualization. This thesis
refers to “storyboarding” as a post-production process: really a sort of story “re-
visualization” process. After footage has been shot, collected, and digitized, and
before the editor begins to put together the shots into sequence constructions, we
define an intermediate period in which the editor attempts to determine how to best
use his or her shot pool to reconstruct (or elaborate) earlier visions or ideas. This new

storyboarding stage allows an editor to visualize sequences with actual footage.

This thesis attempts to explore how one might implement a storyboarding stage: what
functionality to offer, what interface to use, and how one might integrate the stage

into the larger editing process.

Scenarios

This section looks closely at two “typical” editing scenarios — two situations that
illustrate some of the functional demands a movie-creation process would need to
address. We examine the construction of a montage-style commercial advertisement
and the planning of a simple narrative: these two scenarios demonstrate particularly

well why and how one might need a storyboarding capability.

Montage-style advertisements are an interesting “genre” of commercials. They stimu-
late “good feelings” about a product by associating the product with pleasurable or
glamorous images. Montage commercial designers isolate a theme, usually some-

thing youthful, dynamic, sexy, and glamorous, and attempt to visually communicate

11

that theme with short clips. They assemble a 30-second spot featuring these themed
clips interspersed with shots of their product. Beer companies, for example, often
construct commercials that feature their beer among partying, fun-loving, happy, and
sexy young people. The intention is to closely associate a product with a lifestyle or

emotions that people desire.

The challenge is to pick the shots that best evoke a certain lifestyle or theme. An
advertising-commercial creator has three primary sources to look through: stock
sotage, company archival footage, and new, original footage. During the planning of
a commercial, the creator must constantly attempt to recall and compare shots in
order to visualize the best possible sequence. The creator must decide how to order
and select shots from a pool of hundreds or thousands of shots. An ideal storyboard
would help her track the best candidate shots, allowing her to easily compare differ-
ent versions of the same sequence. An ideal storyboard would allow that creator to
retain access to the different sequences she has considered, allowing her to instantly
compare or recall different possibilities. An ideal storyboard might also allow her to
track illustrative footage she has “stolen,” and therefore must replace, or footage that
must be licensed. She needs a tool that allows her to easily track and compare her
different ideas, and perhaps present those ideas to a client. She needs a tool that
offers her “what-if?” capabilities, to allow her to quickly and easily see how shot

changes affect the tempo and feel of a sequence.

A creator planning a traditional narrative sequence might also find a storyboarding
capability useful. A dramatic scene may be captured and visually communicated in a
number of different ways: with different camera placements, different camera angles,
different lighting, etc. It might also be useful to be able to quickly compare different
realization possibilities, and to experiment with “what-if” variations in shot selec-

tions and orderings. The same narrative scene edited and presented in different ways

12

can suggest different feelings and interpretations. An example might be having both
“R” and “PG” versions of a particular scene available, either one of which may be

appropriate depending on later decisions.

\oblications S
With the introduction of Apple Computer’s QuickTime™ digital’ video enablement
standard, the technology necessary to implement new ideas for a digital video editing
process is now easily available. Two companies, Adobe Systems Inc. and DiVA
Corporation, currently offer full-process digital video editing applications. This
section will briefly examine each application, commenting on their approach to the

editing process and evaluating their storyboarding abilities.

Adobe Premiere

Premiere, attempting to leverage off of the familiar mechanics of analog video editing,
merely transplants the analog video editing process to the computer. So, after record-
ing digital video footage on her computer, a video editor would order footage on her
“A-deck” and “B-deck” to produce a final movie on her “record deck.” This approach
has an obvious advantage: people familiar with the analog video editing process
immediately feel comfortable working with digital video. Digital video becomes
another form of analog video: a little faster to edit with, perhaps, and stored on
computer disks instead of conventional video tapes, but used in exactly the same

way.

This approach however also has numerous disadvantages, all of which arise from the
fact that we are treating digital video like analog video. The analog video metaphor
used in Premiere ties us to the peculiar limitations and constraints of analog video
editing. In analog editing, for example, we have two source decks to allow us to

insert special effects like transition graphics or dissolves between two shots — two

13

source decks are physically necessary to produce these effects. In digital video,
however, we can merely specify the ordering of two shots and have the computer add
effects at any time — we have different real-time performance or hardware require-
ments. What does it mean in Premiere when we have an “A-deck,” “B-deck,” and
“record deck?” These elements are interface “sugar” that obscure the real dynamics
of what we are doing. We hide the capabilities of digital video, resulting in a process
that mirrors the analog video process, and results in movies which are no different
than analog video movies. Premiere’s weaknesses therefore aren’t visible until we
consider DiVA's Videoshop, which breaks new ground in the possibilities of digital

video.

DiV A Videoshop

Videoshop practises a radically different philosophy than Premiere, preferring to re-
cvaluate the entire editing process. Videoshop, unsurprisingly, breaks down the
cctiting process into the four stages mentioned earlier, and attempts novel, powerful

approaches to each.

Videoshop addresses the first stage, video acquisition, by providing a straightforward
video-capture capability. Its approach to the second stage, video management, is
significantly more interesting. Videoshop creates a video-management environment it
calls the “visual desktop,” an environment that is actually a special copy of the
“Macintosh Finder,” the standard file-management system. The visual desktop
allows users to arrange their video in clips, annotate them with key words and gen-
eral information, and use powerful string and word-association searches to track
down interesting clips. Users can “browse” through the desktop by looking at
“micons,” or animated previews, of all the available clips. The new organizational
metaphor emphasizes and exploits a significant new characteristic of digital video:

digital video is just another computer data type, like text or pictures. All of the

14

powerful computer-based techniques for information management and retrieval can

now also be extended to digital video clips.

Videoshop also treats video clips as objects. Rather than thinking of putting video
clips “into” some video “play deck” and recording on a “record deck,” Videoshop
encourages thinking of video as objects that can be manipulated and arranged. A
video editor that wishes to create a sequence would “grab” and “drag” a video clip
into a “sequencer,” a computer window that allows visual reordering of video clips.
On a gross sequencing level, an editor visually reorders clips on a timeline in front of
her — a process that is much closer to what is really occurring on a conceptual level

than “A-decks” and “record decks.”

Videoshop addresses fine editing in a novel fashion, too. Users treat video much like
they treat text in a word-processor: video can be “cut, copied, and pasted” by direct
selection. A user can add special effects like filters or transition effects by directly
selecting the video to alter and ordering the computer to apply an effect. In Premiere,
to contrast, a user would place an effect between the “A-deck” and “B-deck” to simu-
late an analog “video effects generator” — interface baggage that obscures the direct-

manipulation qualities of Videoshop’s approach.

Movie delivery has also been rethought. Rather than limiting movie delivery to the
single-screen format of analog video, Videoshop allows movie creators to think in term
of movie “tracks.” A movie can have multiple motion-picture streams displaying at
different sizes and at different locations on a screen: we can now exploit the ability of
computers to scale and move motion-pictures in real-time. Traditional analog video
only offers single-track, single-size movies, a limitation that Premiere also retains
because of its total reliance on the analog video metaphor. Working in Videoshop

highlights the impressive capabilities of digital video: we experience an editing

15

process that is dramatically different and potentially more powerful than the old

analog video process. We begin to see the possibilities that digital video offers.

Storyboarding

Neither application addresses storyboarding very satisfactorily. Premiere avoids the
capability entirely, instead concentrating solely on fine, detailed editing work.
Videoshop offers a nominal shot-ordering capability, but also concentrates more on

other issues, like fine editing, clip management, and clip presentation.

Functional Specifi

The experimenta!l application written for this thesis attempts to address some of the
storyboarding ceficiencies of Premiere and Videoshop. See Figure 1 for a picture of the
application. Tris section examines the features of the application and discusses their
importance as -toryboarding tools. The functionality of the application falls under

two sections: the visual bins and the storyboard sequencer.

The Visual Bins

The “visual bins” address “stage 2” of Brendmo’s four-stage editing model: the bins
allow a sequence creator to organize and annotate the shot pool that he or she will

work with. See Figure 2 for a picture of the visual bins.

The visual bins provide the functionality that allows a creator to maintain control
over the shot pool: they allow a creator to quickly identify interesting shots. They are
the tool that allow a creator to work efficiently with a shot pool that is probably too
large to memorize or be closely familiar with. The ability to organize the shot pool is
an important feature of the application: it allows creators to maintain a sequencing

environment that maximizes creative efficiency.

The bins offer a succinct and elegant way of getting a lot of information about a clip,

16

sssssissssssasassssssasese ssasisssssassssssresissassnsssass

Figure 1: The Storyboarder Window

17

without actually seeing the clip. They provide immediate information about a clip in
five ways: bin number, micon, spatial location, text tag, and color tag. The applica-
tion offers an arbitrary number of “bins,” or top-level repositories, for movie clips. A
user can provide contextual informati;)n about a clip by placing it in a particular bin:
for example, a movie clip found in the “Winter Sports” bin could be assumed to be
about “Winter Sports.” Movie clips themselves are represented by “micons,” or
short, animated, and thumbnail-sized previews of the full movie clip. A user can
therefore see a quick preview of the actual clip, giving them an immensely illustrative
glimpse at the content of the whole clip. Micons can be arbitrarily arranged on the
screen, within their bin, allowing users to associate more closely-related clips by
placing them together in groups on the screen. Users can reposition a micon by
simply “dragging” the micon to its new location. Creators can select to have text tags
display under micons, choosing from name, duration, or copyright tags. Creators can
also have color-coded duration tags displayed under micons: the application draws a
blue-colored bar under the micons to represent different duration lengths — the

longer the clip, the lighter blue used.

Figure 2:
The Visual Bins

These buttons select The organization space An illustrative "micon” Color and text tags
the active bin represents each clip

18

A user can now easily identify shot candidates. For example, consider a person
wishing to find a good clip showing a person skiing. We might have a bin called
“winter sports,” in which different winter sport clips are spatially organized by sport
type. Assuming a mechanism to locate interesting bins, a person can — by simply
looking at a bin — visually identify micons whose clips show potential. The person,
by looking at the micon tags, might also be able to visually confirm the copyrights
and relative lengths of the clips. In Premiere, to contrast, a person would just have a
single long, unorganized list of shots, with each shot entry showing a picture of the
shot’s first frame and a list of text fields. A Premiere user would have to scroll
through a long list of shots and read lines of information — information that is more

succinctly communicated visually in the test application.

The bins also allow a user to annotate a clip with more detailed information. Each
shot can have profile information stored with it, such as camera movements and
general information. The information is stored as part of the clip itself, and so is

available by other programs that follow the proper QuickTime™ interface.

The Storyboard Sequencer

The storyboard sequencer is where the actual sequence layout is done. After a user
collects and organizes a shot pool in the visual bins, he or she can “drag” shots into
the sequencer working area. The sequencer allows a user to specify the organization
and content of a sequence. This section discusses the major features of the sequencer:
organization, active shot selection, storylines, and the summary window. See Figure

3 for a picture of the sequencer.

Organization
The sequencer is organized by “shot-slots.” A sequence is broken down into a series

of “slots,” each of which represents one shot in the sequence. A 6-shot montage

19

sequence then would have six “slots” that one could “insert” shots into. The slots can
be reordered by dragging a slot to a new location: so slot six could be moved to the

slot one location by merely dragging the graphic representation of slot six to slot one.

Active Shot Selection

A user may drag an arbitrary number of shots from the visual bins to a slot. For
example, a user may have a number of candidate shots that he or she is considering
opening a sequence with; the user therefore drags all of them to the slot one position.
The final sequence can only have one of those shots actually shown as the first shot,
so the user must select which of the candidate shots is currently “active” and part of
the sequence. The active shot is selected from a special dialogue window that dis-

plays all of the candidate shots for all of the slots of the sequence. The user can

Figure 3: The Storyboard Sequencer and Active Shot Selection Dialogue

Sequencer

Color-coded relative
duration

Camera Motion

Candidate shots
for slot #3

The current active]
selection (not dimmed)

20

visually compare and choose which shot she wishes currently active. This active shot
system allows a user to maintain and organize all of her candidate shots, and allows
her to delay the final decision of which shot to finally use. It allows her to quickly

change and compare how a sequence looks with different candidate shots.

Storylines

The application also provides the ability to “freeze” and track different sequence
possibilities. A user, while experimenting with different active shots, may find a
number of sequence constructions that show a high amount of potential. The user can
mark each candidate sequence as a different “storyline:” storylines provide the ability
to quickly jump back and forth between different sequence layouts. Storylines
complement active shots: together, they allow a user to experiment and track an
arbitrary number of shot candidates and sequence candidates, and they allow a user
to delay final, binding creative decisions until all of the sequence possibilities have

been explored.

Summary Window

One of the interface challenges of digital video, as we saw with the visual bins, is to
communicate the time-axis information of a clip on a static computer display. The
bins attempted to provide time information by showing duration color tags and using
micons. The sequencer attempts to give the user a feel for the temporal qualities of a
sequence by providing a “summary window.” The summary window displays a
color-coded bar that is divided into sections, with each section showing the relative
lengths of the different clips in the sequence. The user can get a feel for the tempo of
the sequence by just looking at the summary window: a quick, staccato sequence will
have a color bar dominated by short, dark-blue sections, while a slow, languid se-
quence will have a lot of longer, light-blue sections. The summary window will also

display icons representing the camera motions of the sequence. The user can visually

21

confirm the tempo and dynamics of the sequence with a simple glance.

Integrating the Storyboarding Stage

Final layouts of sequences can be savéd as “referenced” movies, or movies that con-
tain pointers to other files that contain the actual movie image information. Users
can then edit these referenced movies in fine-editing programs like Premiere. The test
application can be smoothly integrated among a suite of movie-creation tools, allow-

ing a user to mix-and-match among the programs for different tasks.

Summary

The application program provides a creative platform for storyboarding development
by emphasizing two ideas: the elegant communication of shot/sequence information
and the delay of final, binding decisions. Together, they allow a user to quickly
identify shots for a sequence and to easily experiment and compare different layouts

of sequences.

hnical ificati
This section outlines the source code organization of the application program and
discusses some of the engineering design decisions made in implementing the pro-

gram.

The Application Shell

The core of any Macintosh program is a generic application shell, a base-level pro-
gram that sets up the application and monitors for user- or computer-generated
events. The application shell used by this thesis was first used in MoviePads, a movie
clip organization tool similar to the visual bins of this thesis’s program. MoviePads
was written during the summer of 1992 as an Interactive Cinema Group UROP
project. The application shell initializes various Macintosh toolbox managers, polls

the Event Manager for events, and responds to events by calling the appropriate

22

handlers.

The Menus Librar

Another important component of the program was the “menus library,” a set of
routines that handled all of the GUI requirements for menus. The menus library,
together with the application shell, form a generic program from which to expand

and spin off any specialized program.

The Storyboarder Library
All of the functionality of the storyboarding application is stored as a set of routines

in a separate library, so the rich function set of the storyboarder is completely sepa-
rate from the generic program code described earlier. This provides the important
ability to easily recycle minor or major portions of the storyboarder in other pro-

grams.

Movie Data Structures

A major component of the storyboarder library is the movie clip management system.
The library header file specifies specialized element structures and operator macros
that simplify the tracking of important movie clip information, such as: file reference
information, movie-box location, controller information, etc. All movie references are

made indirectly through these data elements.

The Visual Bins

The visual bins sub-library-is responsible for maintaining and supporting the func-
tionality of the visual bins. The code is set up to support an arbitrary number of
visual bins, with bins of arbitrary sizes and locations. The code could be re-used to
support any clip organization-space with the same functionality requirements and

interface mechanics of the visual bins used by the storyboarder.

The Sequencer

The sequencer sub-library is responsible for maintaining and supporting the function-
ality of the storyboard sequencer. The sequencer code, like the visual bins code, has
been designed to support a maximum amount of flexibility. The code can support an
arbitrarily-large sequence of clips, of arbitrary size and arrangement, and is com-
pletely autonomous — allowing other programs that wish to have a sequencing

ability to easily “borrow” and use this code.

The Movie-Playout library

The final major component of the storyboarder library is the movie-playout library.
This library handles playing out a separate movie window when a user specifies
“play movie” or double-clicks on a visual bins micon. Any application wishing to
generate QuickTime™ movies with separate windows and controllers can simply call

appropriate movie-playout routines.

Further Ideas

This section explores some further storyboarding ideas or issues that were not imple-

mented in the test application:

* Numerous people complained about the two-step active-shot-selection process. In
the test application, a user must select the active shot of a slot by choosing from a
separate dialogue window. It might be useful to experiment with a different
interface that allowed that selection directly on the sequencer itself.

e The current application has a summary window that responds to user selections in
the sequencer. The ability to reverse that relationship might provide a powerful
“computer advice” tool. For example, after dragging in a set of candidate shots to
the sequencer, a user might find it difficult to find a good set of active shots. To
save time, the user might wish to specify the tempo and camera motions of a

desirable sequence directly in the summary window itself, with the computer then

24

selecting the “closest-match” shots in the sequence. The computer, instead of
describing a sequence a user created, would create a sequence the user described.

e Further elaboration on the summary window might also be interesting. Could the
computer provide useful critiques.of a sequence by analyzing its tempo and dy-
namics characteristics? It might be interesting if a user could specify certain
“model sequences,” other sequences that are similar to the one the user intends to
create. The computer could critique the user’s work-in-progress by comparing it
to the model sequences: it might recommend shorter cuts, different camera mo-

tions, different lighting, different colors, etc.

Conclusion

Digital video, as we’ve seen, brings a new opportunity: an opportunity to rethink the
movie creation process. Its wide flexibility and unique features suggest that movie-
creators have a new power to explore and focus their creative impulses, rather than
worry about the constraints and technical features of the physical editing process.
Commercial products like Videoshop show that movie-creation can be done in freshly
different ways, and with great success. The experimental application of this thesis
proves that we can start addressing the movie creation process on a creative, as well
as technical, basis. The movie creation process can now include electronic tools that
not only make detailed editing easier, but also enhance the creative process by assist-

ing movie-creators as they attempt to visualize their stories.

Further Reading

¢ Brendmo, Hans Peter, and Davenport, Glorianna, “Creating and Viewing the
Elastic Charles — A Hypermedia Journal,” in McAlesse, Ray, and Green,
Catherine, Hypertext: State of the ART, Intellect, 1990.

* Harber, Jonathan, and Mayo, Daniel, DiVA Videoshop Reference Manual, DiVA
Corporation, 1991. .

* Mark, Dave, and Reed, Cartwright, Macintosh C Programming Primer, Addison-
Wesley Publishing Co., 1992.

26

Appendix A: Source Code Samples

ORB:thesis:thesis code Page 1
Saturday, May 8, 1993 17:29

/***

This file contains representative coding excerpts from the thesis
test application.

***/

-

#include "quicksilver.h"
#include "error.h"

/* general globals */

WindowPtr gSequencerWin=NIL POINTER; /* window ID of the sequencer window */

/* clip bin globals */

BinHandle gBins [NUMBER BINS]: /* array of visual bin info */

short gCurrentBin, /* bin currently being displayed */
gTextTag,gColorTag: /* text/color tag codes (for micon display) */

Movie gActiveMicon, /* the currently active micon */
gSoundClip: /* SOUND HACK */

/* sequencer globals */

ShotHandle gShot s [NUMBER_SHOTS] ; /* array of sequence shot info */

short gShotRankToIndex [NUMBER SHOTS], /* specifies the sequencer order of

gShots (which goes 1lst, 2nd, etc.)

gStoryScrollOffset; /* index of the 1lst shot displayed in the seq

short ghActiveStoryline;

Str255 gStorylineNames [NUM STORYLINES] ;

Boclean gShowShotNumbers, gShowShotCam;

/* movie player globals */
Movie gStoryMovie;
MovieController gStoryController;

/* handle events **/

Boolean HandleSequencerEvent (EventRecord theEvent, Boolean *alterMenus,Rect dragRect)
{

WindowPtr frontWindow;

Boolean eventHandled;

frontWindow = FrontWindow():;
eventHandled = TRUE;
*alterMenus = FALSE;

/* check if one of the associated movie controller windows is the gquy; if
so, pass the event to it and let it take care of it */

if (HandleMovieWinEvent (theEvent, dragRect))
return (eventHandled) ;

/* check if the story movie controller is being used */
if (gStoryController)
if (MCIsPlayerEvent (gStoryContrcller, &theEvent))

ORB:thesis:thesis code

Page 2
Saturday, May 8, 1993 17:29

return(eventHandled) ;

switch (theEvent.what)
{
case nullEvent:
if (frontWindow=—gSequencerWin)
HandleSequencerNullEvent (theEvent) ;
eventHandled = FALSE;
break;
case mouseDown:
eventHandled = HandleSequencerMouseDown (theEvent, dragRect) ;
*alterMenus = TRUE;
break;
case updateEvt:
if (((WindowPtr) theEvent.message)==gSequencerWin)
UpdateSequencer () ;
else
eventHandled = FALSE;
break;
case activateEvt:
if ((theEvent.modifiers & activeFlag) == ACTIVATING) {
if (frontWindow==gSequencerWin)
ActivateSequencer ()
else
eventHandled = FALSE;
}
else
if (frontWindow==gSequencerWin)
DeactivateSequencer () ;
else
eventHandled = FALSE;
break;
default:
eventHandled = FALSE;
break:
}

return(eventHandled) ;

}

void HandleSequencerNullEvent (EventRecord theEvent)
{

Point mouseLoc;
MoovHandle moovNode;
short shotRank;

ControlHandle dummyControl:

/* service micon */
if (gActiveMicon!=NULL)
if (IsMovieDone (gActiveMicon))
GoToBeginningOfMovie (gActiveMicon):

MoviesTask (NIL,NIL):;

ORB:thesis:thesis code

Page 3
Saturday, May 8, 1993 17:29
/* update cursor to grabber if necessary */
if (gSequencerWin) ({
/* first check if cursor is above a clip bin micon */
mouseLoc = theEvent.where;
GlobalToLocal {(&mouselLoc) ;
moovNode = LocateMoovNode (mouseloc) ;
if (moovNode)
HandCursorOpen () ;
else {
/* now check if in a storyboard frame */
if ((shotRank = FindShotRank (mouseLoc)) !=NO_SHOT) {
if (ShotRankNumberClips (shotRank)) HandCursorOpen();
}
else {
/* check if over a control button */
FindControl (mouseLoc, gSequencerWin, &dummyControl) ;
if (dummyControl)
HandCursorPoint () ;
else
/* isn't in anywhere!! */
PointerCursor():
}
}
}
}
Boolean HandleSequencerMouseDown (EventRecord theEvent, Rect dragRect)
{
WindowPtr theWindow;
short thePart;
Rect dummyRect ; /* inDrag/inGrow */
ControlHandle theControl; /* inContent: controlID of clicked control */
short newHeight, /* inGrow */
newWidth;
long int windSize;
Point mouseLoc: /* a bunch: local coordinate mouse click */
Boolean eventHandled;

/* verify that pad window was clicked */
thePart = FindWindow (theEvent.where, &theWindow);

/* make sure we have a sequencer */
if (theWindow!=gSequencerWin) return (FALSE);

SetPort (theWindow) ;

eventHandled = FALSE;
mouselLoc = theEvent.where;

GlobalToLocal (&mouseloc) ;

switch (thePart)

{

/* mouse loc in local coords */

ORB:thesis:thesis code Page 4
Saturday, May 8, 1993 17:29

case inDrag:
DragWindow (theWindow, theEvent .where, &dragRect) ;
eventHandled = TRUE;
break;
case inContent:
eventHandled = TRUE; .
/* click on inactive pad? */
if (FrontWindow () !=theWindow) {
SelectWindow (theWindow) !
break;
}
/* click in control? */
FindControl {(mouseLoc, theWindow, &theControl) :
if (theControl!=NIL) {
HandleSequencerControl (theControl, theEvent .where) ;
break:
}
/* other */
HandleMouseDownEvent (mouselLoc) ;
break:
case inGrow:
break;
case inGoAway:
/* return false and let the main shell.c handle the close-window */
break;
case inZoomlIn:
case inZoomOut:
break;
}
return(eventHandled) ;

}

void HandleSequencerControl (ControlHandle theControl,Point mouseLoc)
{

Str255 buttonName;
long buttonlID;
Rect dummyRect;

GetCTitle (theControl, buttonName) ;
StringToNum (buttonName, &buttonlID) ;

switch ((int) buttonID)
{
case BIN BUTTON REF:
case BIN BUTTON REF+1:
case BIN BUTTON REF+2:
case BIN BUTTON REF+3:
case BIN BUTTON REF+4:
if (TrackControl (theControl,mouselLoc,NIL) !=NIL) {
/* draw the hilited button */
HiliteBinButton (buttonID);
/* unhilite the old hilited button */
if (gCurrentBin'!'=buttonID) ({

ORB:thesis:thesis code

Saturday,

}

May 8, 1993 17:29

/* erase the old hilited button */
theControl = (*gBins[gCurrentBin])->button;
DrawlControl (theControl) ;

/* update button marker */

gCurrentBin = buttonID;

/* disable current micon */
SetActiveMicon (CLEAR MICON) ;

/* update bin and led graphics */

SetRect (&dummyRect, LED_LEFT, LED_TOP, LED_RIGHT,LED_ BOTTOM) ;

InvalRect (&dummyRect) ;

SetRect (&dummyRect, BIN LEFT,BIN_TOP,BIN_RIGHT,BIN BOTTOM) ;

EraseRect (&dummyRect) ;
InvalRect (&dummyRect) ;
}
}
else {
HiliteBinButton (gCurrentBin) ;

}
break;

default:

break:

/* note mouseLoc is in local coords */
void HandleMouseDownEvent (Point mouseloc)

{

MoovHandle moovNode;

Movie
short
Rect

movielD;
userAction, shotRank, newshotRank;
sourceRect, newRect, tempRect;

moovNode = LocateMoovNode (mouseLoc) ;
movieID = MoovNodeMovieID (moovNode) ;

/* check if clicked on a bin micon */
if (moovNode) {
/* else branch on action */
userAction = UserMouseAction();
switch (userAction)

{

case DRAG_ACTION:

sourceRect = MoovNodeMiconFrame (moovNode) ;

/* set the current micon to the one now being dragged */

SetActiveMicon (moovNode) ;

/* drag it */

newRect = DragObject (gActiveMicon,NIL);

/* ensure that still in bin rect */

SetRect (&tempRect,BIN_LEFT,BIN_TOP,BIN RIGHT,BIN BOTTOM):

SectRect (&tempRect, &newRect, &tempRect) ;

if ('EqualRect (&tempRect, &newRect)) {
/*** attempted to drag the movie outside the bin */
/* check if dragged to storyboard */

ORB:thesis:thesis code Page 6
Saturday, May 8, 1993 17:29

RectToCenterPoint (newRect, &mouselLoc) ;
if ((shotRank = FindShotRank (mouseLoc)) !=NO_SHOT) {
AddClipToShot (shotRank, moovNode) ;
InvalRect (&newRect);
EraseRect (&newRect) ;
SetRect (&newRect,
FRAME LEFT+ (FRAME WIDTH+10) * (shotRank-gStoryScrollOffset),
FRAME _TOP,
FRAME LEFT+ (FRAME WIDTH+10) * (shotRank-gStoryScrollOffset)+
FRAME BOTTOM) ;
ComposeStoryboardMovie () ;
SetRect (&tempRect, STORY LED RIGHT - 60,STORY LED_TOP, STORY_LED
InvalRect (&tempRect) ;
}
/* clean up the dragged new rect */
InvalRect (&énewRect);
EraseRect (&newRect);
InvalStoryboardAnalysis();
SetMovieBox (gActiveMicon, &sourceRect) ;

else {
/* moved movie within the bin, update old location */

InvalRect (&sourceRect); /* inval & erase old loc */
EraseRect (&sourceRect) ;
DisplayMoovNodeTextLabel (moovNode, TRUE) ;
DisplayMoovNodeColorLabel (moovNode, TRUE) ;
MoovNodeMiconFrame (moovNode) = newRect:;
DisplayMoovNodeColorLabel (moovNode, NIL) ;
DisplayMoovNodeTextLabel (moovNode, NIL) ;

}

break;

case SINGLE CLICK:

BusyCursor () ;

SetActiveMicon (moovNode) ;

PointerCursor();

break:

case DOUBLE_CLICK:

BusyCursor () ;

SetaActiveMicon (moovNode)

AddrPlayoutWindow () ;

PointerCursor();

break;

}

}
/* check if clicked in a sequence slot */

else if ((shotRank = FindShotRank (mouselLoc)) !=NO_SHOT) {

if (ShotRankNumberClips (shotRank)==0) return;

/* else branch on action */

userAction = UserMouseAction();

if (userAction==DRAG_ACTION) {
/* drag picon */
newRect = DragObject (NIL, ShotRankPicon (shotRank));
/* see to which shot frame was dragged to */

ORB:thesis:thesis code Page 7

Saturday, May 8, 1993 17:29

RectToCenterPoint (newRect, &mouseloc) ;
if ((newshotRank = FindShotRank (mouseLoc)) !=NO_SHOT) {
MoveShot (shotRank, newshotRank) ;
if (shotRank>newshotRank) {
InvalStoryboardDisplayFrames (newshotRank, shotRank) ;
InvalStoryboardAnalysis():
}

else {
InvalStoryboardDisplayFrames (shotRank, newshotRank) ;

InvalStoryboardAnalysis():

}
ComposeStoryboardMovie () ;

}
/* clean up the dragged new rect */
InvalRect (&newRect);
EraseRect (&newRect) ;
}

}
/* didn't click in a sequence slot OR on a bin micon */

else {
if (gActiveMicon) {
movieID = gActiveMicon;
SetActiveMicon (CLEAR MICON) ;
DisplayMoovNodePicon (FindMoovNode (movielID)) ;

/* pad init/allocation routines ***akkkkkkkkskhkkkkkhok ko kkkkkkkkk Ak k ok dkk ok kkokkkkkk Kk % /

void NewSequencer (void)

{
register short x;

/* allocate new sequencer window */
gSequencerWin = GetNewCWindow (MAIN WINDOW ID, NIL POINTER, MOVE TO FRONT);
if (!'gSequencerWin) {

DisposeHandle (gSequencerWin) ;

ErrorDisplay (OOM_SEQ,NIL):

return;

}

/* set as active grafport, show, and select window */
SetPort (gSequencerWin) ;

ShowWindow (gSequencerWin) ;

SelectWindow (gSequencerWin) ;

/* setup the bins */
for (x=0; x<NUMBER BINS; x++) {
/* allocate bin */

ORB:thesis:thesis code Page 8
Saturday, May 8, 1993 17:29

gBins[x] = (BinHandle) NewHandle (sizeof (struct Bin));
if (!gBins[x]) {
CloseWindow (gSequencerWin) ;
ErrorDisplay (OOM SEQ,NIL):
return;
}
/* allocate matching control */
BinButtonHandle (x) = GetNewControl (BIN BUTTON ID+x, gSequencerWin)
if (!'BinButtonHandle (x)) {
CloseWindow (gSequencerWin) ;
ErrorDisplay (OOM_SEQ,NIL);
return;

}

/* set bin name */

BinNameHandle (x) = NewString(”\pdummy string");:
SetHandleSize (BinNameHandle (x),256) :

SetString (BinNameHandle (x), "\pUntitled");

/* set bin moov list */

BinMoovNodeList (x) = NIL_POINTER;

}

/* setup the storyboard */
InitStoryboard():

/* setup storylines */
gActiveStoryline = 0; /*

gStorylineNames[0] = STORYLINE O;
gStorylineNames[1l] = STORYLINE 1;
gStorylineNames[2] = STORYLINE 2;
gStorylineNames[3] = STORYLINE_3;

gStorylineNames[4] = STORYLINE 4; */

/* set quickdraw params */
TextSize(9);

/* init other vars */

gCurrentBin = 0;

gActiveMicon = NIL;

gTextTag = NO_TAG;

gColorTag = NO_TAG:

gShowShotNumbers = FALSE;

gShowShotCam = FALSE;

gSoundClip = NIL POINTER; /* sound hack */

InitMovieWinList ():
InitCursorLibrary():
}

void DisposeSequencer (void)
{

register short x;

ORB:thesis:thesis code Page 9
Saturday, May 8, 1993 17:29

/* deallocate sequencer */

if (gSequencerWin) {
/* deallocate controls */
KillControls (gSequencerWin) ;

/* deallocate bin structures =*/
for (x=0: x<NUMBER BINS; x++) {

RemoveAllBinMoovNodes (x) ;
DisposHandle (BinNameHandle (x)) ;
DisposHandle (gBins[x]);

}

/* deallocate storyboard stuff */
DisposeStcryboard() ;

CloseWindow (gSequencerWin) ;
}

gSequencerWin = NIL POINTER;
}

void Disposeall (void)

{
DisposeSequencer () ;

}

/* Sequencer window routines ***/

void UpdateSequencer (void)
{

Rect boundsRect ;
GrafPtr oldPort;
GetPort (&oldPort);

SetPort (gSequencerWin) ;

BeginUpdate (gSequencerWin) ;
/* update graphics */
PaintSequencer () ;
ShowMoovNodeMicons (gCurrentBin) ;
/* show controls */
UpdtControl (gSequencerWin, gSequencerWin->visRgn) ;
HiliteBinButton (gCurrentBin);
/* update sequencer (done last cuz so slow) */
DisplayStoryboardPicons() ;
DisplayStoryboardAnalysis():

EndUpdate (gSequencerWin) ;

SetPort (oldPort) ;

ORB:thesis:thesis code Page 10
Saturday, May 8, 1993 17:29

}

void PaintSequencer (void)
{

Rect dRect:
CIconHandle dCIcon;
short X;

int frameLeft;

RGBColor dColor;
char ledDisplay[1l], segMovieDuration([9]:
Str255 storylineName;

/*** draw bin area */
DrawBeveledFrame (BIN_TOP,BIN LEFT,BIN BOTTOM, BIN RIGHT);

/*** draw clip bin LED area and update display*/
DrawLED (LED_TOP, LED_LEFT, LED_BOTTOM, LED_RIGHT) ;
/* update LED */

dColor.red = 10800:

dColor.green = 35500;

dColor.blue = 20900;

RGBForeColor (&dColor) ;

TextFace (bold);

MoveTo (LED_LEFT+6,LED_TOP+9) ;

DrawString ("\pClip Bin ");
NumToString(gCurrentBin+l, ledDisplay):
DrawString(ledDisplay):

DrawString("\p: "):

DrawString((char *) *BinNameHandle (gCurrentBin)):;

/*** draw movie area */
DrawBeveledFrame (MOVIE TOP,MOVIE LEFT,MOVIE BOTTOM+MC HEIGHT,MOVIE RIGHT):

/*** set off sequencing area */
DrawBeveledBar (BAR LEFT, BAR TOP,BAR RIGHT, BAR BOTTOM) ;

/* draw sequencer LED */

DrawLED (STORY_LED TOP,STORY LED LEFT,STORY_ LED_BOTTOM, STORY LED_ RIGHT);
GetMovieDurationString(gStoryMovie, segMovieDuration);

TextFace (bold);

MoveTo (STORY_LED RIGHT - 60,STORY_LED TOP + 9);

DrawString (segMovieDuration) ;

MoveTo (STORY LED LEFT+6,STORY LED TOP+9);

TextFace (0):

/* draw frames */
for (x=0,frameLeft=FRAME LEFT; xX<NUMBER PHYSICAL FRAMES; x++, frameLeft+=FRAME WIDT
DrawBeveledFrame (FRAME TOP, frameLeft, FRAME_BOTTOM, frameLeft+FRAME WIDTH) ;

/* draw analysis frame */
DrawBeveledFrame (ANALYSIS TOP,ANALYSIS LEFT,ANALYSIS BOTTOM,ANALYSIS RIGHT):

ORB:thesis:thesis ceode Page 11
Saturday, May 8, 1993 17:29

/* restore fore/back colors to ensure proper drawing */
RGBForeColor (black) ;
}

void ShowMoovNodeMicons (short binNum)
{
MoovHandle moovList;

moovList = BinMoovNodeList (binNum) ;

while (moovList) {
DisplayMoovNodePicon (moovList) ;
DisplayMoovNodeTextLabel (moovList,NIL)
DisplayMoovNodeColorLabel (moovList,NIL);
moovList = MoovNodeNext (moovList);

}

void DrawLED(int top,int left,int bottom,int right)
{

RGBColor dColor, curFore:

Rect dRect;

DrawBeveledFrame (top, left,bottom, right);
GetForeColor (&curFore) ;

/* draw dark rect */

dColor.red = 10000;

dColor.green = 5000;

dColor.blue = 10000;

RGRForeColor (&dColor) ;

SetRect (&dRect, left, top, right,bottom) ;
PaintRect (&dRect) ;

/* restore fore colors to ensure proper drawing */
RGBForeColor (&curFore) ;
}

void DrawBeveledBar (int left,int top,int right, int bottom)
{

Rect dRect;

CIconHandle dCIcon;

SetRect (&dRect, left, top, right,bottom):
dCIcon = GetCIcon(BAR CICN);
PlotCIcon(&dRect,dCIcon);

SetRect (&dRect, left, top, left+32,bottom);
dCIcon = GetCIcon(LBAR CICN);

PlotCIcon (&dRect,dCIcon) ;

SetRect (&dRect, right-32, top, right,bottom);
dCIcon = GetCIcon(RBAR CICN);

PlotCIcon (&dRect,dCIcon);
DisposCIcon{dCIcon);

ORB:thesis:thesis code Page 12
Saturday, May 8, 1993 17:29

}

void DrawBeveledFrame (int top,int left,int bottom,int right)
{

Rect dRect;

CIconHandle dCIcon;)

/*** draw bin frame */

/* draw left */

SetRect (&dRect, 1eft-OFFSET_B, top, left,bottom);
dCIcon = GetCIcon(RIGHT B):

PlotCIcon (&dRect,dCIcon);

DisposCIcon(dCIcon);

/* draw right */

SetRect (&dRect, right, top, right+OFFSET_B,bottom) ;
dCIcon = GetCIcon(LEFT_B):

PlotCIcon (&dRect,dCIcon);

DisposCIcon(dCIcon)

/* draw top */

SetRect (&dRect, left, top-OFFSET_B, right, top):

dCIcon = GetCIcon (BOTTOM B):

PlotCIcon (&dRect,dCIcon);

DisposCIcon (dCIcon);

/* draw bottom */

SetRect (&dRect, left,bottom, right, bottom+OFFSET_B) ;
dCIcon = GetCIcon(TCP_B):

PlotCIcon (&dRect,dCIcon);

DisposCIcon(dCIcon);

/* draw topleft */

SetRect (&dRect, left-OFFSET_B, top-OFFSET_ B, left, top):
dCIcon = GetCIcon(BR B);

PlotCIcon (&dRect,dCIcon);

DisposCIcon (dCIcon);

/* draw topleft */

SetRect (&dRect, left-OFFSET_B, top-OFFSET_B, left,top):
dCIcon = GetCIcon(BR B):;

PlotCIcon{&dRect,dCIcon):

DisposCIcon (dCIcon) ;

/* draw topright */

SetRect (&dRect, right, top-OFFSET_B, right+OFFSET_B, top) !
dCIcon = GetCIcon(BL B);

PlotCIcon (&dRect,dCIcon);

DisposCIcon(dCIcon);

/* draw bottomleft */

SetRect (&dRect, left-OFFSET_B, bottom, left,bottom+OFFSET B):
dCIcon = GetCIcon(TR B):

PlotCIcon(&dRect,dCIcon);

DisposCIcon (dCIcon);

/* draw bottomright */

SetRect (&dRect, right, bottom, right+OFFSET_B, bottom+OFFSET_B) ;
dCIcon = GetCIcon(TL_B):

PlotCIcon (&dRect,dCIcon) ;

DisposCIcon (dCIcon);

ORB:thesis:thesis code
Saturday, May 8, 1993 17:29

}

void HiliteBinButton (short binID)
{
Rect dRect;
CIconHandle dCIcon:

/* draw the hilited bin */
dRect = (*((*gBins[binID])->button))->contrlRect;
dCIcon = GetCIcon (BUTTON HILITED ID);
PlotCIcon (&dRect,dCIcon):;
DisposCIcon(dCIcon);
}

void InvalSequencerBody (void)

{
Rect bodyRect;

bodyRect = gSequencerWin->portRect;
EraseRect (&bodyRect) ;

InvalRect (&bodyRect) ;
}

void ActivateSequencer (void)
{

}

void DeactivateSequencer (void)
{

}

Page 13

/* sequencer Storyboard routines Fhkkk Ak hkhkhkhhkhkhkhkhkhkhrhkhkkkhkhhkhhrhrhkhbkdthkhdkhkhbhkhhhhrhhkhkkkhihi

/*
Notes:

- note that we refer to "screen-frame indices" and actual "shot indices.”

Screen

frame indices refer to the fact that we can only physically display a certain

number of frames on the screen, up to NUMBER FRAMES.
actual shots in our sequence than we can actually display.

However, we may have more
So while we always

have 1-to-NUMBER FRAMES shots displayed on the screen, those shots may not
actually be shots #l-to-#NUMBER FRAMES, but may be # (1+gStoryScrollOffset)-to-

(NUMBER FRAMES+gStoryScrollOffset)

- note that we have two shot arrays. One is our actual array of shots, "gShots",
which is our actual collection of shots. gShots however is not ordered in any
way. We instead use a "translation" array that takes a certain ordinal
positional, like 5 (shot #5), and returns the index into the actual gShots

array to the data we need. So to access the 3rd shot, we specify:

gShots [gShotRankToIndex[3]].
*/

void InitStoryboard(void)
{

ORB:thesis:thesis code Page 14
Saturday, May 8, 1993 17:29

short X,¥!
Rect movieRect;

/*** init for NUMBER FRAMES shots */
for (x=0;x<NUMBER SHOTS;x++) {
if (! (gShots[x] = (ShotHandle) NewBHandle (sizeof (struct Shot)))) {
ErrorDisplay (OOM STORY,NIL):
return;
}
/* init values */
for (y=0:;y<NUM STORYLINES;y++) ShotClip(x,y) = NIL POINTER:
for (y=0;y<NUM_CLIPS_PER SHOT;y++) ShotMoovNode (x,y) = NIL POINTER;
ShotPicon(x) = NIL_POINTER;
ShotNumberClips (x) = 0;
ShotEnabled (x) = TRUE;
gShotRankToIndex [x] = x;
}
/*** prepare the display window */
if (! (gStoryMovie = NewMovie (newMovieActive))) {
ErrorDisplay (STORY MOVIE,NIL);
return;
}
SetMovieGWorld (gStoryMovie, NIL, NIL) ;
SetRect (émovieRect,MOVIE LEFT,MOVIE_TOP,MOVIE RIGHT,MOVIE BOTTCM) ;
SetMovieBox (gStoryMovie, smovieRect) ;

/* init other vars */
gStoryScrollOffset = 0;

}

void DisposeStoryboard(void)

{
short x;

for (x=0;x<NUMBER SHOTS:; x++) {
DisposHandle (gShots([x]):
}
}

void ComposeStoryboardMovie (veoid)
{
short clipIndex, shotIndex, x;
Movie shotClip;
TimeValue movieDuration, storyMovieTime,
oldSelectionTime, oldSelectionDuration;
Rect theRect, 0ldRect;
RGBColor dColor;

movieDuration = GetMovieDuration(gStoryMovie):;
/* clear movie */

DeleteMovieSegment (gStoryMovie, 0, movieDuration);
if (gStoryController) DisposeMovieController (gStoryController):

ORB:thesis:thesis code Page 15
Saturday, May 8, 1993 17:29

/* iterate through sequencer and add movie */
SetRect (&theRect,MOVIE LEFT,MOVIE TOP,MOVIE RIGHT,MOVIE BOTTOM);
for (x=0;x<NUMBER_SHOTS; x++) {
/* get the clip for shot x */
shotIndex = ShotRankToIndex (x);
if (!ShotNumberClips (shotIndex)) continue;
if (!ShotEnabled(shotIndex)) continue;
clipIndex = ShotActiveClip (shotIndex): s
shotClip = MoovNodeMovielID (ShotMoovNode (shotIndex, clipIndex)):
/* do the paste */
movieDuration = GetMovieDuration (shotClip):
storyMovieTime = GetMovieDuration (gStoryMovie):;
GetMovieBox (shotClip, &oldRect) ;
SetMovieBox (shotClip, &theRect) ;
InsertMovieSegment (shotClip, gStoryMovie, 0, movielDuration, storyMovieTime) ;
SetMovieBox (shotClip, &oldRect) ;
}

SetRect (&theRect,MOVIE LEFT,MOVIE_TOP,MOVIE RIGHT,MOVIE BOTTOM);

/* restore fore/back colors to ensure proper drawing */
RGBForeColor (black) ;

/* SOUND HACK */
if (gSoundClip) ({

AddMovieSelection (gStoryMovie, gSoundClip) :
}

/* create associated controller */
SetRect (&theRect, theRect.left, theRect.top, theRect.right, theRect.bottom+MC HEIGHT);
gStoryController = NewMovieController (gStoryMovie, &theRect, NIL);

if (!gStoryCentroller) {
ErrorDisplay (STORY MOVIE,NIL):;
return;

}
MCSetControllerBoundsRect (gStoryController, &theRect) ;

}

/* given a mouseloc, will find which shot contained the loc, else NIL */
short FindShotRank (Point mouseLoc)
{

short X, frameleft;

Rect shotFrame;

for (x=0,frameLeft=FRAME LEFT; X<NUMBER PHYSICAL FRAMES; x++, frameLeft+=FRAME WIDT
SetRect (&shotFrame, framelLeft, FRAME TOP, frameLeft+FRAME WIDTH, FRAME BOTTOM) ;
if (PtInRect (mouseloc, &shotFrame))
return(gStoryScrollOffset+x);

}
return (NO_SHOT) ;

ORB:thesis:thesis code Page 16
Saturday, May 8, 1993 17:29

/* will add the passed movie clip (specified by a moovnode created in the visual
bins) to the specified shot's clip list array */
void AddClipToShot (short shotRank,MoovHandle moovNode)

{
short shotIndex;

/* translate from the "nth shot™ index to the actual, unordered shot index */
shotIndex = gShotRankToIndex [shotRank]:;
if (ShotNumberClips (shotIndex)==NUM CLIPS PER SHOT) return:
/* add 1 to the total number of clips */
ShotNumberClips (shotIndex) += 1;
/* add the associated moovhandle to the shot's moov array */
ShotMoovNode (shotIndex, ShotNumberClips (shotIndex)-1) = moovNode;
/* specify the newly-added clip (the last clip) as the active clip */
SetShotActiveClip (shotRank, ShotNumberClips (shotIndex)-1);
/* increment the # of references */
MoovNodeStoryRefs (moovNode) += 1;
}

/* will make the specified clip the active clip for the specified shot, used by
AddClipToShot () */

void SetShotActiveClip(short shotRank, short clipIndex)

{

short shotIndex;
PicHandle picon;
Movie movielD;

MoovHandle moovNode;

/* translate from the "nth shot” index to the actual, unordered shot index */
shotIndex = gShotRankToIndex[shotRank]:;
picon = ShotPicon(shotIndex);

ShotActiveClip (shotIndex) = clipIndex;
/* update the shot picon */
if (picon) KillPicture(picon);
moovNode = ShotMecovNode (shotIndex, clipIndex);
if (moovNode) ({
movieID = MoovNodeMovielID (moovNode) ;
if (movieID) ShotPicon(shotIndex) = GetMoviePosterPict (movielD);

}

void SetActiveStoryline (short storyline)
{

short shotRank, shotIndex, clipIndex;
PicHandle picon;
Movie movielD;

MoovHandle moovNode;
ghActiveStoryline = storyline;

/* update sequence list */

ORB:thesis:thesis code Page 17
Saturday, May 8, 1993 17:29

}

for (shotRank=0; shotRank<NUMBER SHOTS; shotRank++) {
shotIndex = gShotRankToIndex[shotRank]:
clipIndex = ShotActiveClip (shotIndex)
picon = ShotPicon (shotIndex):

if (picon) KillPicture (picon):
moovNode = ShotMoovNode (shotIndex, clipIndex) :
if (moovNode) {
movieID = MoovNodeMovieID (moovNode) .
if (movieID) ShotPicon(shotIndex) = GetMoviePosterPict (movielD);

}

/* remake movie and redisplay frames on sequencer */
ComposeStoryboardMovie () ;
InvalStoryboardDisplayFrames(0,7);
InvalStoryboardhAnalysis():

/* this function will reorder a shot. */
void MoveShot (short oldShotRank, short newShotRank)

{

}

short x,o0ldShotIndex;

cldShotIndex = gShotRankToIndex[oldShotRank];
/* swap shots and move intermediate shots */
if (newShotRank<oldShotRank) {
for (x=oldShotRank;x>newShotRank;x--)
gShotRankToIndex[x] = gShotRankToIndex[x-1];
}

else {
for (x=oldShotRank;x<newShotRank;x++)
gShotRankToIndex[x] = gShotRankToIndex[x+1];

}
gShotRankToIndex [newShotRank] = oldShotIndex;

/* will inval the contents of a series of storyboard picon display frames,

where the passed shot ranks MUST BE of shots ranks that are currently being
displayed */

void InvalStoryboardDisplayFrames (short startRank, short endRank)

{

short startFrameNum, endFrameNum;
short screenShotPos, framelLeft, shotIndex;
Rect shotFrame;

startFrameNum = startRank-gStoryScrollOffset;
endFrameNum = endRank-gStoryScrollOffset;
for (screenShotPos=startFrameNum, frameLeft=FRAME LEFT+startFrameNum* (FRAME WIDTH+1
screenShotPos<=endFrameNum;
screenShotPos++, frameLeft+=FRAME WIDTH+10) {
SetRect (&shotFrame, frameLeft, FRAME TOP, frameLeft+FRAME WIDTH, FRAME BOTTOM) ;
shotIndex = gShotRankToIndex [gStoryScrollOffset+screenShotPos];

ORB:thesis:thesis code Page 18
Saturday, May 8, 1993 17:29

/* clear the picon frame */
EraseRect (&shotFrame) ;
InvalRect (&shotFrame) ;

}

/* will display the shot picons for all the visible shots in the storyboard */
void DisplayStoryboardPicons (void)
{

short frameNum, frameLeft, shotIndex:
Rect shotFrame;

Pattern dimPat:

RGBColor curFore;

Rect numFrame;

CIconHandle dCIcon;
GetForeColor (&curFore) ;

for (frameNum=0, frameLeft=FRAME LEFT;
frameNum<NUMBER PHYSICAL FRAMES;
frameNum++, frameLeft+=FRAME WIDTH+10) {
SetRect (&shotFrame, frameleft, FRAME TOP, frameLeft+FRAME WIDTH, FRAME BOTTOM)
/* we have NUMBER FRAMES display available on the screen, but we may have
a larger number of actual shots we need to display. gStoryScrollOffset
gives us the number of the shot that corresponds to display frame #1.
So if we have 8 physical display frames, but 10 shots, with shot 3
as the first shot shown on the screen, then gStoryScrollOffset = 3,
and the actual shots shown on the screen are gStoryScrollOffset+
frameNum, where O<frameNum<NUMBER FRAMES. */
shotIndex = gShotRankToIndex[gStoryScrollOffset+frameNum]:;
/* display the picon, if there is one */
if (ShotPicon (shotIndex)) {
/* draw picon */
DrawPicture (ShotPicon (shotIndex), &shotFrame) ;
/* dim out if not an active clip */
if (!ShotEnabled(shotIndex)) {
RGBForeColor (dkGray) ;
GetIndPattern (&dimPat,0,26);
PenPat (dimPat) ;
PenMode (patOr) ;
PaintRect (&shotFrame});
RGBForeColor (&curFore) ;
}
/* draw shot num */
SetRect (&numFrame, shotFrame.left+1, shotFrame.top+l, shotFrame.left+1+SMALL
shotFrame.top+1+SMALL NUMS SIZE);
if (gShowShotNumbers) {
dCIcon = GetCIcon(SMALL NUMS OFFSET+gStoryScrollOffset+frameNum+l);
PlotCIcon (&numFrame,dCIcon);
DisposCIcon(dCIcon);

ORB:thesis:thesis code Page 19
Saturday, May 8, 1993 17:29

else {
RGBForeColor (gray) ;

GetIndPattern (&dimPat,0,26):;
PenPat (dimPat) ;
PaintRect (&shotFrame):;

RGBForeColor (&curFore) ;

}

/* restore default pen pattern and xfer mode */
GetIndPattern (&dimPat,0,1):
PenPat (dimPat) ;

}

void ToggleShotNumberDisplay ()
{
if (gShowShotNumbers) {
gShowShotNumbers = FALSE;
InvalStoryboardDisplayFrames (gStoryScrollOffset,
gStoryScrollOffset+NUMBER PHYSICAL FRAMES);
InvalStoryboardAnalysis();
}
else {
gShowShotNumbers = TRUE ;
InvalStoryboardDisplayFrames (gStoryScrollOffset,
gStoryScrollOffset+NUMBER PHYSICAIL FRAMES) ;
InvalStorybcardAnalysis():

}

void ToggleCamDisplay ()
{
if (gShowShotCam) {
gShowShotCam = FALSE;
InvalStoryboardAnalysis();

}

else {
gShowShotCam = TRUE ;
InvalStoryboardAnalysis();

}

void InvalStoryboardinalysis(void)

{
Rect theRect;

SetRect{&theRect,ANALYSIS_LEFT,ANALYSIS_TOP,ANALYSIS_RIGHT,ANALYSIS_BOTTOM):
InvalRect (&theRect) ;
}

void DisplayStoryboardAnalysis(void)

ORB:thesis:thesis code Page
Saturday, May 8, 1993 17:29

short clipIndex, shotIndex, x;
MoovHandle moovNode;
Movie shotClip;

TimeValue clipburation, clipTimeScale, clipSeconds,
totalTimeScale, totalDuration, totalSeconds;

int left, right;

Rect theRect;

RGBColor theCeclor, curFore, curBack;
Pattern dimPat;

Rect dRect;

int colorIconlD;

CIconHandle dCIcon=NIL_ POINTER;
StringHandle cameraMotion;

GetForeColor (&curFore) ;
GetBackColor (&curBack) ;

/* set pattern so that we draw w/ the background color */
GetIndPattern (&dimPat,0,20);
PenPat (dimPat) ;

/* calculate length of entire sequence */

totalDuration = GetMovieDuration (gStoryMovie):

totalTimeScale = GetMovieTimeScale (gStoryMovie):

totalSeconds = totalDuration/totalTimeScale; /* convert to seconds */

/* iterate through sequencer and calculate times. NOTE: all times converted
to seconds since there can be different time scales */
for (x=0,left=right=ANALYSIS LEFT-1;x<NUMBER SHOTS:Xx++, left=right+1) {
/* get the clip for shot x */
shotIndex = ShotRankToIndex (x):
/* if there are no clips, skip to next shot */
if (!ShotNumberClips (shotIndex)) continue;
if (!ShotEnabled(shotIndex)) continue;
/* get the movie of the active clip */
clipIndex = ShotActiveClip (shotIndex):
moovNode = ShotMoovNode (shotIndex, clipIndex):
shotClip = MoovNodeMovielID (moovNode) ;

/* calculate length */

clipDuration = GetMovieDuration (shotClip):

clipTimeScale = GetMovieTimeScale (shotClip);

clipSeconds = clipDuration/clipTimeScale; /* convert to seconds */

/* calculate rectangle */

right = left+((clipSeconds* (ANALYSIS RIGHT-ANALYSIS LEFT))/totalSeconds):
if (right>ANALYSIS RIGHT) right = ANALYSIS RIGHT;

SetRect (&theRect, left, ANALYSIS TOP,right,ANALYSIS BOTTOM) ;

ORB:thesis:thesis code Page 21
Saturday, May 8, 1993 17:29

/* draw rectangle */

colorIconID = AssignIconToMovieByDuration (shotClip):
dCIcon = GetCIcon(colorIconID);
PlotCIcon(itheRect,dCIcon):

DisposCIcon (dCIcon) ;

MoveTo (theRect.right,theRect.top) ;

LineTo (theRect.right, theRect.bottom);

/* draw num id */
if (gShowShotNumbers) {
SetRect (&theRect, theRect.left+l,theRect.top+l,theRect.left+1+SMALL NUMS_SI
dCIcon = GetCIcon (SMALL NUMS OFFSET+x+1):
PlotCIcon(&theRect,dCIcon);
DisposCIcon (dCIcon):

/* draw cam motions */
if (gShowShotCam) {
cameraMotion = GetMovieCameraMovement (shotClip):
dCIcon = NIL;
/* figure out which camera movement and assign the proper cicn */
if (EqualString((char *) *cameraMotion,LEFT_ STRING, FALSE, FALSE))
dCIcon = GetCIcon (ARROW_LEFT CICN):
~lse if (EqualString((char *) *cameraMotion, RIGHT STRING,FALSE,FALSE))
dCIcon = GetCIcan (ARROW RIGHT CICN);
clse if (EqualStrin. ((char *) *cameraMotion,UP_STRING, FALSE, FALSE))
dCIcon = GetCIcon (ARROW _UP_CICN);
else if (EqualString((char *) *cameraMotion,DOWN_ STRING, FALSE, FALSE))
dCIcon = GetCIcon (ARROW _DOWN_CICN);
else if (EqualString((char *) *cameraMotion,ZOOM STRING,FALSE,FALSE))
dCIcon = GetCIcon (ARROW ZOOM CICN);
/* show the cicn */
if (dCIcon) {
SetRect (&theRect, left, ANALYSIS TOP, right, ANALYSIS BCTTOM)
SetRect (&theRect, (theRect.left+theRect.right-ARROW SIZE)/2,
(theRect.top+theRect.bottom-ARROW SIZE)/2,
(theRect.left+theRect.right+ARROW SIZE)/2,
(theRect.topt+theRect.bottom+ARROW SIZE)/2);
PlotCIcon(&theRect,dCIcon):
DisposCIcon(dCIcon):

}

}

/* cleanup any error */

if (left<ANALYSIS RIGHT) {
SetRect (&theRect, left, ANALYSIS TOP,ANALYSIS RIGHT,ANALYSIS BOTTOM);
EraseRect (&theRect) ;

}

/* restore fore/back colors to ensure proper drawing */
GetIndPattern (&dimPat,0,1):

FonPat (2imPat) ;

RGBBackColor (&curBack) ;

ORB:thesis:thesis code Page 22
Saturday, May 8, 1993 17:29

}

void ArrangeStoryline (short baseShotRank)

{
WindowPtr arrangeWin, theWindow;
RGBColor curFore, curBack;

register short shotRank;

short shotIndex, clipIndex, numClipsShots,
leftPos, topPos, delta, x;

Rect frameRect, dRect, oldRect:

short newRankedShotActiveClip [NUMBER SHOTS]:

Boolean newEnabledFlags [NUMBER SHOTS];

PicHandle picen:

Pattern dimPat;

EventRecord theEvent;
Boolean done;
Point mouselLoc;

long buttonlID;
ControlHandle OKButton, XButton, theControl;
CIconHandle dCIcon:

Boolean inButton;

PointerCursor():
/* allocate new sequencer window */
arrangeWin = GetNewCWindow (STORY FORMATTER ID, NIL POINTER, MOVE_TO_FRONT);
if (!arrangeWin) {
DisposeHandle (arrangeWin) ;
ErrorDisplay (OOM_ARRANGER,NIL);
return;

}

/* set as active grafport, show, and select window */
ShowWindow (arrangeWin) ;

SelectWindow (arrangeWin) ;

SetPort (arrangeWin) ;

/* set fore/background colors to ensure clean copybits operation */
GetForeColor (&curFore) ;

GetBackColor (&curBack) ;

RGBForeColor (dkGray) ;

/* draw cosmetics */
DrawBeveledBar (BAR2 LEFT, BAR2 TOP,BAR2_RIGHT,BARZ BOTTOM);
/* draw circles */
dCIcon = GetCIcon (CIRCLE_CICN);
for (shotRank=baseShotRank,1eftPos=LEF$_POS+(MECON_SMALL_H/Z)-(CIRCLE_RIDTH/Z):
shotRank<baseShotRank+NUMBER PHYSICAL FRAMES; shotRank++,leftPos+=MICON_S*
shotIndex = ShotRankToIndex (shotRank):;

ORB:thesis:thesis code Page 23
Saturday, May 8, 1993 17:29

if (ShotEnabled (shotIndex))
dCIcon = GetCIcon(CIRCLE_CICN+shotRank);
else
dCIcon = GetCIcon(CIRCLE DIM CICN+shotRank);
SetRect (&dRect, leftPos, BAR2 TOP-CIRCLE HEIGHT-5, leftPos+CIRCLE_WIDTH, BARZ TOP-
PlotCIcon (&dRect, dCIcon) ;
DisposCIcon(dCIcon);
}

/* draw buttcons */
OKButton=Get!l. -wControl (FOK_BUTTON, arrangeWin);
XButton=GetNewControl (FX BUTTON, arrangeWin) ;
if (OKButton) {

DrawlControl (OKButton);

DrawlControl (XButton):
}
else

return;

/* draw a bevel and micon for each clip */
for (shotRank=baseShotRank,leftPos=LEFT_ POS:shotRank<baseShotRank+NUMBER PHYSICAL
shotRank++,leftPos+=MICON_SMALL_ H+DELTA H) {
shotIndex = ShotRankToIndex (shotRank):;
numClipsShots = ShotNumberClips (shotIndex);
for (clipIndex=0,topPos=TOP_POS:clipIndex<numClipsShots;clipIndex++,
topPos+=MICON_ SMALL V+
/* draw beveled frame for micon */
SetPort (arrangeWin) ;
DrawBeveledFrame (topPos, leftPos, topPos+MICON SMALL V, leftPos+MICON SMALL H

picon = GetMoviePosterPict (MoovNodeMovieID (ShotMoovNode (shotIndex,clipInde
SetRect (&frameRect, leftPos, topPos, leftPos+MICON SMALL F, topPos+MICON SMALL
DrawPicture (picon, &frameRect) ;
if (picon) KillPicture (picon):

/* grey out the non-active clips */
if (ShotActiveClip (shotIndex) !=clipIndex) {
GetIndPattern (&dimPat,0,7):
PenPat (dimPat) ;
PenMode (patOr):;
PaintRect (&frameRect):
PenMode (patCopy):

}

/* init shot active clip list */

for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSICAIL, FRAMES: shotRank
shotIndex = ShotRankToIndex (shotRank);
newRankedShotActiveClip[shotRank-baseShotRank] = ShotActiveClip (shotIndex):

}

for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSICAL FRAMES; shotRank
shotIndex = ShotRankToIndex (shotRank):

ORB:thesis:thesis code Page 24
Saturday, May 8, 1993 17:29

newEnabledFlags [shotRank-baseShotRank] = ShotEnabled(shotIndex);
}

SetPort (arrangeWin) ;
/* handle events */
done = FALSE;
while (!done) {
/* get event */
if ((NGetTrapAddress (WNE TRAP NUM, ToolTrap) !=
NGetTrapAddress (UNIMPL_TRAP_NUM, ToolTrap)))
WaitNextEvent (everyEvent, &theEvent, SLEEP, NIL MOUSE REGION);
else
{
SystemTask () :
GetNextEvent (everyEvent, &theEvent);
}
/* handle event */
switch (theEvent.what)
{
case mouseDown:
mouseLoc = theEvent.where;
GlobalToLocal (&mouselLoc) ;
FindWwindow (theEvent.where, &theWindow):;
if (theWindow!=arrangeWin) return;
/* click in a control? (the X or OK buttons */
FindControl (mouselLoc, theWindow, &theControl) ;
if (theControl!=NIL) {
buttonID = GetCRefCon (theControl):
if (buttonID==FOK ID) {
HiliteControl (OKButton, HILITED):
/* update sequence list */
for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSI
s
SetShotActiveClip (shotRank, newRankedShotActiveClip[shotRan
/* update enabled shot list */
for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSI
shotRank++
shotIndex = ShotRankToIndex (shotRank):
ShotEnabled (shotIndex) = newEnabledFlags[shotRank]:;
}
/* recompcse movie */
ComposeStoryboardMovie () ;
/* redraw graphics */
InvalStoryboardDisplayFrames{(0,7);
InvalStoryboardhAnalysis():
done = TRUE;
}
else {
HiliteControl (XButton,HILITED);
done = TRUE;
}

}
/* check to see if mouse clicked in a picon frame */

ORB:thesis:thesis code Page 25
Saturday, May 8, 1993 17:29

for (shotRank=baseShotRank,leftPos=LEFT POS;shotRank<baseShotRank+NUMB
leftPos+=MICON SMALL H
shotIndex = ShotRankToIndex (shotRank):;
numClipsShots = ShotNumberClips (shotIndex);
for (clipIndex=0,topPos=TOP_POS:clipIndex<numClipsShots;clipIndex+
topPos+=MICON_SMALL V+
SetRect (&frameRect, leftPos, topPos, 1eftPos+MICON_SMALL H, topPos
if (PtInRect (mouseLoc, &frameRect)) {
/* mouse was clicked in this frame! */
if (delta=newRankedShotActiveClip[shotRank-baseShotRank]-c
/* activate this frame */
picon = GetMoviePosterPict (MoovNodeMovieID (ShotMoovNod
SetRect (&frameRect, leftPos, topPos, leftPos+MICON SMALL
DrawPicture (picon, &frameRect) ;
if (picon) KillPicture(picon):
/* dim out old active frame */
SetRect (&frameRect, leftPos, topPos+delta* (MICON SMALL V
leftPOS+MECON_SMALL_H,topPos+delta
+MICON_SMA
GetIndPattern (&dimPat,0,7):
PenPat (dimPat) ;
PenMode (patOr):;
PaintRect (&frameRect);
PenMode (patCopy):
/* update new active clip list */
newRankedShotActiveClip[shotRank-baseShotRank] = clipIl

}
}

/* check to see if mouse clicked on a shot number circle */
for (shotRank=baseShotRank,leftPos=LEFT_?OS+(MICON_SMALL_H/Z)—{CIRCLE;
shotRank<baseShotRank+NUMBER PHYSICAL FRAMES; shotRank++,leftP
SetRect (&dRect, leftPos, BAR2 TOP-CIRCLE_HEIGHT-5, leftPos+CIRCLE WID
if (PtInRect (mouseLoc, &dRect)) ({
if (newEnabledFlags[shotRank]) {
newEnabledFlags[shotRank] = FALSE;
dCIcon = GetCIcon(CIRCLE DIM CICN+shotRank):
}
else {
newEnabledFlags [shotRank] = TRUE;
dCIcon = GetCIcon(CIRCLE_CICN+shotRank) :
}
PlotCIcon(&dRect,dCIcon):
DisposCIcon (dCIcon):;
}
}
for (shotRank=baseShotRank, leftPos=LEFT POS:shotRank<baseShotRank+NUMB
leftPos+=MICON_SMALL H
shotIndex = ShotRankToIndex (shotRank});
numClipsShots = ShotNumberClips (shotIndex)
for (clipIndex=0,topPos=TOP_POS:clipIndex<numClipsShots;clipIndex+
topPos+=MICON SMALL V+

ORB:thesis:thesis code Page 26
Saturday, May 8, 1993 17:29

SetRect (&frameRect, leftPos, topPos, leftPos+MICON SMALL H, topPo o
if (PtInRect (mouselLoc, &frameRect)) {
/* mouse was clicked in this frame! */
if (delta=newRankedShotActiveClip[shotRank-baseShotRank]-c
/* activate this frame */
picon = GetMoviePosterPict (MoovNodeMovieID (ShotMoovNod
SetRect (&frameRect, leftPos, topPos, 1eftPoS+MICON SMALL
DrawPicture (picon, &frameRect) ;
if (picon) KillPicture(picon):
/* dim out old active frame */
SetRect (¢frameRect, leftPos, topPos+delta* (MICON SMALL V
leftPos+MECON SMALL H, topPos+delta
+MICON_SMA
GetIndPattern (&dimPat,0,7):;
PenPat (dimPat) ;
PenMode (patOr):
PaintRect (&frameRect):
PenMode (patCopy):
/* update new active clip list */
newRankedShotActiveClip[shotRank-baseShotRank] = clipI

}

break:;
case updateEvt:
mouseLoc = theEvent.where;
GlobalToLocal (&mouseloc) ;
inButton = FALSE;
/* check to see if mouse within a shot number circle */
for (shotRank=baseShotRank,leftPos=LEFT ' POS+ (MICON SMALL , H/2)- (CIRCLE _
shotRank<baseShotRank+NUMBER PHYSICAL FRAMES; shotRank++,leftP
SetRect (&dRect, leftPos, BARZ2 TOP- CIRCLE HEIGHT-S leftPos+CIRCLE WID
if (PtInRect (mouseLoc, &dRect))
inButton = TRUE:
}
/* see if mouse w/in a picon frame */
for (shotRank=baseShotRank,leftPos=LEFT POS:shotRank<baseShotRank+NUMB
leftPos+=MICON SMALL H+DEL
shotIndex = ShotRankToIndex (shotRank) ;
numClipsShots = ShotNumberClips (shotIndex);
for (clipIndex=0,topPos=TCP_POS;clipIndex<numClipsShots;clipIndex+
topPos+=MICON SMALL V+
SetRect (&frameRect, leftPos, topPos, leftPos+MICON SMALL H,topPos
if (PtInRect (mouseloc, &frameRect))
inButton = TRUE;
}
}
if (inButton)
HandCursorPoint () ;

else =

PointerCursor () ;

ORB:thesis:thesis code Page 27
Saturday, May 8, 1993 17:29

break;
case keyDown:
switch ((theEvent.message)&charCodeMask)
{
case 0x0d: /* [Return] pressed or .. */
case 0x03: /* .. [Enter] pressed */
/* hilite OK key
GetDItem(theDlg, OK_ITEM, &iType, &button, &iRect); */
HiliteControl (OKButton, HILITED); ,
/* update sequence list */
for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSI
shotRank++
SetShotActiveClip (shotRank, newRankedShotActiveClip[shotRan
/* update enabled shot list */
for (shotRank=baseShotRank; shotRank<baseShotRank+NUMBER PHYSI
shotRank++
shotIndex = ShotRankToIndex (shotRank) :
ShotEnabled (shotIndex) = newEnabledFlags[shotRank]:
}
/* recompose movie */
ComposeStoryboardMovie () ;
/* redraw graphics */
InvalStoryboardDisplayFrames(0,7);
InvalStoryboardAnalysis();

/* exit */
done = TRUE;
break;

case '.':
if (theEvent.modifiers & cmdKey) done = TRUE;
HiliteControl (XButton, HILITED);
break;
case 0Oxlb: /* [Esc) pressed */
/* hilite Cancel key
GetDItem (theDlg, CANCEL ITEM, &iType, &button, &iRect); */
HiliteControl (XButton, HILITED);
/* return cancel key */

done = TRUE;
break:
default:

break:

}

break;

default:
break;

}

/* Dispose of data structures */
CloseWindow (arrangeWin) ;

/* restore original state */
RGBForeColor (&curFore) ;
RGBBackColor (&curBack) ;

ORB:thesis:thesis code Page 28
Saturday, May 8, 1993 17:29

}
/* movie information (user-data & inherent info) routines *****xkkkdkkrxxkkkhkhkkrkhhk /

/* routine will get the camera movement string associated with a movie */
StringHandle GetMovieCameraMovement (Movie movieID)
{

UserData dataList;

StringHandle camMove;

camMove = NewString("\p<No Entry>");
SetHandleSize (camMove, 256) ;

datalList = GetMovieUserData (movielD);
if (CountUserDataType (dataList,MOTION DATA)) {
GetUserDataText (datalist, (Handle) camMove,MOTION DATA,1,0);

}

return (camMove) ;
}
void SetMovieCameraMovement (Movie movielID, StringHandle camMove)
{

UserData datalList;

QOSErr error;

datalist = GetMovieUserData (movieID);
AddUserDataText (datalist, (Handle) camMove,MOTION DATA,1,0):
}

/* function expects the address of a 9-byte unsigned char array "char durString[9]" */
void GetMovieDurationString (Movie movieID, char *durationString)
{

TimeValue movieDuration,movieTimeScale;

short durationHours, durationMinutes, durationSeconds:;

char hours[3],minutes[3], seconds([3]:

movieDuration = GetMovieDuration (movielD);
movieTimeScale = GetMovieTimeScale (movielD);
durationSeconds (movieDuration/movieTimeScale) %60;
durationMinutes = (((movieDuration/movieTimeScale)-durationSeconds)%3600)/60;
durationHours = ((movieDuration/movieTimeScale)-durationSeconds-durationMinutes) /3
NumToString (durationHours, hours);
if (durationHours<10) {
hours[2] = hours[l]:
hours[l]) = '0';

}
NumToString(durationMinutes,minutes);
if (durationMinutes<10) {
minutes[2] = minutes[1]:
minutes[1l]) = '0';
}
NumToString(durationSeconds, seconds) ;
if (durationSeconds<10) {

ORB:thesis:thesis code Page 29
Saturday, May 8, 1993 17:29

seconds[1];
fOI:

seconds[2]
seconds[1]

}

/* set up final duration string */
durationString[0]=8;
durationString[l]=hours[1l];
durationString([2]=houxs[2]:
durationString([3]=duracionString([6]=":";
durationString[4]=minutes([1l]:
durationString[S5]=minutes[2];
durationString([7]=seconds([1l];
durationString[8]=seconds[2];

}

/* Sequencer Clip bin routines e v o e v vk v vk e o v v o ok e o v v e ok e de ok Tk e o i e e v ok 7 e v vk ok o e e ke ok e e e b g ok ke ke ok
these clips constitute the visual bins library **k&x#kkkskkkkhkhkhkhhhkhhkhhhkhhhxkrrs /

/* add a movie, from a passed movie file, to the moov list of the current bin */
void AddClip(StandardFileReply filelInfo)

{

OSErr error;

FSSpec fileSpec;
MoovHandle moovNode;

short resRefNum, resID;
Movie theMovie;

/* vars for setting up micon frame */
Point centerWindow;
Rect modelFrame, defaultFrame, frame;

/**** init vars */
fileSpec = fileInfo.sfFile;
BusyCursor () :

/**** add a new moov node to current bin, and assign it to moovNode */
if (!AddMoovNodeToCurBin()) ({
ErrorDisplay (OOM CLIPS,NIL);
return;
}
moovNode = BinMocovNodeList (gCurrentBin);

/**** open movie file & update moovNode */

OpenMovieFile (&fileSpec, &resRefNum, 0) ;

if ((error=GetMoviesError ()) !=noErr) {
/* RemoveMoov (padNode, KILL FIRST MOOV, IGNORE MICON); */
ErrorDisplay (NIL,error);
return;

}

MoovNodeResRefNum (moovNode) = resRefNum;

MoovNodeFileInfo (moovNode) = fileInfo;

/* assign it to movie */
resID = 0;

ORB:thesis:thesis code
Saturday, May 8, 1993 17:29

}

NewMovieFromFile (§theMovie, resRefNum, &xresID,NIL, 0,NIL) ;
if ((error=GetMoviesError()) !=noErr) {

/* RemoveMoov (padNode, KILL FIRST MOOV,IGNORE MICON); */

ErrorDisplay (NIL, error);
return;
} ;
MoovNodeMovielID (moovNode) = theMovie:;
MoovNodeResID (moovNode) = resID;
/* CloseMovieFile (resRefNum); */

/* setup miconlocation */

GetMovieBox (theMovie, &defaultFrame) :
MoovNodeDefaultFrame (moovNode) = defaultFrame;

SetRect (&frame, BIN_LEFT, BIN TOP,BIN RIGHT, BIN _BOTTOM);
RectToCenterPoint (frame, ¢erWindow) ;

SetRect (&modelFrame, 0,0, MICON SMALL H,MICON SMALL V);
CenterRectAboutPoint (centerWindow, modelFrame, &frame) ;
MoovNodeMiconFrame (moovNode) = frame;

/* set as micon */
SetActiveMicon (moovNode) ;

/* clean up */
PointerCursor () :

/* THIS IS PART OF MY SOUND BHACK */
void SpecifySoundClip(StandardFileReply fileInfo)

{

OSErr error;

FSSpec fileSpec:

MoovHandle moovNode;

short resRefNum, resID;

Movie theMovie;

/* vars for setting up micon frame */

Point centerWindow;

Rect modelFrame, defaultFrame, frame;

if (!fileInfo.sfGood) {
gSoundClip = NIL POINTER;
return;

}

/**** init vars */
fileSpec = fileInfo.sfFile;
BusyCursor () :

/**** open movie file & update moovNode */
OpenMovieFile (&fileSpec, &resRefNum, 0) ;
if ((error=GetMoviesError()) !=noErr) {

/* RemoveMoov (padNode, KILL_FIRST MOOV, IGNORE MICON); */

ErrorDisplay (NIL, error);
return;

Page 30

ORB:thesis:thesis code Page 31
Saturday, May 8, 1883 17:29

}

/* assign it to movie */

resID = 0;
NewMovieFromFile (&theMovie, resRefNum, &resID, NIL, 0, NIL);
if ((error=GetMoviesError ()) !=noErr) {

/* RemoveMoov (padNode, KILL FIRST MOOV, IGNORE MICON); */
ErrorDisplay (NIL, error);
return;

}
/* CloseMovieFile (resRefNum); */

/* set as micon */
gSoundClip = theMovie;
ComposeStoryboardMovie () ;

/* clean up */
PointerCursor () ;
}

/* add a moovnode to the beginning of the current bin's moov list; return
TRUE if successful, else FALSE */
Boolean AddMoovNodeToCurBin(void)

{
MoovHandle newNode;

newNode = (MoovHandle) NewHandle (sizeof (struct MoovNode)):
if (!newNode) {

ErrorDisplay (OOM,NIL) ;

return (FALSE) ;
}

/* place in list */

MoovNodeNext (newNode) = BinMoovNodeList (gCurrentBin);
MoovNodePrev (newNode) = NIL POINTER:

MoovNodePrev (BinMoovNodeList (gCurrentBin)) = newNode;

/* field initialization */
MoovNodeMovielD (newNode) = NIL POINTER:
MoovNodeStoryRefs (newNode) = NIL;

BinMoovNodeList (gCurrentBin) = newNode:
return (TRUE) ;
}

/* get the moov node of the current page w/ the passed movieID */
MoovHandle FindMoovNode (Movie movielID)

{
MoovHandle moovNode;

moovNode = BinMoovNodeList (gCurrentBin);

while (moovNode)
if (MoovNodeMovieID (moovNode)==movielD)

ORB:thesis:thesis code Page 32
Saturday, May 8, 1993 17:29

break;
else
moovNode = MoovNodeNext (moovNode) :

return (moovNode) ;
}

MoovHandle LocateMoovNode (Point mouselLoc)
{

MoovHandle moovList;

Rect boundsRect;

moovList = BinMoovNodeList (gCurrentBin);

while (moovList) {
boundsRect = MoovNodeMiconFrame (moovList);
if (PtInRect (mouseLoc, &boundsRect))

break:;

moovList = MoovNodeNext (moovList):

}

return (moovList):

}

/* function will kill the moovnode associated with a movie, or if passed NIL

as a movie, will kill the first mocovnode of the passed bin */
void RemoveMoov (Movie movielID, short binNum, Boolean eraseMicon,Boolean checkReferences®
{

WindowPtr curPort;

MoovHandle moovNode;

Rect miconFrame;

OSErr error;

/* if not passed a specific movielID, then just take the first moovnode of the
current bin, else find the right moovnode that matches the passed movieID */
if (!'movielD) {
moovNode = BinMoovNodeList (binNum) :
movieID = MoovNodeMovieID (moovNode) ;
}
else
moovNode = FindMoovNode (movielD);

/* couldn't find any moov node? */
if (!moovNode) ({
ErrorDisplay (MOOVNODE, NIL) ;
return;

}

/* if the storyboard references this moovnode, then we can't remove the node cuz
we need to keep the associated movie file open */
if (checkReferences) {
if (MoovNodeStoryRefs (moovNode)) {
ErrorDisplay (REF_CONFLICT,NIL):
return;

ORB:thesis:thesis code
Saturday, May 8, 1993 17:29

}

}

/*** detach node from list */
if (MoovNodePrev (moovNode) !=NIL POINTER)
/* case: deleting a moov node that is not the first =*/
MoovNodeNext (MoovNodePrev (moovNode)) = MoovNodeNext (moovNode) ;
else
/* case: deleting the first moov node */
BinMoovNodeList (binNum) = MoovNodeNext (moovNode) ;
if ((*moovNode)->next!=NULL)
/* case: deleting a moov nod ethat is not the last */
MooviNodePrev (MoovNodeNext (moovNode)) = MoovNod«=*rev (moovNode) ;

/**** disable micon (if necessary) and erase it */
if (movieID==gActiveMicon)
SetActiveMicon (CLEAR MICON) ;
if (eraseMicon) {
GetPort (&curPort) ;
SetPort (gSequencerWin) ;
miconFrame = MoovNodeMiconFrame (moovNode) ;
EraseRect (&émiconFrame) ;
InvalRect (émiconFrame) ;
SetPort (curPort);
}
[**** delete it */
DisposeMovie (movielID);

if ((error=GetMoviesError()) !=noErr) {
ErrorDisplay (NIL,error);
return;

) I £

CloseMovieFile (MoovNodeResRefNum (moovNode)) ; */

DisposHandle (moovNode) ;

/* removes all the moov nodes associated with a bin */
void RemoveAllBinMoovNodes (short binNum)

{

}

MoovHandle moovNode;

moovNode = BinMoovNodeList (binNum) ;
while (moovNode) {
moovNode = MoovNodeNext (moovNode) ;
RemoveMoov (NIL, binNum, NIL, NIL) ;

/* set/reset the active micon */
void SetActiveMicon (MoovHandle moovNode)

{

Rect piconFrame, oldFrame;
OSErrxr error;

Page 33

ORB:thesis:thesis code Page
Saturday, May 8, 1993 17:29

TimeValue previewTime, previewDuration, prevTimeScale, prevDurationSeconds:

/*** check if special request */
/* check if moovNode==NIL, which means no active movie, and stop previous
active movie if any */
if (moovNode=CLEAR MICON) { 5
if (gActiveMicon) {
SetMovieActive (gActiveMicon, FALSE) ;
StopMovie (gActiveMicon) ;
ShowMoviePoster (gActiveMicon) ;
SetMoviePreviewMode (gActiveMicon, FALSE) ;
SetMovievVolume (gActiveMicon, kFullVolume) ;
gActiveMicon = NIL;
}
return;
}
if (moovNode==SUSPEND_ MICON) {
if (gActiveMicon)
SetMovieActive (gActiveMicon, FALSE) ;
return;
}
if (moovNode==RESUME MICON) {
if (gActiveMicon)
SetMovieActive (gActiveMicon, TRUE) ;
return;

}

/**** get new active micon */
if (gActiveMicon==MoovNodeMovielID (mocvNode)) return;
piconFrame = MoovNodeMiconFrame (moovNode) ;

/* stop old micon */

if (gActiveMicon!=NIL) {
/* inval old movie frame so it is redrawn */
GetMovieBox (gActiveMicon, &oldFrame) ;
InvalRect (&oldFrame) ;
/* disable old active movie (micon) */
SetMovieActive (gActiveMicon, FALSE) ;
StopMovie (gActiveMicon);
SetMoviePreviewMode (gActiveMicon, FALSE) ;
SetMovieVolume (gActiveMicon, kFullVolume) ;

}
gActiveMicon = MoovNodeMovieID (moovNode) ;

/**** enable new active movie (micon) */
/* resize */
SetMovieBox (gActiveMicon, &épiconFrame) ;
error = GetMoviesError():
/* set preview if necessary */
GetMoviePreviewTime (gActiveMicon, &previewTime, &previewDuration) ;
if (previewTime==0) {
previewDuration = GetMovieDuration(gActiveMicon);
prevTimeScale = GetMovieTimeScale (gActiveMicon);

34

ORB:thesis:thesis code Page 35
Saturday, May 8, 1993 17:29

prevDurationSeconds = previewDuration/prevTimeScale; /* convert to seconds
if (prevDurationSeconds>4)
previewDuration = prevTimeScale*4; /* cap at 4 seconds */

SetMoviePreviewTime (gActiveMicon, previewTime, previewDuration);

previewTime = 0;

}

SetMoviePreviewMode (gActiveMicon, TRUE) ;

/* start it */

SetMovieVolume (gActiveMicon, kNovolume) ;

StartMovie (ghctiveMicon);

}

/* display the picon of the passed moovNode */
void DisplayMoovNodePicon (MoovHandle moovNode)

{
WindowPtr oldrPort;

Movie theMovie, activeMicon;
Rect piconFrame;

OSErr error;

Boolean movieActive;

/* init vars */

theMovie = MoovNodeMovielID (moovNode) ;
piconFrame = MoovNodeMiconFrame (moovNode) ;
movieActive = GetMovieActive (theMovie):

/* if the requested movie is already a micon, and it is in the

front window (meaning it is actually being serviced and running), then exit */
if ((theMovie==gActiveMicon) && (FrontWindow ()=gSequencerWin))

return;

/* setup */

GetPort (&oldPort) ;

SetPort (gSequencerWin) ;
SetMovieGWorld (theMovie, NIL,NIL) ;
SetMovieBox (theMovie, &piconFrame) ;
SetMovieActive (theMovie, TRUE) ;

/* show it */
ShowMoviePoster (theMovie) ;

/* restore old settings */
SetMovieActive (theMovie,movieActive);
SetPort (oldPort) ;

}

/* display a text label under the moovnode's movie */
void DisplayMoovNodeTextLabel (MoovHandle moovNode, Boolean clear)
{

WindowPtr oldPort;
Rect piconFrame, textFrame;
RgnHandle visRegion, oldVisRgn:

RGBColor dColor;

ORB:the

sis:thesis code Page 36

Saturday, May 8, 1993 17:29

char duration[9]:
char *displayString;
StringHandle movieCopy:
UserData datalist;

if (gTextTag==NO_TAG) return;

/* set port and clip region */

GetP

ort (&oldPort) ;

SetPort (gSequencerWin) ;

visRegion = NewRgn():

SetRectRgn (visRegion, BIN_LEFT, BIN TOP,BIN_ RIGHT,BIN_ BOTTOM) :
oldvVisRgn = gSequencerWin->visRgn;

gSequencerWin->visRgn = visRegion;

/* s
dCol
dCol
dCol
RGBF

* 4

et pen color to dark grey */
or.red = 10000;

or.green = 5000;

or.blue = 10000;

oreColor (&dColor) ;

nit vars */

piconFrame = MoovNodeMiconFrame (moovNode) ;

swit
{

}

ch (gTextTag)

case NAME TAG:
displayString = (char *) MoovNodeFileInfo (moovNode) .sfFile.name;
break;

case DURATION TAG:
GetMovieDurationString (MoovNodeMovieID (moovNode) ,duration) ;
displayString = duration;
break:;

case COPYRIGHT TAG:
datalList = GetMovieUserData (MoovNodeMovieID (moovNode)) :
movieCopy = NewString("\p<No Entry>"):
SetHandleSize (movieCopy, 256) ;
if (CountUserDataType (dataList,COPYRIGHT DATA)) {

GetUserDataText (datalist, (Handle) movieCopy, COPYRIGHT DATA,1,0);

}
displayString = (char *) *movieCopy;
break;

default:
break;

/* define text box */

text
text
if (

else

Frame.left = ((piconFrame.right+piconFrame.left)/2)-StringWidth(displayString)
Frame.right = textFrame.left+StringWidth (displayString):

gColorTag==NO_TAG)

textFrame.top = piconFrame.bottom+l;

textFrame.top = piconFrame.bottom+6;

ORB:thesis:thesis code Page
Saturday, May 8, 1993 17:29

}

textFrame.bottom = textFrame.top+10;

/* display text in text box, or clear the box */
if (!clear) {
MoveTo (textFrame. left, textFrame.bottom) ;
DrawString (displayString):
}
else {
MoveTo (textFrame.left, textFrame.top)
textFrame.bottom += 3;
InvalRect (&textFrame);
EraseRect (&textFrame);

/* restore fore/back colors to ensure proper drawing */
RGBForeColor (black) ;

/* clean up port */
gSequencerWin->visRgn = oldvisRgn;
DisposeRgn (visRegion) ;

SetPort (oldPort) ;

/* display a color label under the moovnode's movie */
void DisplayMoovNodeColorLabel (MoovHandle moovNode,Boolean clear)

{

WindowPtr oldPort;

Rect piconFrame, colorFrame;
RgnHandle oldvisRgn, visRegion;
RGBColor dColor;

int colorIconID;

CIconHandle dCIcon;
if (gColorTag==NC_TAG) return;

/* setup port and visrgn */

GetPort (&oldPort) :

SetPort (gSequencerWin) ;

visRegion = NewRgn{():

SetRectRgn (visRegion, BIN LEFT,BIN TOP,BIN RIGHT,BIN_ BOTTOM);
oldVisRgn = gSequencerWin->visRgn;

gSequencerWin->visRgn = visRegion:

/* init vars */
piconFrame = MoovNodeMiconFrame (moovNode) ;
switch (gColorTag)
{
case DURATION TAG:
colorIconID = AssignIconToMovieByDuration (MoovNodeMovieID (moovNode));
break;
default:

37

ORB:thesis:thesis code Page 38
Saturday, May 8, 1993 17:29

break;
}

/* define and draw the color box */
SetRect (&colorFrame,piconFrame.left, piconFrame.bottom, piconFrame.right, piconFrame.
if (!clear) { .
dCIcon = GetCIcon{colorIconlID):;
PlotCIcon(&colorFrame,dCIcon);
DisposCIcon(dCIcon);
}
else {
InvalRect (&colorFrame) ;
EraseRect (&colorFrame) ;

}

/* restore fore/back colors to ensure proper drawing */
RGBForeColor (black) ;

/* clean up port */
gSequencerWin->visRgn = oldVisRgn;
DisposeRgn (visRegion) ;
SetPort (oldPort) ;

}

/* passed a movie, will return the ID of a cicn that marks the duration of the
movie. in this app, the cicn is a colored box. */

int AssignIconToMovieByDuration(Movie movielID)

{

TimeValue movieTimeScale,movieDuration, totalSeconds:

movieDuration = GetMovieDuration (movieID):
movieTimeScale = GetMovieTimeScale (movielD):;
totalSeconds = (movieDuration/movieTimeScale);
if (totalSeconds<((TimeValue) 5))
return (SPEED_0);
else if (totalSeconds<((TimeValue) 20))
return (SPEED 1) ;
else if (totalSeconds<((TimeValue) 45))
return (SPEED_2);
else
return (SPEED_3):
}

veid AddPlayoutWindow (void)
{

MoovHandle moovNode;

moovNode = FindMoovNode (gActiveMicon);
AddMovieWin (MoovNodeFileInfo (moovNode) , MoovNodeMiconFrame (moovNode)) ;
}

/* Sequencer file rontines KRk kA Ak Ak kA Ak dh kR d kA hd kb khkhhkhkhhkhk
these routines show the "movie playout® library ****dkkdkkkkkkkhkkkhkhkkhkhkhkkkrkxrs /

ORB:thesis:thesis cocde Page 39
Saturday, May 8, 1993 17:29

/* given file information, will mark a padnode to that file */
void SetFileInfo (StandardFileReply fileInfo)
{

/* update name of window */

SetWTitle (gSequencerWin, (fileInfq.sfFile) .name):

}

/* moov controller related routines **/

/* note: functions centerRectAboutPoint, RectToCenterPoint, & ConvertRect are also
required and should be duplicated if this section is separated as an independent
file */

struct MovieWin {

struct MovieWin **next;
struct MovieWin **prev;
MovieController mcID;
Movie movielID;
WindowPtr windowID;

}:
typedef struct MovieWin **MovieWinHandle;

/* linked list of standard QT movie playout windows */
MovieWinHandle gMovieWins=NIL POINTER:

/* function prototypes */

static Boolean BaseMovieWin (MovieWinHandle):
static Boolean IsMovieWindow (WindowPtr);
static void RemoveMovieWin (WindowPtr) :
static void ZoomRect (Rect,® <,int);

/* programs that wish to use this playout library should first call this function */
void InitMovieWinList (void)
{

gMovieWins = (MovieWinHandle) NewHandle (sizeof (struct MovieWin));

I

(*gMovieWins)->next = NULL;

(*gMovieWins)->mcID = NULL;

(*gMovieWins)->movieID = NULL;

(*gMovieWins)->windowID = NULL;
}

static Boolean BaseMovieWin (movieWinNode)
MovieWinHandle movieWinNode:;
{
if ((*movieWinNode)->next)
return (FALSE) ;
else
return (TRUE) ;
}

static Boolean IsMovieWindow (windowID)
WindowPtr windowID;

ORB:thesis:thesis code
Saturday, May

}

8, 1993 17:29

MovieWinHandle movieWinNode;

movieWinNode

= gMovieWins:

while (!BaseMovieWin (movieWinNode)) {
if ((*movieWinNode)->windowID=windowID)
return (TRUE) ;
movieWinNode = (*movieWinNode)->next;

}

return (FALSE) ;

Page 40

/* programs that wish to use this playout library should insert this call into
their main event loop. the function will return TRUE if it acted on the
event, in which case the calling program can ignore the event. if FALSE
is returned, the calling program should continue to process the event normally */

Boolean HandleMovieWinEvent (theEvent, dragRect)

EventRecord theEvent;

Rect
{

while

dragRect;
WindowPtr windowlD;
MovieWinHandle movieWin;
Movie movieID;
int windowCode;

/* check if any active movie wins generated by this library */
if (! (movieWin = gMovieWins)) return;

windowID = (*movieWin)->windowID;

/* handle any controller actions */

(! BaseMovieWin (movieWin)) {

if (MCIsPlayerEvent ((*movieWin)->mcID, &theEvent))
return (TRUE) ;

movieWin
}

= (*movieWin)->next;

/* handle any window actions event */

{

switch (theEvent.what)

case mouseDown:
windowCode = FindWindow (theEvent.where, &windowlID) ;
switch (windowCode)

{

case inDrag:

if (IsMovieWindow (windowID)) {
DragWindow (windowID, theEvent .where, &dragRect) ;
return (TRUE) ;

}

else
return (FALSE) ;

case inGoAway:

if (IsMovieWindow (windowID)) {
if (TrackGoAway (windowID, theEvent.where))
RemoveMovieWin (windowID) ;

ORB:thesis:thesis code Page 41
Saturday, May 8, 1993 17:29

FixMenus () :
return (TRUE) ;
}
else
return (FALSE) ;
default: .
return (FALSE) ;
)
default:
/* we didn't do nothin! */
return (FALSE) ;

}

/* programs wishing to playout a movie should call this routine
note: sourceRect is the rect to zoom from */

void AddMovieWin (movieFileInfo, sourceRect)

StandardFileReply movieFileInfo;

Rect sourceRect;
{
FSSpec fileSpec;
short resRefNum;
Movie movielID;
Rect movieFrame, controllerFrame;
WindowPtr movieWindow;
MovieController mcID;
OSErr error;

MovieWinHandle oldMovieWindows:
fileSpec = movieFileInfo.sfFile;

/**** get a gt movie */
OpenMovieFile (&fileSpec, &resRefNum, 0) ;
if ((error=GetMoviesError()) !=noErr) {
ErrorDisplay (NIL,error);
return;
}
NewMovieFromFile (&émovieID, resRefNum, NIL,NIL, 0, NIL);
if ((error=GetMoviesError()) !=noErr) {
CloseMovieFile (resRefNum) ;
ErrorDisplay (NIL,error):;
return;

}
CloseMovieFile (resRefNum) ;

/* reset movie box origin to 0,0; convert source rect to global */
GetMovieBox (movielD, &movieFrame) ;

OffsetRect (&movieFrame, -movieFrame.left, -movieFrame.top);
SetMovieBox (movielD, &movieFrame) ;

sourceRect = ConvertRect (sourceRect,GLOBAL) ;

GoToBeginningOfMovie (movielD) ;

ORB:thesis:thesis code Page 42
Saturday, May 8, 1993 17:29

/**** prepare a new window */
movieWindow = GetNewCWindow(MOVIE*PLAYOUT_ID,NIL,MOVE_IO_FRONT):
SetWTitle (movieWindow, movieFileInfo,.sfFile.name);
SizeWindow (movieWindow, movieFrame.right,movieFrame.bottom, TRUE) ;
if (!movieWindow) {

ErrorDisplay (NIL,error); -

return;

}

/*** prepare movie */

SetPort (movieWindow) ;
SetMovieGWorld (movieID,NIL,NIL);
SetMovieActive (movielD, TRUE) ;
MoviesTask (movieID,NIL);

/**** prepare a new controller */
mcID = NewMovieController (movielID, & (movieWindow->portRect),
mcTopLeftMovie && mcWithBadge):

if (!mcID) {
ErrorDisplay (NIL,error);
return;

}

/* resize window */
MCGetControllerBoundsRect (mcID, &controllerFrame) ;

UnionRect (&movieFrame, &controllerFrame, &movieFrame) ;

SizeWindow (movieWindow, movieFrame.right, movieFrame.bottom, TRUE) ;

/* zoomrect */

movieFrame = movieWindow->portRect;
movieFrame = ConvertRect (movieFrame, GLOBAL) ;
ZoomRect (sourceRect, movieFrame, 4) ;
movieFrame = ConvertRect (movieFrame, LOCAL);
/* show the window */

ShowWindow (movieWindow) ;

SelectWindow (movieWindow) ;

/* update linked list */
oldMovieWindows = gMovieWins;
gMovieWins = (MovieWinHandle) NewHandle (sizeof (struct MovieWin)):;

if (!gMovieWins) {
ErrorDisplay (NIL,error):;
return;

}

(*gMovieWins)->next oldMovieWindows;
(*gMovieWins) ->prev = NULL;
{(*oldMovieWindows) ->prev = gMovieWins:
(*gMovieWins)->mcID = mcID;
(*gMovieWins) ->movieID = movielD;
(*gMovieWins) ->windowID = movieWindow;

I

}

static void RemoveMovieWin (windowID)

ORB:thesis:thesis code Page 43
Saturday, May 8, 1993 17:29

WindowPtr windowlID;

{
MovieWinHandle movieWinNode, tempNode;
Rect windowFrame, zoominFrame;
Point windowCenter;

/*** find the movie win node */
movieWinNode = gMovieWins:
while (!BaseMovieWin (movieWinNode)) {
if ((*movieWinNode)->windowID=windowID)
break:;
movieWinNode = (*movieWinNode)->next;
}
if (BaseMovieWin (movieWinNode)) return;

/* init vars (before trashing the window) */

windowFrame = ((*movieWinNode)->windowID)->portRect:

RectToCenterPoint (windowFrame, &éwindowCenter) ;

SetRect (&zoominFrame, windowCenter.h-1,windowCenter.v-1,windowCenter.h,windowCenter
windowFrame = ConvertRect (windowFrame, GLOBAL) ;

zoominFrame = ConvertRect (zoominFrame, GLOBAL) ;

/**** dispose of the stuff */

HLock (movieWinNode) ;
CloseComponent ((*movieWinNode) ->mcID) ;
DisposeMovie ((*movieWinNode) ->movielID) ;
DisposeWindow ((*movieWinNode) ->windowID) ;
HUnlock (movieWinNode) ;

/**** remove the movieWin node */
if ((*movieWinNode)->prev)
(* (*movieWinNode)->prev)->next = (*movieWinNode)->next:
else
/* we're deleting the first node, so reassign gmoviewins */
gMovieWins = (*movieWinNode)->next;
(* (*movieWinNode)->next) ->prev = (*movieWinNode)->prev;
DisposHandle (movieWinNode) ;

/* zoom in */
ZoomRect (windowFrame, zoominFrame, 4) ;
}

static void ZoomRect (startRect, endRect, numRects)
Rect startRect, endRect;
int numRects;

CGrafPtr desktopPort, curPort;

PenState curPen;

Point startPoint, endPoint, curPoint;
Rect curRect;

int delx,dely,i;

long delayTick;

ORB:thesis:thesis code Page 44
Saturday, May 8, 1993 17:29

/**** save state */
GetPort (&curPort) ;
GetPenState (&curPen) ;

/*** getup new state */

desktopPort = GetDesktopCGrafPort():
SetPort (desktopPort)

PenMode (patXor) ;

/**** draw the rects */

/* init vars */
RectToCenterPoint (startRect, &startPoint);
RectToCenterPoint (endRect, &endPoint) ;

delx = (endPoint.h - startPoint.h)/(numRects):

dely = (endPoint.v - startPoint.v)/(numRects):
OffsetRect (&startRect, -startRect.left,-startRect.top):
OffsetRect (&endRect, —endRect.left, -endRect.top);

/* draw rects */ '
for (i=1, curPoint=startPoint;i<=numRects;i++) {

/* setup new point */

curPoint.h = startPoint.h + (delx*i);

curPoint.v = startPoint.v + (dely*i):

/* draw new rect 1 */

SetRect (&curRect, 0,0, startRect.right+ (endRect.right-startRect.right) *i/numRect
startRect.bottom+ (endRect .bottom-startRect.bottom) *i/numRects) ;

CenterRectAboutPoint (curPoint, curRect, &curRect) ;

FrameRect (&curRect) ;

/* delay */
delayTick = TickCount ()+1;
while (TickCount ()<=delayTick)

’

}

/* erase rects */

for (i=1, curPoint=startPoint;i<=numRects;i++) {
/* setup new point */
curPoint.h = startPoint.h + (delx*i);
curPoint.v = startPoint.v + (dely*i);

/* draw new rect 1 */

SetRect (&curRect, 0, 0, startRect.right+ (endRect.right-startRect.right)*i/numRect
startRect .bottom+ (endRect.bottom-startRect.bottom) *i/numRects) ;

CenterRectAboutPoint (curPoint, curRect, &curRect) ;

FrameRect (&curRect) ;

/* delay */
delayTick = TickCount ()+1;
while (TickCount ()<=delayTick)

’

ORB:thesis:thesis code Page 45
Saturday, May 8, 1993 17:29

/**** cleanup & restore state */
DisposHandle (desktopPort) ;
SetPort (curPort) ;

SetPenState (&curPen) ;

