{,(/{)' [7

MIT FILMVIDEO SECTION
. . _) 20 AMES STREET
Computerized Film Directing BLDG. E15-435
CAMBRIDGE, MA 02139

by

Carl Schroeder

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements
for the Degree of
Bachelor of Science in Computer Science and Engineering
at the

Massachusetts Institute of Technology

May 1987

© 1987 Massachusetts Institute of Technology
The author hereby grants to M.I.T. permission to reproduce and distribute
copies of this thesis document in whole or part.

Engineering and Computer Science
‘ May 18, 1987

Certified by ... //5’/((/4”¢k -‘D?c»&/ﬁ/’ . /8

Thesis Supervisor

Signature of Author ..

ACCEPted DY . ovv v vi e e
Leonard Gould

Chairman, Department Committee on Undergraduate Theses

Computerized Film Directing

by
Carl Schroeder

Submitted to the Department of
Electrical Engineering and Computer Science
on May 18, 1987 in partial fulfillment of the requirements
for the Degree of
Bachelor of Science in Computer Science and Engipeering

Abstract

The intent of this thesis is to demystify the process of film creation, a domain of
unfathomed human creativity, by making significant progress toward a realization of
the computer as a tool for film creation. To what extent can the computer, by
following its programming, aid a user in the direction and editing of a film? For that
matter, what is a film? Theories based on algorithmic methods for story generation,
film representation, and editing technique have been developed. Implementation of a
valid subset of these ideas involved the production of a shot library, the representation
thereof, and rudimentary procedures for film generation. Programming tools consisted
of Common Lisp and HPRL, a representation language developed at Hewlett-Packard

and beta-sited at the MIT Media lab.

Computerized Film Directing

by
Carl Schroeder

Submitted to the Department of
Electrical Engineering and Computer Science
on May 18, 1987 in partial fulfillment of the requirements
for the Degree of
Bachelor of Science in Computer Science and Engineering

Abstract

The intent of this thesis is to demystify the process of film creation, a domain of
unfathomed human creativity, by making significant progress toward a realization of
the computer as a tool for film creation. To what extent can the computer, by
following its programming, aid a user in the direction and editing of a film? For that
matter, what is a film? Theories based on algorithmic methods for story generation,
film representation, and editing technique have been developed. Implementation of a
valid subset of these ideas involved the production of a shot library, the representation
thereof, and rudimentary procedures for film generation. Programming tools consisted
of Common Lisp and HPRL, a representation language developed at Hewlett-Packard

and beta-sited at the MIT Media lab.

Chapter One

Prothesis

1.1 Manifesto
I like movies. Their potential to communicate (as well as manipulate) is limitless. The

experience of immersing oneself in a good movie can be ineffable.

I like Ingmar Bergman. He was an outstanding communicator through the media of
film. This presumes a great deal of talent, and even the best directors are stronger in
some areas than others. Bergman was foremostly a brilliant playwright , whose visions
translated well, albeit bleakly, into the cinematic domains. Fellini, on the other hand,
excelled in a more dynamic use of imagery to communicate more frenzied emotional
states. The multiplicity of directing styles is due to the many symbiotic parts of which
the cinema is comprised (story construction, image transition, image recording, etc.) .
But, for all the considerations of film, might it not be possiblcf to extract minimal rules
for each knowledge domain, weight them according to “style”, and thereby formulate
automatic movie generation? Of course. TV writers do it all the time. I mean, sure

they’re good at it, but why not just get a machine to do some level of the work?

This is really more feasible than it sounds. A Russian director named Kuleschov
helped prove the flexibility of narrative given a limited source of imagery. His
experiments are now legendary. He was able to construct a single, smooth film from
shots taken in wildy different locations, as when he depicted an ascension of the White
House steps with footage of the Kremlin. With shots of different women’s bodies he
created a composite person who existed only in film. In his most famous test, he is said
to have intercut views of such things as food, a coffin, and a child with the
expressionless close-up of the actor Mozhukhin. Audiences reacted with comments of

how adept the character was at communicating subtle emotions associated with the

—

—

interwoven scenes. [Fell 79

Think about the Encyclopedia Brittanica, and then consider just how small the
domains might be for a self-contained narrative like a sitcom. By far the most space
allocated would be for the description knowledge of a complex multitude of shots of
the entire cast doing various and sundry silly things, as they are wont to do on

sitcoms.

Actually, I have no intention of making a computer generate sitcoms. I value movies
for their ability to communicate on a more intellectual and aesthetic level. What are
the minimal domains to maximally permit the beauty of such cinematic movements as
the German Expressionists, the Italian Neorealists, or the French New Wave? A
program must exhibit a good number of higher film capabilities, like the evaluation of
an edit for emotional impact (assuming that such impact is generalizable to a level of
universality). A director thus knows how to build powerful metaphors and moods that
can work subliminally on the uneducated. Keeping in mind the work of the great
Russian directors, whose methods invoked semiotics and propaganda, one may

candidly anticipate the cinematic achievements of a computerized Big Brother.

My goal is to whittle down the problem of automatic movie directing to a small
number of related knowledge domains and rules, while still retaining the capability for
aesthetic cinematic judgement. The degree of knowledge needed to do even basic
directing is staggering, but only when not limited to small domains. My attempt is
named Ingmar, in homage to the namesake, with no explicit deference to the original,

because the dissimilarity between works produced will be obvious.

1.2 Film

1.2.1 What’s in a Film?
A film is the portrayal of a story.

However, it is not the story itself, and from this distinction many important
relationships between film understanding and story understanding can be derived.
While film understanding may be a barely nascent topic of computer application,
story understanding is a field alive and well, with respected proponents vanguarding

some very attractive research.

The film is not exactly the story because the story is not narrated in language (unless
in part by the speech of a character during the film, which is story within film). The
story is implied to the viewer by the presentation of evidence for his recognition of
events, whether they be physical or emotional. Story summarization by language (a
fruitful route to story understanding) may be useful in locating the pivotal events of
the story for which depicting scenes must be sufficiently obvious for a known viewer to
understand. But the film itself consists of the non-summarized linear presentation of

the visible events of a story.

Notice my choice of the description ’known viewer’. A filmmaker must know his
audience in order to suceed in his mode of communication. He must know what
singular depictions will result in the recognition of a story event by his viewers’. The
filmaker is hence relying upon many assumptions, most of the form that his audience

is like himself in its understanding of the world.

Today, the basic creation of film is a practised and defined skill. There are many
accepted and reliable rules. Of course, the rules may always be broken, which is why
the field is not stagnant and devoid of character. But the fact is that some of the most

important assumptions made by the filmmaker are taken for granted by modern

viewers. There is a filmic language, which is culture specific and vital to film, the
portrayal of a story. This language includes cinematic conventions, like the use of wide
to close shots for the introduction of a new setting, forms which are not understood by
members of cultures which do not have films, like African tribes. For an instance of
this simple example’s importance, one need only consider the works of Resnais (like
“Hiroshima mon Amour”) where the violation of the wide to close convention confuses
the viewer and thus marks ensuing events as worthy of special attention (other
emotional attributes can be derived, but not without sailing between the Scylla and

Charybdis of some film semiotics)

So, the filmmaker not only needs to understand a story but also requires the
knowledge of how to communicate it in the ordering of particular scenes. He relies
upon the recognition, but not necessarily the precise use, of many cinematic forms to
help structure the scenes. He hopes that his choice of scenes is correct in the sense that
the story they are part of will be similarly recognized by the viewer. The more
complex the communicated events of a film, the greater the likelihood that many
details will not be understood by any one viewer. For example, the works of Federico
Fellini (like “8 1/2") are epic in complexity and contain many elements unique or
personal to F ellini.(The only person who can ever truly understand a Fellini film is
Fellini. This is however okay, since any film may be good by the viewer’s judgement if
only it has communicated something of value, even if this was unintentional on the
part of the director. Though I do not understand Fellini’s iconography of Catholicism,

I have my own appreciation of it.

So there are two broad types of decision on the director’s part. The first is the selection
of the representative events of a story. These events must then be decided for
visualisation in terms of the filmic language. The former decision involves a general to
specific, top down, story generation approach. This subsumes much real world
comprehension, stuff about what people do and why they do it, which every viewer

works out for himself during a film. The second involves a constructive, rule based,

film generation scheme. Here are included those tricks of the trade which are often not

even consciously recognized by the viewer.

1.2.2 Story Summarization vs. Story Generation

As has been mentioned, one method for story understanding is that of summary. The
events of the story are collected in abstractions of language. Heading the list of such
research is the work of Wendy Lehnart and associates. Though their efforts were
never meant to apply to film, there are connections which make the work most
beguiling. And the differences between summary type research and the problems of

filmic story can lead to critical insight.

" Lehnart’s approach of summarization represented an ability to go from the specific to
the general and thereby exclude detail. Many useful concepts were developed,
including the plot unit, a high level association between a pattern of events and the
generally recognized plot. This knowledge is crucial for the filmmaker in locating the
key events of a story. But the filmmaker is equally interested in working out the
details within a story, for it is from the details that specific images will be chosen. A

film cannot be made on the level of a summary alone.

The COMSYS story is one of the demonstration instances of the narrative summary

work [Lehnart 84].

John and Mike were competing for the same job at IBM. John got the job
and Mike decided to start his own consulting firm, COMSYS. Within three
years, COMSYS was flourishing. By that time, John had become dissatisfied
with IBM so he asked Mike for a job. Mike spitefully turned him down.

Within this story is a critical plot unit called competition. It involves the mutually
exclusive goals of John and Mike, who both wish to be hired for a position which is
available only for one person. Summarization can identify this competition, and
thereby generate a summary by what is called conceptual ellipsis, or the omission of

details inferrable from the plot unit. Summarization should generate a statement for

8

this competition like “Mike wanted to work for IBM, but they hired John". There is a

wealth of syntactic as well as semantic understanding going on to realize this.

The filmmaker may have been supplied with the COMSYS story as a script, in which
case he will need to summarize it only so far as identifying the competition. He will
then want to choose the scenes which communicate this competition. Conceptual
ellipsis is dangerous because what might have been implied in language still has to be
explicit in image. How many images and of what impact might be chosen can be
determined by the inferrable nature of the plot unit event. There are very different

goals going on here!

The filmmaker may communicate the COMSYS story by focusing on the competition.
He may recognize the events of competition as being obvious with certain images. In
this case, he wishes to portray the competition with more drama to reinforce the
importance of the competition. He may choose to violate certain filmic rules, like
using strange camera angles in a scene of Mike and John waiting to be interviewed. He
may play out events with as much time and detail as would be alloted a more obtuse
plot, yielding a bleak quality of realism. Whatever he does, he cannot just summarize

the plot in one or two key scenes because the plot would be de-emphasized.

With reference to his audience, the filmmaker may also expand the plot with unrelated
scenes to satisfy other goals. He may wish the audience to empathize with John more
than Mike, therefore scenes of John anxiously eating breakfast before his interview
would be relevant. He may wish to create an anti-story, in the style of the French New
Wave, in which the competition scenes might be a bit scrambled, or too short, or
dreamlike with contradictions, in order to confuse the viewer and thus give a different

kind of emphasis to the competition.

The filmmaker will almost always have to expand more than summarize the story.
Suppose he was given a script that called for competition between Mike and John. The

filmmaker has to then consider the constraints of the competition plot unit and work

9

backward for a sequence of events which summarize to competition. This may not
result in the same story, but this skill is needed whenever an event of great plot unit
importance requires more detail for the selection of images. This is what was involved
above, when a scene of John breakfasting was called for. Some working models in a
story generation program for what one does in situations responded that to get a job,
one must be interviewed, and that on that day one will eat breakfast with no small

amount of apprehension.

But still one does not apply such a scenario immediatly, because for every scene of an
expanded story conceptual conflicts may arise which require explanation. For
example, suppose John was a devil-may-care sort of guy, which might explain why it
took him three years to become dissatisfied with what is later depicted as a very
tedious job at IBM. But such a John wouldn’t be that nervous about some job
interview, unless a new sub-story was presented, like John needs the work fast to pay

back gambling debts. Constraint propagation is an important story driver.

There are contained in the story summarization research many ideas agreeable to the
needs of film generation. Plot units are vital. Their work also relied upon a
'realization module for language generation’ called Mumble. This ability to make sense
of language descriptions in ways useful to other programs is invoked in filmmaking.

All the algorithms for plot corinectivity and representation are conceptually useful.

The bottom line is only that the results of story summarization work, as embodied in
the results of Lehnart et. al, must not be taken too literally in relation to filmmaking.

Despite many conceptual similarities the research goals are fundamentally different.

10

1.3 My Approach
A computer acting as a film director might work in one of two general ways. In both

cases, it is supplied with some kind of story script, defined at an abstract (non-shot)

level.

Ultimately, it might be desirable for the output to be in a non-viewable, shot
specification form. In this case, the user would then still have to supply those shots by
going out and filming them. Such a tool would marvelous as guidance for the rapid
planning of a film by even one unfamiliar with the methods of film creation. Any film
could be described in full detail directly from ideas, without the necessity of years of
directing experience. However, the computer director involved is also of the most

general and powerful type. There is no guiding light for the programmer of such a tool.

More pragmatic is the goal of a director which does its best to present a film built from
a library of previously recorded shots. As the library grows, the usefulness of this
director approaches that of the more general case. When a film simply cannot be made
for lack of the right shot, a detailed failure message could be used a suggestion for the
recording of new material. Or as complex video processing methods are perfected, one
can imagine options to build a better shot from the existing near misses. Parts of the
image that may have rendered the shot useless for simple constraint reasons could be
painted out. (For example, a clock whose time conflicts with the story time.) Filming
attributes could be adjusted. (Like the colorization of a black and white shot for
placement in a color film.) Or, getting really fancy, one might be able to make a shot
of a certain character doing something from a generic shot which contains a character
whose face must be filled in. (For now, such processing abilities are of course dreams.
The only capability feasible for the maximization of the library’s usefulness is the
specification of exactly when in the shot attributes and views of possible constraints
appear, so that the program can at least make an attempt to subdivide any shot to

dispose of conlflicts.)

11

A director of the second type is the one for which I strive. An implementation would

go something like this...

Library production
The creation of a filmic source, to be accesible by the program on
videodisc. This source must contain depictions of possible stories as
well as limit itself to a manageable story domain. The total story
must be staged, recorded, edited, and transferred to videodisc.

Film representation
The specification of objects and rules of film which are minimally
required for the generation of films from the library.

Story representation _
The specification of objects and rules of stories which are minimally
required for the generation of stories representable by the library.

Library manipulation
The minimal specifications for a program which will “direct” films
built from the library. It has as input user constraints, and outputs
the in-out points of shots on the videodisc in the order of intended
viewing for the communication of a story.

1.4 Confessions

Given the many limitations of the second type of director, both good in terms of
workability and bad in terms of myopia, one might be surprised at all that is still
required to build it. The problem is that while the database of all the knowledge
needed by Ingmar (from now on he will be fully personified) has been reasonably
pruned, the processing implied remains dispiritingly intractable. The nemesis of Al has
reared its ugly head yet again, namely, the sheer vastness of what is required to
actually do even the simplest of tasks. (Humility is, as always, the most important

lesson for the would-be god.)

And so, my project rapidly cleaved itself into two pieces: that which should be done,
and that which could be done. The second category denotes the extent of the thesis

that will be completed and demonstratable, whereas the first indicates all that need be

12

completed for that which would be done to satisfy all my original goals. The two
cannot be one in the same. So an important goal is simply to minimize their disparity.
It is my hope that what is done is a valid simplification of what should be done, and

what should be done is sufficiently detailed on some more abstract level to support

eventual realization.

What should be done is addressed in the second chapter of this document, the
Synthesis. It is presented in the form of theories, abstract, open to interpretation, and
of philosophical consequence. Most of the issues approached fall within the following

scheme of Ingmar’s anatomy...
1. Story Representation
a. Objects
i. Settings & Events - A priori knowledge.

ii. Characters - Microcosms of human behavior that can generate
plots, which are sequences of events that are humanly
believable.

Rules

i. Consequence - The rules for selection of new settings or events
as dictated by knowledge or character simulation.

ii. Goodness - The rules for what makes a good story, i.e., noting
the parts to be emphasized and deleting parts that are
extraneous.

Story Generation

a. Constraint - The minimal definition of a story story generation is set
into motion by the user’s constraints.

b. Construction - The program builds a complete story within the
constraints of the user input. This may involve substories that aid in

the portrayal of plots.

c. Editing - the story must be edited down again to retain goodness

Film Representation

13

a. Objects
b. Rules

i. Visual - The rules for selection of a shot based on aesthetic
consequences ex. no jump shots unless jump shot has story
value.

ii. Story - The rules for selection of a shot based on story
consequences ex. faster cutting for action point of story.

Film Generation

a. Identification - The location of all footage which satisfies given story
constraints.

b. Selection - The selection of a best next shot based on filmic rules.

c. Redefinition - If selection is not possible, then invoke story
generation to change contraints (without changing ultimate story!).

Finally, the chapter entitled Prosthesis grafts some amount of respectability onto the
Synthesis by recounting exactly what I did and didn’t do in attempting to birth
Ingmar. It is mired in matters of reality, and points the way most explicitly for further

research.

The reader should be forewarned of the implications of my presentation. The order of
the chapters denotes a transition from the general to the specific. The second chapter
takes the form of hypothesis which are often unfettered with the innumerable
examples which might be required to make the claims seem relevant. If the reader
should become uncomfortable or disoriented in his digestion of the theory, then he is
encouraged to skip ahead to the third chapter, wherein he should become anchored in

the details which are now so familiar to myself.

My reason for this structural decision is simple. I wished to operate in a deductive
rather than inductive mode. Once the reader can accept the statements of the second

chapter (which he is invited to dispute), then the efforts of the implementation will

14

follow as cases of the theory’s application. The third chapter takes on the
responsibility of justification, in the form of detailed accounts of my Work and its
pertinance to my general motivations. This format will make sense when the reader
can return to the second chapter and peruse its hypotheses independent of a clutter of

implementation technicalities.

15

Chapter Two

Synthesis

2.1 Story Understanding

Ingmar’s movie construction will be initiated by the input of a story script from a
human user. This script contains the chronological constraints in which Ingmar must
work to portray the story in film. The film will be culled from those images that
Ingmar has available to him in the shot library. To absolve the user from an exact
knowledge of the shot library, his script must contain generalities. These abstract
definitions will include matters of staging, like a dinner, as well as emotive sequence,
like a happy dinner, whose ending must be in some sense a happy one. Ingmar’s story
knowledge must be vast to support the deciphering of the abstract script requirements

into the ordering of specific images from the shot library.

A story consists of a believable sequence of descriptions. The most fundamental level
of believability is cause and effect, the phenomenon that there is a reason for
everything that happens. If this is defied in limited ways, the story can have value as a

genre type. But something must be cause and effect to make the story hold as a story.

Stories consist of settings and plots. Settings are made of simple fill-in-the-slot
knowledge. There is no real reason for why except that that is the way we know it to
be. Substantives and their many parts are settings. A dinner is a prime example, which
has parts of serving, eating, drinking, and usually talking. Only a partial ordering is
derivable from a dinner, since though serving must precede, eating, drinking and

talking can reoccur in any sequence.

Plots are representable as settings, but not without simplifying them. Plots are the
believable ordering of unordered settings. Since all possible plots cannot be made

explicit, settings alone cannot represent all plots. The distinctions can be blurred,

16

especially since settings and plots can be nested.

The best things to represent as settings are things like a dinner, a conversation, an
exit. There are actions within the settings to be sure, and associated conditional
statements may be triggered, but they are expandable to some final level of detail and
fall into a framelike representation. The settings do not make a story; rather they
constrain the stories that might be portrayed. So a simple interactive story built from
branching patterns alone is always finitely determined and therefore composed of

settings.

Plots are the life of the story. There are an infinite number of plots which must be
generated, not just enumerated. My assumption is that there is at a fundamental level
a working model that causes a finite number of settings to be ordered in an infitite

number of patterns.

For a story, the plot deciders are physical laws and character motivation. It would be
uninteresting to generate stories of physical law, since these are simulations and do not
pass in our culture for stories. Settings can embody physical law without too much
constraint. But character motivation is absolutely necessary to a story. Why did the
characters do what they did? What will the characters do next? These questions are
asked relative to the audience as well as the story, and no amount of enumeration will
cover all possibilities. What is needed is a model of human motivation which not only
describes with summaries (as in the work of Wendy Lehnart) but also generates

individual plots.

2.1.1 Settings

17

2.1.1.1 What is a Setting?

Settings are real world knowledge. They are expressed in terms of language.

Settings are inter-related. One setting can be expanded into a whole list of settings.
The ordering of these subsettings is then determined by the plot, which can be derived
from the constraints of other settings, as well as calculated dynamically. For example,
the order of events in a dinner setting, each a setting in itself, can be determined by
other settings, like a fight (a behavioral setting with motivational truths for humans,
like one will stop eating at the end of the fight because one is so angry) or a barbacue
(a physcial setting with “real” truths for humans, like the burgers are ready to be
eaten after they are cooked and before they are cold). But in each case these plots,
these orders of events/settings, could have been calculated from the fundamental
plots, those being human reality and physical reality (each with only relative truths!)

In fact, they must be so calculated if one is to be able to derive all possible plots.

2.1.1.2 What Does a Setting Look Like?

The setting is made up of statements of language. The setting may be divisible if it is a
compound statement, in which case the multiple settings generated must be resolved
for consequences, or it may be at a fundamental level of a single word. For example, a
dinner can be expanded just by the structure of dinner, but a happy dinner is a dinner
where, when the syntax allows, subsettings are happy, and ultimatley the plot is
happy. (A happy dinner can thus have happy conversation, meaning the events in the
conversation must end happily for the characters). Or if a happy dinner exists as an

explicit setting, then that setting’s structure could be followed.

The structure of settings can vary. For example, a setting with descriptive
conséquences, like happiness, has antonyms (sadness), synonyms (joy), an adjective
form (happy), and attributes that relate to the mood of the characters. Substantive
settings, like that of a dinner, have a different structure as is suggested below. This
multiplicity . must be handled within a class-instance representation system and

18

carefully strategized for the correct use by Ingmar’s story generator. The class-instance

system also organizes the settings for all sorts of inheritance.

An example of substantve setting structure follows:

name - a statement
ex. snack (a subclass of a meal, which has
other subclasses like dinner)
ex. eat
syntax - how the setting is correctly invoked, which comes
from the rules of the language. Since language
contains ambiguities, this syntax must express
options, defaults, and generalities, which are
exemplified later in this thesis.
ex. characters have a snack
ex. characters eat food from plate
context - higher settings which correctly include this
setting, and can aid in disambiguating the syntax.
Also should lead to an indication of the setting’s
relative truth.
ex. party (indirectly a context of western culture,
where people always like to eat and drink)
ex. snack, dinner
precedents - those settings which logically precede the
setting. Settings can thus be chained to derive
a higher setting.
ex. char is hungry, char is thirsty
ex. char is hungry, char get food
parts - those settings which are implied in the setting.
Settings can thus be expanded.
ex. serve food/drink, eat, drink, converse
ex. swallow food
consequences - those settings that logically result
from the setting.
ex. character is full
ex. plate is less full

As one can see, even at this level of definition there is a lot of room for ambiguity.
Part of the ambiguity stems from the fact that plots are being implied, but all plots
cannot be predetermined. Settings are thus useful only as starting points for
generating plots, and depending on the setting, a whole grammar for the

19

representation of defaults, options, set relations, ordering, etc., must be invented for
the setting’s attributes to make sense. The goal is thus consistency within a microcosm

of explicit settings for the generation of plots at the level of detail desired.

2.1.2 Plot and Characters
Ingmar’s fundamental plot capability will be for the believeable ordering of shots
which convey character emotion. He must have a method for simulating characters

whenever he needs to justify the choice for a shot with emotive consequence.

The example which will orient the reader is that of a conversation. A conversation is a
setting of many parts, like statements, questions, and replies. Some ordering of these
parts is derivable from the setting itself. For instance, replies are appropriate for
following questions. Obviously, the exact nature of the reply is semantically
determined by the content of the question. But supposing Ingmar had at his disposal
questions and replies of a generic nature, then his primary concern will be for
establishing the sequence of emotional content in the conversation. A statement by a
character about how happy he is with the other character is not believably answered
by a replying view of the other expressing great anger, unless the rapport is within a

plot that deals with the second character’s overwhelming depression.

Ingmar will be driven to simulate character motivations that are consistent with the
overall story for two reasons. Whenever the setting does not sufficiently determine a
character’s next emotional state, it will be necessary to calculate that state from the
character’s relationship to his surroundings. Secondly, when the next setting of a story
is not determinable, Ingmar will simulate the character to yield a correct story choice.
In the conversation scenario, the first option represents the determination of whether
or not a character will be angry in reply to a question. Whether or not the character

will even make the reply at all is a function of what the character will want to do.

20

2.1.2.1 What is a Character?
A character has a personality, which determines what he does as a unique human
being. The personality of a character can be initially constrained by the story, as well

as be devolped by the events of the generated story.

The personality is expressed in terms of the character’s beliefs, and his patterns of
response consistent with those beliefs. My fundamental premise is that of the pursuit
of happiness, as is compatible with the utilitarian philosophies of the likes of John
Stuart Mill. Happiness falls on an emotional scale from negative to positive, and
represents the latter end. When a character is unhappy, he will do those things
consistent with his beliefs that will bring him to a happier state. Thus, happiness is an

ultimate goal, and the quantifiable result of all subgoals.

Happiness exhibits some continual rate of decay. When people have experienced
something which makes them happy, this happiness will not placate them for the
remainder of their existence. Even if nothing unhappy occurs, if the happiness is not
repeatedly contributed to with the realization of new goals the character becomes

progressively less happy due to a phenomenon we call boredom.

2.1.2.2 Beliefs

Each character has an immense system of beliefs which come about from many
sources. As a living creature, the character has beliefs which include the knowledge
that survival is a fundamental goal for happiness. As a member of the human race,
beliefs specify what it means to stay alive, in terms of what is required by the human
body to stay healty. Humans also have needs that maintain mental health. These
include companionship and an understanding of the world that results in goals that

work to increase happiness.

Society demands much of the individual, and as a member of the society the character

wants to satisfy these requirements. He feels the pressure to conform to the laws of a

21

culture. Any one of these laws may conflict with the final source of beliefs, which are
those of the individual. These beliefs come directly from what the character has

experienced in his lifetime, and are the final determination for personality.

Beliefs have tense, which can be past, present, or future. Future beliefs lead to
expectations. I propose that the frustration of expectations, even those with unhappy
consequence, results in a contributing degree of unhappines. This arises from the
conflict between what happens and what the character thought would happen relative
to his need for understanding the world. Conflict, whether external from the
frustration of expectation or internal due to mutually exclusive goals, is a cause for

unhappiness.

Beliefs can be of a composite nature, comprised of any number of statements of the
form if something then something. The fundamental pursuit of happiness is expressible
as: if (if something then happy) and (something is) then happy. The character then

tries to make this belief always true.

2.1.2.3 Goals

Character goals are conditional statements which link patterns of events to the
amount of happiness which the character will feel when the events are realized. A
shorthand for this would be to say that the character wants the premise of a goal.
When the premise of a goal occurs independent of the character’s actions, the
emotional state of the character is augmented by the goal’s conclusion. When the
character has the opportunity to do whatever he wishes, he will choose the action that

triggers via his goals a maximum amount of happiness.

Goals can interrelate in any number of ways, triggering other goals in complex
succession. The character makes use of reasoning to follow the chain of goals to their
conclusions for happiness. The character will exhibit the amount of happiness which is

the sum of all the parts of happiness which he is lead to in reasoning.

22

2.1.2.4 Reasoning

Humans do not always act logically. This must be explained in terms of the pattern of
goal recognition which lead to his conclusions for happiness. Reasoning that is
incorrect in terms of all the character’s beliefs can lead to the variety of human
motivations which make for interesting stories. If every character did only precisely
what would maximize his happiness at any given moment, the story as a whole would

be an excercise in logic and unbelievable.

A character can think logically, which involves the exact following of a goal as it
invokes any number of subgoals. The depth to which a character recognizes his
complete goals is limited by two quantities. First, the amount of time for reaction to
an event limits a character’s logical reasoning. Secondly, his mental state indicates
just how precisely he can follow his goals in the time available. Thus, even a logical

character can be expected to act logically only so far as he can reason.

Suppose in a story a character is doing something very important to him for his
happiness (like writing a thesis), and a fire breaks out. If he has time, he will make the
effort to save his work before his life is truly threatened. However if he is of an
extenuating mental state (like that of being under great pressure to finish the thesis by
a deadline), he may not think clearly enough to get out of the burning building in time
while still trying to save the work. This example suggests that when logical reasoning
is curtailed, the goals closest to the character in the belief heirarchy get expanded the
most. The human need to stay alive was overlooked in the immediacy of the

individual demands.

Other types of reasoning which do not follow logically also influence a character. The
fallacy of inductive reasoning is necessary in a world of the senses. As the character
encounters life’s experiences, he will develop beliefs that are not universally true. This
can lead to invalid expectations, which trigger the phenomena of fear and hope. Say a

character witnesses the death of a pedestrian by a hit and run driver. The event is

23

most traumatic, for any number of reasons which come from the character’s beliefs.
For some time afterward, depending on the character’s exact personality, he will be
afraid to cross a street. He induces an exagerrated probability of death, and operates

under this pretense to suppose that he will also die.

The unconscious mind is a governing factor in much human behavior. I postulate that
the phenomena is one of triggering goals by only a superficial, semantic similarity in
premise. An associative pattern is followed in the unconscience, which will lead to new
goals which are not warranted by reality. An illuminating example can be derived
from the auto accident above. If the pedestrian was not wounded in a near miss, the
witnessing character would nonetheless reconsider his own safety in crossing the street.
His fear would be one of death by a reasoning process that bear§ resemblance to the
unconscious process I have described. He foresees injury and death by associations

through beliefs about accidents. He will fear his own death by induction, even though

the accident he witnessed was far from fatal.

2.1.2.5 Memory
People can forget things, which can lead to fallacious behavior in the pursuit for

happiness. Some forgetting is allowed by the limits of his reasoning process.

More generally, I propose the necessity for Ingmar to maintain records of individual
character states linked through time. Whenever a character experiences a new event,
his previous state is copied imperfectly into a new one, in which any number of beliefs
may change in tense and form. The copying is done in increments of the character’s

reasoning, and each copy is labelled with a time stamp.

When a character reasons, he can remember his past states to augment the recognition
of goal patterns. The amount of happiness expressed in the goals copied to the new
state will be a function of how well he remembers matching past goals. Memory will be

both objective, in terms of how far into the past the considered goal is located, and

24

R—

subjective. The subjective quality of goal memory will be very important, having to do
with the goal’s participation in the conditions that lead to the next emotional state.
Thus, the goal events which are directly connected to an emotional extreme like
ecstasy are more clearly remembered than the goals which were not triggered by the
ecstasy. The character will then focus by virtue of a subjective memory on a critical

subset of past goals, and pursue new goals built accordingly.

An example of this phenomenon would be when even a lowly laboratory rat
continually tries to receive food by pushing a button because such action was succesful
in the past. If no more food arrives, the rat will still push for some time, remembering
simply that the action was crucial for a past happiness. The rat will be happy to keep
pushing until his mounting unhappiness causes it to give up on the premise of the

fallacious goal.

2.1.2.6 The Relevance of it All

My approach to character simulation is admittedly intuitive and general. Its relevance
my thesis will be obvious when the reader discovers the vast number of emotive
descriptors that became necessary for my implementation in chapter 3. Therein, I
mapped the emotional overtones of character shots onto numerical scales in
preparation for pursuits of happiness. I pursued a number of story possibilities, and
tried to emulate them within the theory of character simulation. I found myself
defining such a wealth of vocabulary in terms of motivations that I was unable to tie
together sufficient story knowledge for Ingmar to generate films from my particular

shot library.

The reader is invited to examine one instance of plot knowledge that follows. I hope
only to communicate the nature of my pursuit, and do not claim the completeness of

even this illustration.

Friendship.

25

I had to consider the nature of friendship because of its impact upon the emotional
consequences for a conversation between friends versus strangers. Put simply, when
friends are seen to fight, it is understood that the fight will usually be of a temporay
nature. Friends can argue, and perhaps should since no two persons can ever be
identical in their beliefs, and yet friends tend to explain their beiiefs in conversations
of great detail. If the friendship is of any depth, a fight will be followed by a period of
making up, which can include any number of apologies. Conversely, if friends do not
resolve their conflicts, then the friendship was of no great extent to begin with.
Ingmar will need such an understanding if he is asked to believably construct a film

about, say, a happy dinner between good friends from footage that indicates a fight.
My belief assumptions are as follows:

Friends will be happy when each is happy, thus they want to be nice and remain
friends. Friends trust one another, so they believe whatever each one says they believe.
If what is said conflicts with individual beliefs, then there is an occasion for argument.
If the conflict stems from an insincerity (a statement made by a character that
conflicts with his own beliefs) then the other character will have an instance for
distrust, and the friendship will deteriorate. Friends also respect one another, so if the
conflict is found to be true, then the friends will note this difference of personality but
will wish to remain friends. However, people want friends who are similar to
themselves, so if the differences compound for important beliefs then the friendship

will again begin to dissolve.

The reader is invited to consider a scenario between two friends, Ingmar and Federico.
It is written in a psuedocode form for brevity, but should be intelligible. In this story,

Ingmar begins by wanting to do something nice for Federico.

ingmar make cakel for federico

then cakel (owner ingmar)

then ingmar wants (federico like cakel)
then ingmar wants (federico own cakel)
ingmar gives cakel to federico

26

then cake (owner federico)
then federico is happy ;: people like to get gifts
then ingmar is happy
then federico is happy ;: reflexivity
federico eats cakel
if federico says (likes cakel) and (federico hates cakes
or ingmar believes federico hates cakes)
then federico says (likes cakel) insincerely
then ingmar believes this ;friends can often
;tell when each is lying
then ingmar believes (federico hates cakel)
then ingmar is unhappy with federico ;he betrayed trust
if ingmar wants (like federico) most of all
then ingmar apologizes to federico about cakel
if ingmar wants (federico like cake) more
then ingmar is unhappy with federico
:; federico can apologize or start a fight
if ingmar believes in sincerity
;;(is happy with (char verb-phrase sincerely))
then ingmar is unhappy with federico

2.2 Film Understanding

Assuming that Ingmar has an understanding of stories amenable to the needs of a
filmmaker, he now needs an understanding of the filmic language to decide how to
portray a story. His comprehension stems directly from the many rules for film
construction that have been invented by human filmmakers in the long and complex
history of the cinema. Film theory is a rich and subjective domain, and increases in
detail with every new book published and every new film produced. Ingmar will need

an appreciation of all this, but in as simplified and algorithmic a form as possible.

Ingmar’s filmic perceptions must not be of an absolute nature, any more than his
grasp of what motivates people in stories can be based on universal arguments.
Everything is relative. Ingmar’s success will depend not upon adherence to specific
rules, but the dialectically motivated judgement of when and when not to use any one

rule. This can only be accomplished by the ongoing permutation of fundamental

27

variables of film and the attachment of names and results of past usage. The direct
input of existing filmic rules must be made in terms of these fundamental attributes so
that Ingmar may recognize their inversions. Between films, Ingmar can even
contemplate new filmic rules which no human director has ever used and store these
for subsequent experimental use, success of which would necessarily be evaluated at

some point in human feedback.

To make this argument a bit more concrete, let us consider an example. A
fundamental variable which Ingmar might have no guideline for setting could be the
movement toward or away from the camera of a character in a scene where either is
acceptable by story evaluation. Ingmar notes this distinction, and generates two films,
one of each possibility. He then asks us what consequence his choice had for human
viewing. We would answer that when the action came toward us, we felt more
involved in the story, and genuinely threatened if the image was a frightening one.
When the action moved away, we felt distanced and relieved, as one might wish to feel
in a denoument. Ingmar then stores this knowledge, probably in condensed forms of
psychological attribute versus a pattern of film values. Next time, Ingmar will want
refer to these new rules in many ways. He may be forced to choose a shot which he will
now decide is inappropriate because of these rules, and thus go back to changing the
story. For example, the only image of kindly Grandpa making tea at the end of a
story propels his rotten teeth toward the viewer, so it would be better not to have him
make tea at all. Or Ingmar may choose an image for the effect suggested by these
rules, as in selecting toward movements in shots for the climactic point of a story.
Lastly, Ingmar may be asked to use a rule by name, as with an invocation of
Hitchcock’s additive principle, for such is often called a usage of toward movements to

escalate threat in a story, in recollection of that director’s common practice [Scott 75|.

Note that even on the level of these simple illustrations, an issue of great portent has
been discovered. How did Ingmar decide when an image was frightening, as with

Grandpa’s rotten teeth, to know that if moving toward the viewer it would result in

28

threat? This is nothing less than a story in itself, the story of how the viewer will
interpret an image. Ingmar must have some generic character knowledge of his viewers
so that he can run simulations in the style of the previous section. The evaluation of a
shot’s effect often will incur story knowledge. This is a special iﬁterdependence

between story and film.

Of course, these examples are also very simple in the sense that they occur all within
just one shot. Many of the most important filmic conventions operate across many
shots, involving the sequences of many attributes. Rules so derived can not only affect
just the psychological impact of the images, but even their very comprehensibility.
Thus we address the prescriptions for overall film construction, like the interplay of

wide and close shots to logically introduce new image information.

In the sections to follow, I will suggest rules for film construction as derived from the
many common precedents of cinema. I will attempt to keep them all in the context of
the fundamental film values which they reference. Above all, it is my hope that my
presentation communicates an approach of methodical definition which will support

ultimate realization in Ingmar’s programming.

The reader is to be reminded of the exact role of any and all fimic rules which Ingmar
will recognize in his ability to construct movies. Ingmar seeks a shot based on story
content to fulfill his story script. From the range of shots which roughly satisfy this
need, he then considers any filmic rules as will apply to each shot if it were to be
appended to his film under construction. Any one shot may trigger a wide variety of
filmic consequences. Depending on Ingmar’s need for these factors in his movie, he
may be motivated to select a certain shot. This shot can in fact impose more
constraint than Ingmar genuinely requires, as with a shot that communicates a strict
sense of space for a film in which spatial perception is by far secondary to abstract
impact. If no shot sufficiently satisfies those requirements that the script calls for,
either filmic or story derived, then Ingmar will return to the script and apply his story

understanding to change the selection criteria. In this way, Ingmar oscillates between
29

script /story knowledge and shots available/filmic knowledge to ultimately produce the

best possible movie that portrays the user’s original script.

2.2.1 Perspective
Perspective is one of the fundamental attributes of a shot. It is context dependent, so
only in exceptional instances can it be explicitly constrained in the shot’s content

definition.

Perspective refers to whose eyes one is seeing the image through. It can be one of two
basic types; a character or omniscient. A perspective is determined from the camera’s
position respective to the characters known to be present in a scene. When the view
could not be through the eyes of any known character, the perspective is omnscient.
An omniscient perspective could be the viewer himself (as when a character adresses
the viewer via the camera), or no-one (as when, although a character adresses the

camera, he is speaking his private thoughts and no person is implicated).

Perspective is a critical tool for film narrative. It can change from shot to shot to
reveal the different parts of a story that are not visible from any single perspective, as
wé are doomed with in reality. There are rules for the establishment of new
perspectives, and the perspective chosen dictates what shots are logically possible. The
choice of perspective can force the viewer’s emotional response by making him feel
what the character feels (empathy and subjectivity) or giving the viewer psychological
space in which to judge a scene (objectivity). The interplay of perspectives can change

the portrayal of a single story, and thus the story itself, in a number of ways.

2.2.1.1 Establishing Perspective
[propose that the very first shot of any film is assumed by the viewer to be
omniscient. As that shot progresses, it may be revealed that the perspective is that of a

character. One way to do this would be to have a character address the camera by

30

another character’s name. (see Character Perspective)

Another method that one might consider would be to swing the camera around to
reveal a character whose line of sight is that of the opening view. But in fact, the
perspective remains omniscient. The effect would be only to align the viewer closer
emotionally to a character. This trick falls into a category of omniscient shots which
nonetheless communicate empathy for a character. Another such shot would be of the
over the shoulder variety, as Bergman used effectively in many of his films, notably
Persona, to help the viewer maintain objectivty while keeping him emotionally

involved in the story. (Already, useful rules are suggested by example.)

As subsequent shots reveal to the viewer the spatial locations of characters, what
would have been omniscient views are evaluated by the viewer as candidates for
character perspective. The viewer judges by considering the limitations of the
character’s being: his position with respect to what he might see (particularly in
reference to landmarks), how the character feels (as might be communicated in the
mood of a shot), etc. The viewer assumes that characters stay about where he saw
them last, taking roughly into account any attributes they may have exhibited, like
walking. See the section to follow on details of character perspectives to get a sense for
all the qualifications involved. When a new view could not be a character’s, then it is

again omniscient.

There are forms that cause the viewer to anticipate a possible change to character
perspective. The most explicit and reliable is by eye following. In this case, a clear
view of the character’s eyes is followed immediately by what they see. (This second
shot could still be omniscient, framing the character and some viewed object , but the
point is that the character’s perspective succeeds unambiguously.) The qualifier ’clear

view’ is relative to the character’s emphasis (see story section to follow).

Of course, there are still many constraints involved in eye following. The two shots

must be consistent in all spatial and character implications, like surroundings and line

31

of sight. When these are not consistent the viewer will try to infer a passage of time.
The viewer may become confused, and could interpret the view as the character’s
thought, particularly when the view is very inconsistent with the character’s present
setting. The thought is then judged to be a memory or a dream (wishes), depending
on what the viewer knows about the character and the nature of the view. If the view
is a logical near miss, inexplicable with a small passage of time, a psychotic state may

be implied.

The mention of dreams brings up the reinterpretability of perspectives. Everyone is
familiar with the hackneyed plot device of, well, it was all just a dream. This may be
accomplished by seeing a character wake up just when the viewer was about to give up
on making sense of what had been seen. Other devices can cause phe viewer to
reevaluate the perspectives of past shots. One example is what I call the introduction
of a spy. Suppose a series of omniscient shots spatially suggest a character’s
perspective, but no such character has been introduced. Then when a character is seen
in that location, (perhaps by eye following the spy’s victim to the spy) the previous
shots are suddenly understood by the viewer as those of the new character. With this
realization may come types of discomfort on the part of the viewer for having been so
duped, especially if the spy’s views were not overtly suggested as in, say, a tawdry flick
where the camera moves slowly in the window and through the drapes. Of course, this
more obvious construction has its value precisely for the reason that an unknown
character was implied. Then the viewer feels suspense and excitement as he awaits the

spy’s discovery.

Notice that while in theory the succesion of perspectives can result in very complex
story interpretations, in practice the viewer limits what possibilities can work. When
there is story or film precedent in the viewer’s domain, strange tricks like the ’it was all
just a dream’ can be played. But the average viewer will become easily confused if too
much is expected of him, and Ingmar should always be prepared to mark a rule as

currently impractical for lack of familiarity.

32

2.2.1.2 Character Perspective

There is no clearer method for distinguishing between what the character knows and
what the viewer and possibly other characters know than by exhibiting shots from a
character’s perspective. When something is seen in a character’s eye, the viewer knows

ezactly what the character sees of that something.

The most important limitation for the view of a character is that it can only move
with the character. The perspective is spatially determined by the character’s
position, movement, and line of sight. Many rules are necessitated by this simple fact.
If a character’s perspective changes a lot with respect to the surroundings, the viewer
will try to make sense of it as movement with a passage of time. If no amount of time
allowable by the story could account for the change, the viewer will assume a new
perspective. Thus a simple simulation of the character’s movement is necessary to
recognize, for example, what views are possible with a simple turn of the head. But
when even the smallest movement is implied, there is still room for confusion and the
best remedy is always to eye follow from views of the character making the implied

movement.

For example, in the film “Kamikazi '89” (the last film Fassbinder starred in before he
died), Fassbinder’s character is moving downward in an open freight elevator. The
director alternates views of him in the elevator with views from a downward moving
camera of factory floors. Even with the simplicity of the deduction that the factory
views are in real time and from Fassbinder’s perspective, many clues make this as
recognizable as possible. Lights play upward on Fassbinder to suggest his downward
movement, and one hears the sound of an elevator. Each factory shot is preceeded by
this view of him, and begins from a height greater than that of a standing human
being. Fassbinder’s eyes are clearly visible and follow the floor shots. It is these details
which make the sequence work, despite the fact that the factory shots are vissbly not

from where an elevator would be.

33

Other facts of a character’s perspective can serve as immediate clues for the viewer. A
previously mentioned example was the verbal identification, as by name, of one
character by another. Another is the visibility of body parts, as in a hand writing a

letter (a truly omniscient viewer has no body).

Of course, the latter image could as well as have been explicitly introduced by a shot
of the character picking up pen and pad, or otherwise indicating that he was about to
write a letter, creating an expectation more of story than image. Story expectation
can always help to identify a character perspective. An important case frequently
occurs in dialogue. The normal alternation of character speech as a kind of story
anticipation harmonizes perfectly with the most natural of eye following. The result is
the ability to dart back and forth between the characters’ views of one another with

perfect intelligibility.

Lastly, consider the usefulness of camera attributes that are consistent with how the
character would be seeing. Such perspective clues are best in conjunction with other
constraints, and probably wouldn’t be available to Ingmar unless he had some rather
advanced video processing resources. A good example is given in "Mother”, by
Pudovkin, when a shot of the mother waking up is eye followed by a shot of the room

around her which is initially unfocussed and then clears.

A shot from a character’s perspective is moored in the realities of what it means to be
that character, and more generally, a human being. Any one of the limitations of the
character’s perspective can then serve as a clue to the viewer for the linking of shot
perspectives to characters. The violation of the perspective limitations in a shot which
is overall distinguishable as being from the character’s viewpoint is a clue to mental

states (like flashback, planning, hallucination, etc.) or the passage of time.

34

o

2.2.1.3 Omniscient Perspective

The omniscient perspective is the wellspring of the magic that is cinema.

The omniscient perspective ostensibly imposes no restrictions, for it is not imprisoned
in any body. Anything photographable can be and is displayed to a viewer who
accepts the image with none of the earthly qualifications to which he is otherwise
bound. Every portrait of the story dodges corporeal law to explode in the imagination,

and in exactly the detail which the filmmaker intended.

That our minds should be able to accept the input of only two senses, sight and sound,
to so vividly construct an alternate reality is almost incredible. It can also be

dangerous.

2.2.2 Synedoche

Synedoche - a figure of speech in which a part is used for a whole, an
individual for a class, a material for a thing, or the reverse of any of these.
(Ex.: bread for food, the army for a soldier, or copper for a penny) (Webster’s
New World Dictionary]

There is a usage of synedoche in the filmic language which is critical for the
communication of any story. Since the viewer has only the window of the filmmaker’s
choosing with which to look out upon the story, it is the burden of the creator to use
synedoche effectively to maintain the viewer’s unquestioning fidelity to that window.
Every shot must have a purpose in keeping alive the illusion of an entire world. When
a small part of a whole is thrust in the viewer’s face, he must be able to induce the
whole. And when a whole is presented, its parts must continue to be suggested. When
this kind of synedoche is violated, the viewer is at best frustrated with a feeling of

having missed something, and at worst completely lost.

A story told entirely through character perspectives would be automatically strong in
synedoche. As long as the viewer is not denied critical character views, every scene will
be lucidly presented by virtue of how we, as human beings, take in our world.

35

‘The problem arises when the film, to be of any real interest, condenses the story in
strategically selected omniscient views spiced with the occasional revealing or
comfortable character perspective. To maintain good synedoche, filmmakers have

invented many clever cinematic prescripts.

2.2.2.1 The Establishing Shot

To communicate the spatial arrangement of any scene it is vital to use critically timed
establishing shots. These shots explicitly depict as much of the whole as possible so as
to guide the viewer in understanding the context of the parts. Establishing shots are
necessarily wide, and have little emotional value due to their inevitable distancing
effect. It could be said that all theatre is made of establishing shots, which is why so

many films which rely on close-ups cannot translate to the stage.

Establishing shots are needed by the film viewer whenever the spatial relationship
between two or more shots is unclear. Though there are techniques to delay the need
for an establishing shot (these are reviewed in the next section), sooner or later the
viewer will conciously demand an overview of what is going on. Even when the viewer
has firmly in mind the layout of a setting, it is good film practice to reaffirm the
viewer’s spatial expectations with the prudent use of visually interesting establishing

shots.

Exactly when to use establishing shots is extremely difficult to define. Ingmar could
very well precede every scene’s action with its establishing shot, but this would be
predictable, boring, and even unrealistic. So unless the use of wide shots has
psychological value, a good film makes judicious use of minimal area establishing
shots. Such shots can be postponed to lend impact to closer shots, and this delay will
cause tension in the viewer between the desire to see more of the part and the need to
see the whole. Ingmar needs a decision process to recognize when an establishing shot
is absolutely necessary, by spatial as well as story constraints. Ingmar needs to
appreciate precedents, like those of the induction principle of Alain Resnais [Scott 75].

36

In “Hiroshima mon Amour”, the very first shots are those of the oily skin of intwined
lovers, over which is dubbed their enigmatic conversation of strange and disturbing
memories. The skin is so close that one is struck by the abstract beauty of its pores and
folds and beads of sweat. So powerful is the image that for a few hypnotic moments
the viewer does not even crave an establishing shot for this mysterious movie that has

only just begun.

2.2.2.2 Preserving the Whole

There are countless proven methods for maintaining the relationship of part to whole
in close shots. Many interact synergistically, and have direet consequences for the
continuity of the film (see Continuity). Whenever spatial relationships do change
significantly, as may be demanded by the story, or even suggestéd by strong
combinations of camera movement and gesture, only an interesting establishing shot

can alleviate the confusion of the viewer who has lost his orientation in the space.

A progression of succesively closer shots can busy the viewer with increasing detail,
and postpone spatial relationship. This trick cannot last, and the viewer must

eventually be pulled back either to the same scene or an entirely new setting.

Another formula might be to follow character perspectives through some action. Such
shots could be substituted with more omniscient shots that serve a similar narrative
purpose, like of the over-the-shoulder variety. It feels natural to evesdrop on a story in
this fashion, and the viewer’s spatial models are reinforced with the orderly
presentation. A conversation built in this fashion can be sustained indefinitely
without the need for more than one introductory establishing shot (though it might

get tedious).

The more flexible usage of omniscient shots which have little relation to the
characters’ lines of sight demands careful technique. The more close-up the shots are,

the more potentially disorienting they will be, and their unambiguous presence will

37

require stricter adherence to the rule(s).

The simplest such technique would be to conduct the viewer through the setting in an
orderly fashion, taking small steps much as the viewer would himself if he were in the
space. If the mental leap between omniscient perspectives is logical and predictable,
then a surveillance sequence so constructed can precisely suggest the entire scene and
obviate the need for a single panoramic establishing shot. This approach would be
necessary when the setting is so huge that no coherent overview could be

photographed. Use of this maxim can also result in strong continuity.

Sound as a sensory information source in film may be secondary to image, but is not to
be underestimated. Artisans of radio drama are familiar with the potential of sound
for synedoche. In a movie, otherwise disconnected images can work together to
advance a coherent space if only they are accompanied by unifying background noises.
This approach is particularly useful in a visually complex environment. A confusing
sequence of machinary can be established as located on a single factory floor when
their combined sound is maintained across the shots. Then for each closeup a
mechanism’s specific sound may be accentuated to re-enforce the viewer’s perception

of married space.

Another technique which is often planned into the shooting of a film is the use of
visually unique objects to serve as landmarks for the spatial arrangement of a setting.
Every non-establishing shot in the scene must include a sufficiently recognizable
glimpse of a landmark. Since such elements are unique to a specific shot library,
Ingmar could only apply this method as an afterthought in his analysis of the shot
representations. Ingmar has to make some tricky judgements about what people will
remember seeing, and he might have to do close ups just to point out the landmarks.
Executed properly, this routine could lead the viewer unambiguously about a setting

for even long sequences.

A different crutch would be to use the screen as a representation of the setting. The

38

dimensions of the screen become roughly translatable to a larger plane of view. This
scheme is remarkable interpretable by the trained viewer as long as the planar position
of the view is not grossly violated. (And most people today are well domesticated

viewers.)

The effect is to preserve the directions as well as positions of the parts of an image, as
well as to impose rigorous continuity. For an example, consider a conversation
portrayed only in side shots, rather than in a previously mentioned style of character
perspective volleying. Whenever Ingmar shows a close up of a character, that
character is on his or her side of the screen, and facing in the direction of the other
character. This powerful presentation mode is typical of dialogue sequences in early
sound films, and is addressed in [Bloch 87|. The style is probably a result of a
theatrical approach to staging, and is rarely used in current movies due to its dated

appearance.

Perhaps the most intelligent option to moving about in a space is also the most general
and difficult to analyze. It involves the guiding of the viewer by means of the story.
Story understanding, ie. the understanding by recognition of all the parts of the story,
will lead the viewer to anticipate a number of views. Real world knowledge allows the
viewer to expect many details, and he looks for these details to confirm his knowledge.
The viewer gratefully accepts new images so long as they do not contradict the
expected. Establishing shots are then useful when they reaffirm the expectations,

however they must not be too blatent for fear of destroying the viewing adventure.
Several illustrations will make this clearer.

a. Suppose a fragmentary establishing shot depicts a woman standing in a plain and
bare corner, next to a window. Ingmar can display a shot of a bare wall and the viewer
will assume that this was the woman’s view of the other side of a room. An amazing
amount of induction has taken place, without the benifit of a real overview! Because

the woman was the only character visible, eye following was possible from a rather

39

wide shot. The corner fit into the viewer’s mental model of a room. And because the
room was so bare, it was easy to make the wall view inferrable as opposite from the
woman in her line of sight. If that wall had had, say a painting, the same cut would

have still implied the opposite wall, but a story expectation might have been triggered.

b. Imagine a classic case of the match cut (editing to follow an event in time, though
usually not real time). A character enters a room through a door. Because the viewer
knows exactly what to expect in terms of actions and views, the scene can be pieced
together from any number of shots. Omniscient perspective can jump all around,
through the door, to the character’s face, onto the door handle, and back again with
perfect trenchancy. The only limitations might be of continuity and time. The action
is so familiar that a lot of time can be cut out and the viewer won’t even think twice.
In fact, a sequence that is too long would be less believable (see Time and its
condensation). A classic approach is one in which we briefly see the character reach for
a door handle, followed immediately by a shot from inside of the door already opening
as the character steps through it. The soundtrack swiftly overlaps the sound of the

handle turning, the door opening, and the character’s footsteps.

c. A character’s narration can carry the viewer around a setting with perfect clarity. If
the character is, for example, describing the room about him, as ih train of thought, a
sequence of images of that room can be used to reflect the description. The viewer will
need an establishing shot if he is ever to know how the room is layed out, but at the

time of narrative the viewer will accept whatever is shown as being in the room.

Lastly, it should be noted that within the filmic synedoche lies the entire problem of
set consistency. Obviously, Ingmar has to keep running track of what the viewer has
seen to know when a new shot contains a contradiction that would destroy the
synedoche. The confict could come in any number of mismatched spatial or
photographic attributes. For example, in case a above, if Ingmar shows the painting
he must remember that the viewer thinks a painting is across from the woman, even

though the wall shot might not even have been from the same room. If the wall shot is
40

" in fact from a different room, Ingmar better have ascertained that things like the
lighting and color made it compatible and thus believable with the shot of the woman

in the corner.

2.2.2.3 The Vignette

There are times when the environment for the story events is ill-defined, and no
number of establishing shots can ever locate an activity. Such would be the case of a
crowd scene. In this instance, establishing shots might be used to communicate the
phenonomenon of a crowd; however, our knowledge of crowds alleviates the necessity

for such a shot.

Close ups in abstract environments take on the quality of vignettes, whose only
relationship to the whole is as some part. Any number of sequences can be strung
together in various orders to depict the whole and make it conceptually manageable
for the viewer. Local spatial constraints become relaxed. The viewer becomes
interested in what the individual vignettes have to say; as the vignettes are presented,
inductive reasoning causes the viewer to form judgements about the meaning of the

whole.

While the viewer will readily accept the chaotic presentation of vignettes, the
environment they are part of becomes in turn an object which is desirable to locate.
Hence, establishing shots of a crowd in relation to its surroundings become relevent

and necessary as the crowd moves toward, say, the capitol.

2.2.3 Continuity

Apart from the adherence to rules of perspective and synedoche, many film editing
decisions are made based entirely on aesthetic constraints. There are guidelines for
maintaining the fluidity of a film. When these are broken, the story may remain

intelligible but an illusion of reality has been shattered. The response of the viewer will

41

be one of surprise and frustration, which may or may not be desirable in a larger story

context.

Ingmar must have knowledge of many criteria for continuity, including the following.

2.2.3.1 Cut Points

The selection of the exact point at which to cut into or out of a shot almost involves
more art than science.Ingmar must also understand the concept of sequence, that is
the series of shots which form a visual unit, versus the ordering of sequences to form a
complete narrative. Most of the comments which follow pertain to the creation of a
sequence. As they apply to the beginning of the first shot and the end of the last shot
in a sequence,they also relate to the joining of sequences. With a few precedents, and a

lot of real world knowledge, Ingmar might fare acceptably at the art of cut points.

Most cuts are best made on gesture, or to paraphrase for generality, the pauses
between completed movements. To decide in which movements to look for pause,
Ingmar will have to consider the relative emphasis of the parts of any specific shot.

And to know when the pause occurs Ingmar needs an understanding of the movement.

The formula can apply to the movement of the camera itself. When an image is
relatively static, as with a wide shot of a formal dinner, cutting should be made when
the camera is as still as possible. Of course, looking for the camera’s pause can include
or exclude important detail, or otherwise interfere with the story presentation, so this
rule must be frequently overridden. For intance, if the only establishing shot of the
dinner was a pan across the table, it might be far more important to cut at the view of
a certain character than complete the shot, perhaps to eye follow to their perspective.
The speed of the camera movement will be an important factor for cutting, indicating
how recognizable the last frame will be. A swish movement is one that is so quick that
the view is blurred. Cutting from a swish is almost always good, simply because the

viewer wants to stop the image to discern detail. Cutting to a swish will have

42

psychological value, as the viewer will feel surprised and accelerated.

Cutting for scene movement involves looking for the completion of some most visible
and completable activity. Such completion may imply finality or propose more
movement, and in the latter case Ingmar may wish to consult thrust matching to

absorb the momentum of the shot. (see section to follow)

A few classic shots will provide insight. In the first, a man posessed with emotion
delivers an ultimatum which he punctuates with a blow to his desk of his fist. The cut
is made just as the fist slams against the desk. Any shot at all could follow. In another
shot, the man walks toward the camara with animated stride. The cut is made as
either foot hits the floor. But now there remains a momentum, because the activity of
walking continues. If this momentum is ignored, some succesor options might

unpleasantly jar the viewer.

Ingmar will routinely encounter very tricky decisions in his quest for the best cut
point. The interactions of many scene and camera movements will make the problem
one of choosing the lesser evil. In all cases, cutting must be kept in perspective of more
important issues, like what should and shouldn’t be displayed to serve the story. Even
in the best of movies from human cinematographers, awkward cut points can be

forgivable, desirable, or even unnoticeable in the larger narrative context.

2.2.3.2 Jump Cuts

Jump cuts occur whenever a visual similarity at the boundary of two shots causes the
viewer to feel unpleasantly yanked to the second image. This effect is dominant for the
straight cut, and may be diminished with the use of other transitions which effectively
communicate the passage of time (see Time under Story). Jump cuts can have
important stylistic value. The work of Godard, quintessential in evaluating the filmic
intent of the French New Wave, is repleat with jump cutting. In “Breathless”, a

woman riding in a convertible is shown in a series of views all taken from the same

43

angle and distance. No visual transitions are offered between the shots which, what
with the woman'’s gestures, her sweeping hair, and the passing street, cannot possibly

match.

When Ingmar determines that two shots constitute a jump, his most direct option will
be to reselect the second view. To stay within the story requirements, this route may
entail just the identification of another shot which portrays the same subject from a
perspective of greater spatial difference. In fact, it is good style to keep moving the
viewer about a space in distinct and appreciable increments. It will be a challenge to
Ingmar to maximize this practice while staying within the confines of forms for

e

synedoche and other types of continuity.

Jumps between necessary shots are easily avoided with the use of unrel;ted images as
buffers. Whenever two shots indicate approximately the same distance and angle to
the same subject, Ingmar can find a view of a different subject (usually in the
proximity) to insert. Of course, the image in the buffer shot selected can have
disasterous story consequences if not properly chosen. Furthermore, the buffer must
serve the needs of perspective, synedoche and continuity. For all the trouble to fix

them, some jumps might be best left as is.

Consider the Godard jump example above. To repair the situation, Ingmar would look
for other shots related to the car setting. A shot from outside of the car speeding past
would be effective, but distracts from the woman. A closer shot of the woman would
break the jump, but then the shot would relate less to the driver’s view of her. A jump
to her perspective would be nice except that now the viewer is in her perspective. This
would suggest views of the driver, or build viewer empathy for the woman. This jump
cutting has very definite story repercussions, enforcing realism and objectivity, and
any attempt to change the sequence will destroy the effects. With a tip of the hat to
the likes of Godard, Ingmar must realize that sometimes a jump cut is just the trick to

make a sequence work.

44

2.2.3.3 Limits of Rotation

A continuity consideration which also has correlations to synedoche is that of the
degree of rotation implied between two shots. It is an interesting fact that the human
mind is far more adept at making linear than rotational displacements through an
imaginary space. If the perspective movement involved in the transition to a new view
includes rotation, the amount of image porcessing required by the viewer to orient
himself increases as the rotation approaches 180 degrees. The effect of a 180 degree
shift is to possibly push the viewer into a state of confusion. This confusion may not
ultimately destroy the synedoche as the viewer reorients. But a most unpleasant
feeling of having been jerked about will diminish the viewer’s sense of filmic

continuity.

One kind of rotation Ingmar must look out for is that of the camera around a subject.
Whenver a single subject of the overall image is transcendent, an edit must not take
the viewer to its opposite side. This should especially be true for similar views which
are distinguishable only in direction. The front and back views of the human are are
far more differentiable than the sides, which are mirror images and present opposite
sight trajectories.If rotation about something is required, Ingmar must lead the viewer
in steps of less than 180 degrees. The succession of shots thus derived will work
especially well if, in avoiding jump cuts, Ingmar also tries to vary the distance to the

subject.

When the subject of a scene becomes a space strongly oriented by opposing directions,
Ingmar must again beware of rotations that bring the viewer through 180 degrees.
Examples include conversations between two people and battles between two armies.
In these cases, the intelligibity of the story as well as the synedoche can hinge upon the
preservation of directions. Ingmar must be dissuaded from extreme rotations even by

comfortable increments until such scenes have been logically concluded.

A more fundamental rotation problem arises when Ingmar contemplates his viewer’s

45

models of real world knowledge. Since our world is one of gravity, every example we
have ever known of objects has an orientation to downward. While many things were
small enough to allow rotation and the construction of mental maps independent of
gravity, other iconic knowledge, like that of buildings, is most familiar at its 'normal’

views of street level and headon.
The consequence is twofold, and relate directly to synedoche.

Firstly, when an image is presented in its realistic, headon/eye-level perspective, the
viewer expects down to be the bottom of the screen. This is obvious really. When we
see a character walking toward us in a film, if he is not right side up we’ll think the
director is up to something strange. A little tilt might be stylistic, but a lot, like up

side down, would be laughable.

Secondly, whenever images are displayed from other than the normal, down oriented
viewing angle, Ingmar must realize that there is potential for confusion as the viewer
compensates. A new sense of downwardness, independent of the screen or even the
viewer, must be recognized. The subject of the image may even involve image
processing for a model with another, different down. Thus, a view from a ceiling down
onto a standing character is confusing, but not as confusing as the same perspective of
the character lying on the floor, especially if that character’s feet direct upward on the
screen! A shot upward of a tall building is not even that abnormal in terms of daily
perspectives, but since the viewer has gained a new down, one that points out at him
from the screen, it also takes a moment, however small, to acclimate. In this latter
example, if Ingmar is lead to the upward shot of the building by a story requirement
(say, to see an open window out of which someone will fall), he notes the
discontinuous change of rotation and seeks transitions to the view. The simplest would
be to find a street level shot which tilts upward. If this is not available, Ingmar
searches for a street scene in which a person looks upward. The transition to make the

sudden rotation would then be an unambiguous case of eye following.

46

As Ingmar builds sequences of shots, flavoring the mix with any number of interesting
perspectives, he must decide how the shots will affect the viewer’s sense of orientation.
When sudden leaps of rotation are made, Ingmar must choose either to make the
rotation more comfortable by adding shots, keep the transition for stylistic reasons and
perhaps display the image longer to allow the viewer to adjust, or rework the sequence

at a story level.

2.2.3.4 Thrust Matching for Momentum

Thrust matching should be considered whenever the cut point of a shot is such that
movement is suggested. Since film is presented (currently) in two dimensions, it is
those movements which cross the screen that hold the greatest momentum. In thrust
matching, a strong movement expectation is answered in the next shot with another
movement that may begin about from where (on the screen) the suggested movement
would have begun. The thrust match builds continuity across the shots and makes the

edit appear more precise and filmic.

If the movements to be matched are of the same action in time, by the same subject,
then the matching is critical to a sense of progress. A familiar case is that of a
character striding across the screen. If the direction of movement is not all too literally
retained through a sequence, the viewer may get the impression that the character has
gone in circles. Such a frustration of advancement may or may not have story value.
The thrust matching of this and other single actions will also challenge Ingmar in the
eschewal of nearly unavoidable jump cutting. In the instance of the man walking,
rﬁethods like waiting for the character to walk off the screen and then starting him
again on the other side (a sort of wrap-around effect) address the problematic

interactions of thrust and jump.

If the suggested and matched movements are similar but arise from different subjects,
the edit will be fluid and inviting. Also, the viewer will seek metaphor between the
dissimilar images, and the enforced vector of momentum can have allegorical

47

significance. An excellent instance of this is found in “Aguirre, Wrath of God”, by
Werner Herzog. The entire story is one of a Spanish expedition moving inexorably
toward doom in the Amazon jungle. A collection of metaphors are used throughout
the movie to evoke this fate: movement downward (out of the Andes and down the
river) toward death (in Herzog’s symbology, circles and the elemental). As the film
opens, we begin from a great distance in the sky and move down to follow the
expedition, complete with weapons including most unwieldy canons, as it winds its
way down a steep mountainside. The struggle is slow, dogged, and dreamlike. We
close in increasing detail, up until we are behind a soldier whose gaudy helmet drops
before us as he descends the precarious path. Suddenly, Herzog thrust matches to a
cannon falling from a cliff and exploding into the river. The viewer is riveted with the

action, and the edit exquisitely withstands analysis.

2.2.3.5 Audio Flow

When some violation of strict visual continuity is inevitable, methods for controlling
the flow of audio may ameliorate the situation. Whether it be theme music or, more
relevantly, the sounds of the story, audio can have a transcendent unifying effect on a

sequence of shots.

Sound is generally used to accompany image, but it can be an unfaithful partner.
When the audio is that of a greater scene, it is natural to preserve the location’s
ambient sound , even for those shots of silent subjects. This is a simple maxim for
synedoche as well as continuity. In most narrative movies, sound tracks are built in the
studio using ’clean’ ambient, dialogue, and music tracks. This is necessary to maintain
continuity by avoiding such undesirable sounds as that of a passing plane, which is

particulary problematic at a cut point.

Matters get really interesting when the sounds of distant images is overlapped to
express continuity. Consider the case of a character hurrying out of a building to catch
a taxi. The door is seen to be closing as the character rushes through it, but the actual

48

sound of its slam is not contained in the time condensed shot. The slam must be heard
however, and will be when the character has already vaulted into the street. Thus, the
sound of the door must unnaturally loud in comparison to the street noise of the next

shot in order to be discernable.

The use of sound introduces innumerable complications to Ingmar. Many of the filmic
forms so useful to this day were developed in the silent era of cinema. Without the
burden of sound, innovators like Sergei Eisenstein were free to nurture film theory in
purely visual terms. Eisenstein himself referred to his discoveries as being within a
realm of optical counterpoint, and fairly dreaded the time when the optical and
acoustic would interract [Scott 75]. It may be observed from the lag in technology that
the use of sound still constitutes a frontier, wherein directors like \David Lynch
experiment, as with the amplification and distortion of the otherwise subaudible to
justify dream-like sequences. It will be enough for Ingmar to use sound in the simplest
of forms to support the visual phenomena of synedoche and continuity in the portrayal

of story.

2.2.4 Story

Once Ingmar has acquired the more fundamental techniques of film to smoothly depict
sequences, he will require a more general knowledge of how to edit for story effect. His
directing accomplishments will not be acceptable until he can appiy the vast number
of precedents for story representation which render film the most subjective and

powerful of media forms.

2.2.4.1 Emphasis

The wonder of cinema stems from the filmmaker’s mandate to show the viewer exactly
what he wishes. It is vital to display the events of a story as clearly as possible, to the
exclusion of extraneous material. Because the viewer is forced to witness the story via

the screen, every image will be interpreted in the context of the story. Each view will

49

be assimilated for its significance, as if the viewer himself were within the story and

willfuly chose to look in the predetermined direction.

It seems obvious then that Ingmar will need an acute sense of what his audience will
see in every shot. It will not be enough to select those shots which contain the image
required by the story. Ingmar needs to find the views which best emphasize the script
details. He will consider the degree to which a subject is framed by the camera, the
nature of the subject’s optical impression (like its movement and color), and the extent
to which the surroundings may distract from that subject. Ingmar may use the
consequences of many other filmic rules to decide when an image has been emphasized,
as by the subject of a thrust match. From the need to emphasize parts of a whole,
Ingmar must generate a suitable pattern of perspectives, for example with the closing

in on a subject from an original establishing shot.

Ingmar must repeatedly tap his capacity for story understanding to know when an
image deemed important in initial shot selection is condusive to the story’s portrayal.
The viewer will notably feel empathy for a character that is repeatedly emphasized
more than others. If the shots available to Ingmar present, say, the bad guy in closer
view than the good guy, Ingmar may need to skip valuable shots simply to avoid
misplaced emphasis. When considering a shot of some outstanding emphasis, Ingmar
should be able to evaluate its consequence for the story as portrayed in the film to that
point. When he has been lead irrevocably to a choice for inconsistent emphasis,

Ingmar will need to backtrack and replan the film for a better shot selection.

2.2.4.2 Time

Time is remarkably pliable in film. Aside from the director’s obvious ability to alter
the chronology of events, for each such event the amount of time passed in the telling
of the story and in the viewing can be two very different entities. The time may be
expanded, compressed, or sustained, with very different story consequences. The
handling of time in film can cause the viewing experience to be one of complete and

50

unquestioned immersion, or utter disgust for the movie’s lack of believability due to its
q y

monotony and redundancy.

Every shot has an minimal assimilation time in the context of a story. This is a
duration of view for which the audience discerns the details, working first from the
most obvious/emphasized images to the finer points. As long as the action, be it verbal
or visual, of a shot continues the assimilation time increases. It is reached when the

shot becomes static relative to its story content.

When an image is perfectly consistent with its surroundings, the assimilation time may
be surpassed as a sense of realism works upon the viewer. If action resumes then the
extension has been justified. If little else occurs in the shot, the viewer may become
bored as filmic continuity is lost. Of course, it is in that subjective interim between
cognition and boredom that the perspicacious moviegoer will contemplate what he has
seen and make the associations that lead to deep allegorical insight. Ingmar should
make judgements about the extent of his audience’s patience, for it will limit his
narrative potential. American audiences, weaned on Hollywood, will have less patience

than the fans of the so called foreign films.

A worst case for extended viewing time will arise when the shot is not entirely within
the constraints of synedoche. Then the viewer will most certainly notice the flaws and

suspend his belief in the film.

Posing a shot below its assimilation time can have marvelous effects. As long as
important chronology is not lost, the viewer will see the story information but will be
rushed in his understanding. Minor inconsistencies of setting will be ignored. The
viewer will feel elevated to a new level of activity. In his excitement, the story will be
almost certainly accepted at face value. Incredibly, the story may become more

believable. The plot will thicken, and the viewer will anticipate a climactic event.

These effects, perhaps benificial to the story, will decrease as the shot’s emphatic

51

content becomes unintelligible. The limit is perhaps best illustrated in the
experimental extremes of Charles Braverman. His “American Time Capsule” of 1968
invoked the controversies of subliminal manipulation with its lightning presentation of
images from American history. But Braverman’s genius, so often imitated in vain, lay
not with coherent narrative but rather the ability to create a disturbing cumilative
effect with subtle matching across the images. The technique should well be noted by

Ingmar.

The transition between two shots can also communicate the passage of time. The
filmmaker has several editing options available for the introduction of a new shot. The
straight cut is the most familiar to the average viewer. A straight cut in itself implies
no time passage, which is why its use for two shots of the same subject can result in a
most annoying jump cut. If time is to pass with straight cuts, it must come about
with the sequence of shots and the state changes they relate. Other cuts however can
work to show temporal isolation. The dissolve is great for the compare and contrast of
two images, thus holding important story potential. Wipes limit the degree of image
comparison possible, but their use is a bit arcane. A fade will seperate two shots most

explicitly, and can convey any amount of time passage.

Lastly, the filmmaker wields his time control by virtue of just how much of an action
in time he displays across a sequence of shots. Important story events must not of
course be neglected. But the complete portrayal of mundane, commonplace activities
has no part in a good film, except perhaps to goad the viewer for some psychological
effect. As with single shots, the virtue of believability falls on the side of time
contraction. Thus, for familiar events which are required by the story but serve no
other function, like a character entering a room through a door, the condensation of

time has priority.

There are certainly occasions when time must be maintained, most notably to support
the soundtrack. Dialogue cannot be condensed. It will be up to Ingmar to edit

creatively and maintain viewer interest when the visually dull phenomenon of
52

something like conversation must be constructed. Among his talents will be the ability
to crop shots as closely as possible and move the viewer about a space with speed as
well as accurate synedoche. He should also appreciate that when the conversation is

nonetheless of great portent too much visual trickery will distract.

When an event is of some complexity, it may even be advantageous to expand time.
This skill arises in comedy [Reisz 68|, wherein it is important to see the expressions of
several characters as they react to brief events. Wide shots cannot convey the
laughable details that close ups can, so the viewer is strategically treated to more view
than is consistent with story time. In comedy, and cases of similar wide close conflict,
Ingmar must be able to show all the important views without making the time

expansion painfully obvious to his audience.

2.2.4.3 Psychology

It is in this final, catch-all category of editing for story psychology that Ingmar will
need to store vast amounts of precedent knowledge, as well as a thorough
understanding of the English language. To direct with any style at all, and thus rival
his human counterparts, Ingmar must realize how to whip the viewer into emotional
states condusive to his narrative. To this end, he must’study’ the techniques of all the

giants of cinematic history.

The fundamental principle at work in editing for psychological impact is that of the
viewer’s tendency to correlate phenomena in his understanding of a story from the
sequence of images that is a film. Story appreciation flows from the construction of
summaries. Since every shot contains limitles detail, the infinite details of an entire
movie must be lumped together by the recognition of common attributes. Semantic
interpretations are made which build analogies from comparisons. Thus film has a
gestalt quality, in which elements are forced together to yield an understanding that is
not necessarily indicated by any one shot or its contents. The term montage might be
relevant, but its employment has been so varied as to make the word a vehicle for

53

more confusion than illumination.

Lev Kuleshov was the earliest theorist in this domain of an interpretable reality as
portrayed by film. He belonged to the founding school of Russian filmmakers, who
were motivated to explore the expressive potential of cinema as a medium for
communicating the ineffable triumphs of the socialist revolution. Cinema’s latent
power for propaganda was recognized by Lenin, who in 1919 had declared "Of all the

arts the most important for us in my opinion is the film” [Casty 73].

Kuleshov expounded a principle of continuity, which was to be applied faithfully by
Vsevolod Pudovkin in such brilliant works as the 1914 masterpiece entitled “Mother”.
In "Mother”, the sequence of images constantly and consistently cooperate to establish
the righteousness of a proletarian uprising. Among the many visual metaphors
employed is that of a frozen river thawing and releasing its power in an explosion of
ice, even as the downtrodden workers unite in frightening force to release themselves
from their unjust bondage as slaves to the factory owners. But just as the river’s melt
is an annual, cyclic event, so too is the rebellion quashed, only to await an inevitable

resurgence of revolution.

Thé consistency of the imagery in examples of the continuity principle was challenged
by Sergei Eisenstein, who saw the burden of maintaining literal coherency as an
obstacle to the more general expressive needs of the filmmaker. He postulated a
principle of collision, born from the application of dialectical materialism [Scott 75].
Kuleshov’s continuity became only a special case in which all imagery lead to direct
and shallow interpretation. Eisenstein argued that equally coherent communication
was possible with the use of contrasting elements, whose differences could suggest even
more powerful themes by the route of synthesis from thesis and antithesis. While
perhaps more visually challenging, in practice the works of Eisenstein were perfectly
comparable in expressive content to those of previous Russian filmmakers who had

assumed only the continuity principle.

54

The consequence of this cinematic history for Ingmar has already been intimated.
Whenever a thematic communication is discovered to follow from an existing rule,
Ingmar should equally consider an instance of the precise violation of that rule as a
means for establishing a consistent and perhaps stronger psychological effect. This is
not to say that such effect will be acceptable to any one viewer, since the violation of
filmic expectations can result in suspension of belief. Ingmar should follow known
precedent and only experiment to a lesser degree with the spontaneous invention of

Eisensteinian collision.

Precedents for the psychological re-enforcement of story, which are both familiar and
effective for a majority of viewers, exist in abundance. In all cases, they deal with the
establishment of semantic analogy between film elements. When the analogy is
continuous, a smoothness of communication is perceived. When the analogy is one of
disparity, tension and emphasis are produced, which can rivet the perceptive viewer to

the film.

When Ingmar follows strictly rules for synedoche and filmic continuity, the viewer can
be guided smoothly and directly into story interpretation. An example previously
mentioned was that of the thrust match in Herzog’s film “Aguirre, Wrath of God".
Thrust matching between the different objects of helmet and cannon lead the viewer
to seek continuous analogies. The soldier wearing the helmet could therefore be
expected to meet a violent and sorry fate just like that of the exploded and wrecked

cannon.

The works of Alain Resnais often exploit a violation of synedoche. Resnais’ induction
principle [Scott 75] involves the presentation of close images prior to their establishing
shots. The effect if one of anxiety and claustrophobia, as well as the emphasis of the

subjects in close.

Alfred Hitchcock perfected the use of those filmic techniques which semantically

translate directly to a point in the flow of classical narrative. This he called his

55

additive principle [Scott 75]. When the actions of the story are quick and threatening,
as they would be in building to climax, Hitchcock would increase the rate of cutting
(using shorter duration shots), thrust the viewer inward with closer shots, and likewise
use shots whose subjects moved toward the camera. These effects would increase until
the climactic point, whence everything could reverse. The viewer then feels relief as the

cutting slows and the subjects recede.

Another method of Hitchcock, which would be interwoven with the general additive
scheme, was that of establishing suspense versus shock [Scott 75|. Suspense occurs
when the viewer is shown in close something that the characters are seen not to be
aware of. The viewer anticipates the conflict that will occur when the characters
encouter the something. Suspense is thus enforced when, say, an axe-murderer is
known by the viewer to be lurking in the corner. Shock is the reverse effect, when the
viewer discovers something at the same time that the characters do. If an axe-
murderer leaps out to attack a character, the viewer is shocked, and will feel empathy
for the character because he was similarly surprised. Mitigated shock with less
empathy could occur if the character was first seen crouched in expectation, but the

viewer was still not informed of the exact danger.

Even a still frame from a single shot can suggest relationships of analogy by means of
visual composition. Many such rules for instantaneous metaphor were implemented by
the great Russian directors so long ago that they now seem obvious and cliche, but

their validity holds.

The angle with which a character is depicted yields semantic interpretation. High
views down onto a subject suggest the subject’s weakness, subserviance, and
desperation. A shot upward implies that the character is in a position of power and

confidence.

The film attribute of distance has direct English significance. If a character is

portrayed in a majority of wide shots, the viewer will feel that distance as alienation,

56

~—?

and the character will seem inconsequential or impotent. Movement seen from afar
will likewise be subdued. When the viewer is held close to the subject, the effect is one
of subjectivity. If the character is threatening, the viewer will be threatened. When
the image is inviting, the viewer will feel comforted and empathetic. Any motion in
close up will be exagerrated and also add to a sense of threat. The consequences of
wide versus close shots must be weighed carefully by Ingmar not only for the resultant

emphasis of the parts but also the psychologial effects incurred.

Shot content in terms of line and color can locate comparisons between elements. A
beautiful example comes from a film by Alexander Dovzhenko entitled “Earth” [Vogel
74). In a sequence commonly censored by Soviet authorities, the despair and
helplesness of a woman whose lover has just been murdered is communicated in a
single image. A room is dark and confining, with a preponderence of perpendicular
lines, and drapes and tablecloth visible. The woman is bright and naked, perched to
the side at an angle, poised as if seeking escape. Whenever Ingmar can discern visual
contrasts such as these, he should consider their exploitation through semantic

association for story.

Unusual conditions of photography can have drastic psychological corollary. Some
such effects could even be generated by Ingmar from normal shots with a bit of video
processing. Overtones of color can have clear import, as with Bergman’s “The Passion
of Anna”, wherein a story of violence and primitive emotion is bolstered by the dull
red hue of the entire film. Andrei Tarkovsky made use of literally negative images to
communicate dream sequences, as in “My Name is Ivan”. A boy buffeted by the
savagery of war escapes his predicament in an inverse scene where he rides in the back
of a horse drawn cart, eating apples across from a pretty young girl. The sexual
connotations of this sequence could also be recognized by Ingmar with a bit of

Freudian vocabulary.

Some directors are concerned with the tendency of their audience to believe too

strongly in the alternative reality of film. They like to remind the viewer of the nature
57

of cinema with sequences that depict the medium itself. Both Fellini and Bergman
have been known to practise this trick, either by interrupting the story itself with
scenes of the actors and equipment or by including objects of photography, like
cameras, in the shots. Ingmar could consider this effect of movies about movies

whenever he had such scenes at his disposal.

58

Chapter Three

Prosthesis

The details of my work constitute Ingmar’s first assignment in film direction. My
project grew entirely from a single scenario, which was filmed and edited into a shot
library on videodisc. The necessity of developing from a specific case was obvious; I
could not even begin to realize Ingmar without the context of a certain story and its
shots. What was less obvious but became critical for the project’s ultimate validity
was the appreciation of just how much filmic knowledge”Wa.s incorporated in the
staging and photography of this first application. A great number of filfnic constraints
were automatically satisified. As a result, the Ingmar of this implementation, even in a
postulated complete form, remains critically germinal. With the introduction of new
images for which the implicit constraints no longer hold, Ingmar will require more
powerful filmic understanding. For this simple reason alone have I shaped the
exceedingly general, and necessarily less defensible, hypotheses of the preceeding
chapter. By developing a framework for Ingmar’s directing knowledge, I hope now to
cogently indicate those more universal filmic considerations which might otherwise be

disregarded with the myopia of my exact accomplishments.

The Ingmar of my work, for all its limitations, is in itself frightfully involved. I had
sincerely hoped to succeed with a stage of implementation that at least included the
linear presentation of library shots in response to some minimal story specification.
This generated movie was to have exhibited some number of basic constraints of story
chronology and editing technique. For various restrictions of time and programming
environment this goal was not reached. I remain convinced of the value of my efforts,
particularly in their context of the transcendent directing knowledge which a
generalized Ingmar will require. To the end of communicating my progress, I will

discuss my pursuit in the order with which it developed.

59

—

3.1 Library Production

3.1.1 The Making of the Shot Library

To make the shot library program accesible, it was necessary to put it on videodisc.
Economic reality, as well as an appreciation of directing complexity, deemed that
Ingmar could have at his disposal no more than about 15 minutes of image material.
Within this claustrophobic space, I wished to include as many narrative possibilities as
a single scenario could justify. Any one story plot would be constructed from a subset
of the shots available, keeping in mind the basic narrative requirements for an

introduction, climax, and denouement.

To satisfy these constraints, the scene needed to be almost archetypal in extent. There
were also demands for the feasibility of shooting; the entire production had to be
filmable in one location with a minimum of props. To be amenable to representation
and eventual movie generation, the entire work also had to be simplistic. There would
be a minimum of characters manipulating a minumum of objects with a minimum of

movemernt.

For inspiration, I turned to the legacy of Spanish director Luis Bunuel. His works reek
of the complex and often disturbing psychological interactions of stereotyped
characters. Although his films often transport the viewer about many locations, the
most powerful and revealing sequences are usually rooted in simple and static settings,
making his stories frequently translatable to a theatrical environment. His best
offerings are among the most powerful in cinematic history, so his staging practices are
far from limiting. I contemplated such masterpieces as “The Discrete Charm of the
Bourgouesie”, “The Exterminating Angel”, and “Viridiana”, wherein the primeval

forces of the characters’ interplay occur in the familiar pretext of a dinner.

This was just the insight I required! I would stage a dinner between two characters,

and loosely script a number of story possibilities. The filming took place in one evening

60

at a straightfowardly arranged apartment with the invaluable expertise of Glorianna
Davenport and Brian Bradley. The cast consisted of myself, my friend Bianca
Philippi, and a cameo cat. We filmed several permutations of ourselves entering the
apartment, serving wine and blue spaghetti, consuming said materials at a sparsely set
table, conversing, and playing through several story events involving the breakage of
wine glasses. With Glorianna’s patient assistance, the footage was edited down from
almost two hours to 16 minutes. The final result was pressed to videodisc and entitled

True Dinners.

3.1.2 The Challenge of True Dinners
True Dinners was slanted toward the possiblities for narrative. For Ingmar, the logical
ordering of events will computationally overshadow his fundamental skills for fluid

editing.

Several cases for the chronology of physical states arise in True Dinners. A clock on the
wall was carefully set and filmed in many shots, so that an absolute temporal
consistency would be demanded. The amount of food and wine visible on the table
also constrains the possibilities for shot sequence, though less rigorously since views of
the glasses and plates being refilled were deliberately included. The breakage of the
glass is not necessarily final, because along with an expected scene of either character
sweeping up the mess there is available a shot of each character apologizing, to which

the other replies that all is well and a new glass may be obtained.

For every state combination possible, there are any number of shots which can lead to
that state. An empty plate was eaten from after being served to from a bowl of
spaghetti which was taken from an oven and placed on the table. Each empty glass
was drunken from after the wine was uncorked after it was placed on the table after it
was given to the host as a gift by the entering character. The characters enter and exit
the dinner scene under various pretenses, which include leaving in a huff partway
through the dinner or helping one another clear the table after a completed meal.

61

Emotional states are also entirely optional under a wide range of permutations. For
many scenes there was shot the context of either character as host, and therefore more
obliged to matters of seating, serving, cleaning up, and bidding the guest a potentially
hostile farewell. In the introductory shots, those of the characters entering and setting
the table, two distinct contingencies were anticipated; either the characters are close
friends, and thus given to touching and boisterous speech, or they are dining in a more
formal context, and hence act shy and reserved. As the dinner progresses, the gamut of
emotional displays is available. The characters exhibit various degrees of anger,
pleasure, or boredom, and address one another accordingly. The event of the broken
glass, which could very well serve as the climactic point of the story, is portrayed with
either character as having accidently knocked the glass over or done so quite
deliberately, with appropriate reactions of regret or self-satisfaction to follow. When
either character breaks off the dinner in some annoyance, the other may be apologetic

and sad or quite eager to see them go.

The True Dinners library is embodied in no less than 108 seperate shots. A single story
built from these images might contain far fewer shots, and cbuld not include all 108
since many are mutually exclusive. Even with the number of possibilities, there are
enough shots consistent with any same plot to generate a variety of movies, some of
which could be most dramatic while others fail for tedium and lack of believablity.
Ingmar will have much to consider in his succesful generation of film from this one

tiny but versatile library.

3.1.3 A Bittersweet Taste of the Implicit

True Dinners provides a splendid environment for which Ingmar can exercise his story
understanding (see Chapter 2). The logical chronology of physical states may be
obtained from a database of rather static knowledge. This representation is of the sort
I refer to as setting. To order a believable series of character emotional states, Ingmar

will resort to the generation of plots. This entails some simulation, however crude, of

62

the characters with their beliefs and goals in the pursuit of happiness. My general
theory for this method is admittedly complex, but for True Dinners only a few
considerations are requisite. In particular, the phenomenon of friendship must be
approached. The friendly, informal context for the characters can change the severity
of any argument that may ensue, because though friends may fight they really want to
stay friends and are more likely to make up than strangers. Other relevant plot factors
are less compulsory for basic simulation, like drunkeness (there are scenes in which the
characters appear inebriated, in which case events could get more emotional with
augmented consequence), humor (to really decide when to use a view of one laughing),
and pride (when one of several abstruse and intellectual statements is made and the
other character does not respond favorably, how seriously insulted should the first
. person be?). Genuine plot production, down to the last intentional detail, is vastly
entangled, but there’s no reason why Ingmar couldn’t wing it with setting type

knowledge, and with perhaps unexpected human interpretable results.

What is disturbing to the intent of a robust Ingmar is the amount of editing skill that
has been obviated with the filming of True Dinners. In general, Ingmar should make
few, if any, presumptions concerning the nature of his shot library. He should be
prepared to analyze shots for every little detail as he constructs a movie for
perspective, synedoche, continuity, and story. But because True Dinners was filmed in
a small apartment, for activity that was planned to be relatively static, many a nasty

editing quandry was eliminated from the start.

Most notably, Ingmar will not need to maintain complete spatial models for the
position of characters and objects in the dinner environment. The camera was located
in only one of two general areas- the entryway outside the kitchen, and a limited space
in front of the dining table ‘and seated characters. These two sites are easily
distinguishable by the presence of the entryway door through which the characters
enter and exit. Synedoche is remarkably easy to maintain, involving no crucial

mappings. The environment is so small that almost any shot wider than an extreme

63

close gives an instant impression of the space. The only view which could lead to
spatial confusion is that of a character obtaining the blue spaghetti from the oven, and

even those include pans to and from the table area.

The two continuity questions which also relate to synedoche, and are therefore
strategic, are the limits of rotation and thrust matching. Both are answered with the
camera placement, since no views are made available of the opposite side of the table,
or of the same motion completable from different directions. The photography in fact
imposes the continuity rich situation where the screen translates to the space, as

discussed under synedoche as a stern formula for maintaining the whole in

g
o

conversations.

As far as spatial maintenance for the intelligibilty of transitions to character
perspective, there are few instances where a character’s view is even conceivable. In
only a couple instances was the camera able to maneuver behind Bianca and thus give
a potential for her perspective. In these cases, barring their unacceptability for other
reasons, the view of myself seated and opposite marks the shot unambiguously in the

space, and disposes again of any need for a general coordinate system.

Ingmar will in fact need coordinates to subjects, but only from the camera. Jump cuts
will be readily avoidable with this information. Planning for interesting and smooth

transitions between wide and close shots will also be sufficiently facilitated.

Thus, the mixed blessing of True Dinners involves its gross simplifications for image
representation. Content, both spatial (movement, distance, etc., to subjects) and
semantic (what’s happening in story terms), has been reduced primarily to an issue of
character specification. Objects are either in the hands of the character, thus part of
the character description, or simply visible in a small space. The environment, and the
exact location of its contents, is irrelevant except for the most minimal of descriptions.
The only other knowledge Ingmar will demand is that of the camera’s attributes, like

its motion in the search for cut points.

64

The category for filmic understanding that is most strongly supported by the True
Dinners scenario is that of editing for story. Ingmar needs the insights of rules for
emphasis, time, and psychology to make the final movie generation choices that
determine whether his work will be cinematically good or not. Even in this domain, it
should be noted that some precedents, like those of toward/away motion for
climax/denouement, may still never apply due to the confined quarters of the

photography.

3.2 Film Representation

3.2.1 The Application of HPRL

HPRL stands for the Heuristic Programming and Representation Language which was
recently developed at Hewlett Packard [HewlettPackard 86]. This 'expert system’ shell
runs on Common Lisp, and at the time of my thesis’ planning had been presented to
the MIT Media Lab for beta-siting. It was suggested that I use and evaluate this
programming tool as an alternative to the creation from scratch of my own semantic

description system for True Dinners.

HPRL is a large scale implementation of many database management facilities as
would be valuable for research in Artificial Intelligence. The language proved useful
for the immediate structuring of the True Dinners representation. My experience with

HPRL also pointed out many of the language’s limitations, at least with respect to my
needs. In fact, HPRL ultimatley hindered my progress, as will be discussed in a section
to follow. Most of the problems encountered will also be described as I recount my

programming efforts.

While much of HPRL’s power is contained in the complex and convoluted commands
it offers for the manipulation of a knowledge base, the format for data specification is

simple and remarkably readable. The reason for this is that information is stored in

65

the intuitive structure of class heirarchies. The quintessential example used
throughout the reference manual is that of restaurants. Classes of restaurants are
constructed and connected by links that semantically translate into is-a-kind-of’s.
Say, McWeeger’s is a kind of Fast-Food-Restaurant, which is a kind of Americaﬁ-
Restaurant as well as a kind of Restaurant, which is a kind of Place-to-Eat, ad
infinitum. In this example, McWeeger's is called an instance of the higher
specifications, which are classes. One problem with this approach can be never quite
knowing when to stop at the instance, which can only belong to one class while classes
can belong to several classes (like the Fast-Food-Restaurant pointing to American-
Restaurant as well as Restaurant). If McWeeger’s became popular and sold franchises,
then the knowledge base would have to change, with McWeeger’s being now a class
and subsuming instances with clumsy names like McWeeger’s-in-Watertown and

McWeeger’s-at-Kenmore.

For each instance, the user can define any number of slots, which are just the
attachment of a name to any number of details. McWeeger’s thus would have a food
slot, in which is stored values like Chicken-el-Wacko. If slots are specified for classes,
the contents are stored on the generic-instance, which is like a template for any real
instance. When an instance lacks the values of a higher generic-instance, they could be
inherited. If the generic-instance for Fast-Food-Restaurants has Grease listed in the
food slot, then asking what kind of food McWeeger’s offers might return Grease as well
as Chicken-el-Wacko. Whether or not Grease is really returned must be determinable,
so the control of inheritance is one of the reasons why HPRL gets so complicated.
Inheritance can serve as a means for obtaining default values. Most Fast-Food-
Restaurants do serve Grease, but actually McWeeger’s doesn’t (they use something

much worse).

Instructing the reader in HPRL is hopefully not that necessary, since with a little
acclimation he should have no trouble in getting past the syntax to the real meaning.

The appendices of this thesis contain all the code which was written in my pursuit of

66

Ingmar, and liberal reference to the HPRL located there (as distinguishable from Lisp

code by HPRL’s define-class and new-instance commands) should prove illuminating.

3.2.2 Representing True Dinners

For each shot, there will be several things, or rather instances of those things. These
things will represent entities like characters, objects, the camera and the surroundings.
In slots for these things will go knowledge of specific states, like what the character is
doing or how the camera moves. This all requires much definition and explanation,

which will be dealt with shortly.

An initial point I wish to make has to do with the requirements for representing
knowledge in HPRL. Consider the things and their relationship to the shot. They do
not translate to HPRL’s sense of a-kind-of. A character is not a-kind-of shot, but
rather a-part-of a shot. To fit this association to HPRL’s syntax demands a circuitous
approach which may not seem intuitive. Shots and their parts are defined equally as
subclasses of a single class, which I denoted as the Film-Noun. Since the parts-of
affiliation is not succinctly supported, the connection from shots to parts is made in
appropriately entitled slots. In each shot is a slot for, say, characters, and in the
characters slot go the names of the character instances of that shot. That much seems
logical. But to make the reverse linkage, for each character instance there must be an
explicit slot designated as the parents. In this slot are deposited the names of the shots
for which that character definition is present. Because a character’s definition requires
a lot of knowledge, a character instance is usually attributable to only one shot. But
other things which are less emphasized with the narrative priority of True Dinners,
things like the environment, may be common to many shots and thus point to all the

possibilities in the parent slot.

Appendix B contains the HPRL code for the representation of True Dinners. The
reader should look to this and other appendices to accompany his understanding of the
thesis from here on. The opening section of this second appendix contains class

67

definitions for True Dinners, but after a while instances are specified which exhibit the
arguments of the previous paragraph. Appendix A holds the even more general Film-

Noun demarcations which apply to all of appendix B.

That point [wanted to make concerns the limitations of the is a-kind-of depiction of
HPRL. Parts-of relations must be mutated to fit the syntax, and explicit backpointers
must often be provided. While HPRL’s heirarchical scheme is agreeable to many
knowledge base constructions, matters of syntax make the tool less than ideal. There is
in fact a mechanism for establishing the parts of connection, but it involves the
verbose specification of an entirely new abstraction, the referencing environment. If 1

had used referencing environments, my code would have been far less intelligible.

One more issue must be deliberated. The perceptive reader may have wondered in his
examination of the appendices about the terms single-valued and multiple-valued. Slot
can have one of these two important possible content types. When the slot is multiple
valued, this means that it is like a bag of things. Asking for the contents of a multiple
valued slot results in an unordered pile of stuff being dumped from the bag. Defaults
from above in the heirarchy can accompany this mess. HPRL’s power to access slot
values hinges upon this bag-like nature. Returning to the restaurant illustration, the
food served in restaurants was stored in multiple valued slots. For True Dinners, that
parent slot on each thing is also of the multiple variety, and hence is spelled as parents

even when there is only one value.

Single valued slots contain only one thing. Inheritance for more things is not allowed.
This one thing could be a list in which an ordered sequence of values is specified, but
in this case the ability to locate these short of dissecting the whole list is non-exisitant.
Thus, HPRL does not support ordered multiple values. This is a problem identifiable
for those single valued slots, denoted by a non-plural name, which nontheless have

more than one value.

Now lest the reader become too disoriented with this technical preamble, I will proceed

68

to detail the True Dinners film representation. It is of a very explicit nature, because
Ingmar can never actually ’see’ the library, for he lacks the capabilities for any image
processing. If intricate algorithms for such processing ever become viable, Ingmar

might conceivably build his own representations for the shots at his disposal.

3.2.2.1 The Character
The narrative potential of True Dinners will most directly result from sufficient

character specification, since it is the characters that really make a story.

Following the definitions of the first appendix, a character instance begins with the
slot of structure. This slot has to do with english grammar and the usage of the word

character. This is required in story representation, and is not relevant here.

The parents slot has already been explained as a multiple valued, explicit backpointer

to the containing shot(s).

The character has a name, which can be traced from above any instance as the class
name of the character, but is just as well also stated for every instance. The default
character name, as will appear on the generic instance and therefore may be inherited,

has been piously established as God.

The frame slot deserves some background, since it is not unique to characters and will
be encountered again. It is not to be confused with HPRL terfnino]ogy, for it refers to
the frame numbers of a videodisc. Every shot in the library is delineated by frame
numbers. It is Ingmar’s ability to index the library by frame numbers which makes the
the videodisc ideal for the generation of new movies. Every shot starts at a frame

number, called the in-point, and ends at the out-point.

For Ingmar to be able to subdivide any shot, and thus maximize the applicability of
the library to any one story, important shot contents should also have in and out
points. The frame slot provides the means for deducing these points for any given

69

decriptor within a shot part, including characters. The values of the frame slot are like
headings across a chart, specifying the frame number to which the ordered value of
other multiple-content (but necessarily single-valued) slots is valid . The reader should
seek example in the second appendix at the place where shot 1 and the first instance of
Carl is defined. See how slot values line up beneath the frame slot. The second ’face’
term of ’'right-side’ applies to this Carl from frame 22687 to 22728. The first terms of
all the slots are valid to 22687, and begin from the containing shot’s in-point, seen
later to be 22364. Abbreviations for this syntax include end, which stands for the
shot’s out-point. There is no third value in the face slot, so it is assumed to be na, or
not-applicable. Na must be used as a place holder whenever the nth term of ordered,

timed slots is unimportant, but is not the last and optional term.

The visibility slot literally defines how visible the character is at one time. Possibilities
are- Out when the character is not seen, Obstructed and (Obstructed by thing) where
thing might be a door, Partial and (Partial parts) where a part might be the hand,
Full when the character is seen enough to be completely recognizable, Entire when the
character is seen from head to toe, and specifiers for the degree to which the character
is in focus (should default to In-Focus). There could very well be other useful cases for
visibility but the point is only to get a preliminary range. This attitude applies to
most timed slots. The reader should also notice that visibility, like several slots, could

be a list of mutually applicable terms.

The face slot refers to the identification of which of six faces, like those of a cube,is
most visible. The value is one of Top, Bottom, Front, Back, Left-side or just Left,

Right-side or just Right.

Distance is borrowed straight from film terminology, and is one of a number of
arguably relative tokens- Long, Medium-Long, Medium, Medium-Close, Close,

Extreme-Close.

The angle refers to that inclination with which the face is visible. Its specification

70

should be flexible to connote many exact views, and to this end I chose the potential
for adverb value pairs. The voluntary use of an adverb is noted by its enclosure with
<>’s in the definition’s comment. This syntax, and its combination with the
obligatory contents of parantheses, will reappear in the code. Example angle values at
a single time include- Left, (High Headon), and ((Very Low) Right). (Ambiguities
which the clever reader might cast, like the similarity between a High Front view and

a Low Top view, are resolved in interpretive Lisp procedures.)

Location means literally where on the screen the character is located. This slot’s value

definition is as leniant as that of angle.

The character’s movement is an absolute judegement indicative of activity in a setting.
A seated character shown with a moving camera is not defined as moving. Along with
adverb/direction pairs, the movement could be- None when the character is very still,
Small when the character is moving minimally, and Complex when so much
movement has been made that Ingmar should make no presumptions as to what went
where. Movement can be a very relative thing. An extreme close of a hand, identifiable
with among other things, a visibilty term of (Partial Hand), can yield movement that

would not be tagged as more than Small for a wider shot.

As could be rightly inferred by the reader, the worth of the six slots of visibility, face,
distance, angle, location, and movement is in the spatial coordinates relative to the
camera that are implied. The accurate mapping from these intuitive slot values to
numerical implications, in spite of ambiguity and relativity, is approached in Library

Manipulation.

The final and critical character slot is entitled activity. Here are stored all the semantic
descriptions for what the character is actually doing. The foundation is laid in the
form of sentences, which are English descriptors crucial to Ingmar’s story
'understanding’. Sentences are defined in the section for story representation. For now,

the reader can get a sense of the possibilities, as well as discover more about the shot

71

library, from browsing the activity slots in the second appendix. A syntax that
warrants explanation is that of the specification for chronology. At any one description
time, simultaneous sentences are connected by +’s while sequential activities are
divided with the usage of /’s. The frame numbers for the exact shot appearance of
particular sentences are citable in accompanying in out pairs, for which the
mnemonics start and end may be used when their implied values are unambiguously
derivable. (This latter shot time affixment syntax will reappear in other state

specifiers, as for objects.)

3.2.2.2 The Camera

Some degree of definition for the camera’s attributes will be necessary to understand
the overall effects upon the shot. In the case of True Dinners, the most important
descriptor will be for the movements of the camera. As the camera moves, all the
visual elements of the shot move, but only because of imparted motion. Accordingly,
as mentioned in the Character section above, while the elements must be specified as
static for a static scene, the derived movement should enter in Ingmar’s calculations as

explicitly camera accredited.

The designation for camera has a movement slot whose values are timed to an
aforementioned frame slot. Any one movement can be resultant of both linear
displacements (Dolly-in, Dolly-out, Dolly-left, Dolly-right, Rise, and Drop) and
angular variations (in analogous order, Zoom-in, Zoom-out, Pan-left, Pan-right, Tilt-
up, and Tilt-down). These values can be combined, along with just one adverb at this
time, namely Swish, to imply great speed which probably resulted in blurring. None,

Small, and Complex have the same meanings as defined for character movement.

One other slot is currently supported, the effect. The terms herein may be timed to
frames, and should denote special effects like Color Filters, Handheld and thus jiggly
photography as is often associated with a Cinema Verite impact, and Slow or Fast
Motion. No such effects were used in True Dinners, so although the blue color of the

72

spaghetti should ultimatley violate Ingmar’s real-world expectations, he can deduce

that the spaghetti was in fact quite blue.

3.2.2.3 The Object
There are innumerable objects to be seen in True Dinners, and those of primary story

importance can be found in the class definitions at the onset of appendix B.

Objects, however important, are secondary to the characters and are assumed not to
be of interest beyond their visibility and use by the characters as evinced by
appearance in the activity descriptors. Only two new kinds of slots are defined for
objects, and these presume the burden of great flexibility to account for several kinds

of state knowledge.

The descriptions slot is multiple valued, and thus not orderable to any timing. A
description term is meant to be a single word state specification or predicate value
pair. Examples include broken for a glass, and (time 7:45) for a clock. To allow for a
definition of precise frame appearance time, in out point pairs may be coupled. It is
assumed that such frame exactitude will be less than common, because Ingmar will
regularly and correctly infer visibility from the object’s manipulation by a character,
or even more simply from the existence of the object in the parent shot’s objects slot.
Only the clock will routinely require the time stamp, except when the lack thereof

implies default to the beginning and end of the entire shot.

The state-dese slot is an early attempt to get down some real world knowledge. It

crudely encodes state sequences, and will be attended to in Story Representation.

73

3.2.2.4 The Environment

With the amount of spatial information derviable from characters, camera, and
objects, and the constrained space of the True Dinners secario, there seemed to be no
need for further such description in the environment instances. In general application
however, this will be the repository for complex maps in which all other shot elements

must be properly located.

Each environment has an objects slot, which contains those objects that somehow
belong to the environment, as opposed to hé.ving been transported to the scene by the
characters. Such specification will often be redundant with the objects slot of the
shot, so for the environment these values are best inheritéd by instances from the
generic instance. In fact, every environment instance will frequently be identical to
the generic instance, so the environment slot of a shot will regularly hold (a name)
rather than ’'name’, where name is the generic environment instance, and a/an is
HPRL’s syntax for the generic instance. But because I wished to avoid cluttering the
class definition with the lengthy listing of each generic case’s parents, the reader will
note in the appendix that explicit default instances with a name suffix of 0 were
created when logically the generic instance is referenced. Such explicit defaults as

kitchenO also obviate the potential for inheritance confusion.

The two environments of True Dinners are the Doorway and the Kitchen. Both are
similar in the contents of three other slots, light, Ifghting, and descriptions. These slots
are of obvious importance in more general footage. The only interesting point to make
is that it is in the descriptions slots that I stored an owner predicate, as is implied in
the opening scenes where one character plays host by admitting the guest, seating

them, and setting the food on the table.

74

3.2.2.5 The Context

For higher story knowledge which can only be interpreted from a shot by humans, and
which has no place in the slots of other Film-Nouns, it seemed natural to create an
object known as the context. Metaphors, themes, and abstract actions reside in the
context. Ingmar will resort to the these values for ultimate judgements as to the

applicability of any particular shot to the cause of a story script.

In the representation code for True Dinners, I initially built a great number of
contexts, only to later realize their relevance to a final level of story manipulation
which I would most likely not attain. Consequently, I pushed much of the context
down into the other Film-Nouns, thereby complicating my state descriptors and
character activity slots. The balance between what might be reconstructable by
Ingmar as context from low level definitions and what must be a priori as context at
the higher context class level is a cause for careful planning. A clear insight will not be
obtainable until quite a bit of film generation has been realized and evaluated. The
reader is invited to look at some of context instances which I have retained, although

not used, and speculate on the problem.

3.2.2.6 The Shot
The shot is where the proverbial buck stops. It has slots for each of the Film-Nouns
considered above, some of which are multiple-valued as when such designation makes

sense- Characters and objects, camera, environment, and contezt.

Each shot also contains its in-point and out-point, referring to the numerical indices

that border the shot on the videodisc.

The shot has a perspective. As was discussed in the theory of the second chapter,
perspectives are rarely identifiable without context in a film construction. All of the

shots of True Dinners inherit the default value of Omniscient.

75

The slots precedent, resultant, concurrent, and ezclusive map those sections of the shot
to other shots which just happen to work perfectly in the manner that the name
indicates. These slots steer Ingmar to possibilities for shot selection that he might not

otherwise have made. Two important examples arose in True Dinners.

Shot number 19 is of myself serving blue spaghetti. The shot worked fine except for a
photographic error in the middle of the action. Thus there are really two shots,
labelled 1901 and 1902. These point to one another through the precedent and
resultant slots, and when Ingmar is lead to the sequence he should notice the strong

potential for jump cutting and insert some other shot between the two.

Shot number 45 is an alternative to the beginning of shot 44. It shows Bianca from a
height saying the first line of the entire text of shot 44, which is taken from table level.
The resultant slot of 45 should point to the exact entry location of 44, while 44’s
precedent slot should map to shot 45 from the end of Bianca’s first line. Both shots
should designate their mutual overlap in the exclusive slots. Thus Ingmar will have at
least this one clear occasion for stylistic decision based on some rule for story

psychology and the effect of high versus low angle.

The format for a value in any of these four slots is the name of the related shot,
followed by four frame numbers, those of the current shot’s in and out as required in
the mapping, and the target shot’s in and out. Most of these latter values will default
to ends and starts for the whole shot, but as in the case of the overlap between shots

44 and 45 the precision is quite necessary.

3.2.2.7 Texts

The use of sound is of great consequence to the creation of a film. But in the case of
True Dinners, the preceise representation of sound would become so involved that it
would handicap the fundamental goal for image manipulation. Thus, even when the

soundtrack contains verbal data, as in the many statements made by the characters

76

that suggest the construction of dialogues, it was of primary concern to keep the audio
content within a generic scheme. Whatever a character says falls into simple
representation categories of emotional overtone and agreement or disagreement with a
previous statement or the quality of the meal. This range of content is addressed in

the sentences that describe the character’s activity.

A few more complex character remarks are of an equally general nature. To provide a
place to store these, text objects are supported. A text object has a transciption slot, in
which are placed the recitations in verbatim. This slot provides the reader with a
meaningful description, and these statements can be found in the second appendix.
Ingmar has no real understanding of natural language however, so for his benifit the
descriptions slot is defined. Into this slot go any english language depictions which are
both correct in summary and plausible for the simplisitic language knowledge that
Ingmar might have at his disposal. When Ingmar chooses a shot in which a character
announces one of these texts, which are philosophical and admittedly in the style of
Bergman himself, the selection of a good next shot could well be guided by the key-

word style contents of this latter slot.

3.2.3 The Woes of Representation

3.2.3.1 Construction
The above representation scheme is all well and good in theory, but even its
application to the 108 shots of True Dinners proved to be discouragingly time

consuming.

Interfaces to aid in the composition of shot library specification are most desirable,
and a topic for extensive research. The representation was designed to be intuitively
approachable by humans, but there remains so much room for error as well as

ambiguity that only computerized tools can amend the difficulties of actual

77

construction. Ultimately, systems for the rapid human directed analysis of shot
content using the most advanced of interface designs will be demanded. As is
suggested in [Davenport 87], all manner of graphics, mice, digitizing tablets, and

controls for viewing modes become applicable.

In the case of my project, I could not afford to become sidetracked in the ancillary
exploitation of such luxuries. I transcribed the content of True Dinners in a painfully
slow process of pen and paper while sitting before a monitor with the videodisc
controller in hand. Recognizing the prominence as well as complexity of the character
objects, I wrote only the most philistine of Lisp utility code, which may be found in
appendix C, to commit the characters to HPRL format. As my work progressed, I
returned to the True Dinners code to complete as many shot defintions as were needed
to debug later programs. At the time of this writing, the True Dinners library
representation remains incomplete, though it does sufficiently suggest the shot content

for the reader to discern those details which illustrate my project.

3.2.3.2 Semantics

Apart from the unwieldy volume of even a crude representation for just 16 minutes of
shots, True Dinners proved the necessity for vast amounts of English language
description. Because film deliberately works in the domain of the specific and thus
viewable, attempts to generalize vocabulary into a set of primitives reminiscent of
Schank’s research cannot result in an intelligible specification for any one shot. The
best that can be done is to work within the confines of a standardized English hybrid
which Ingmar might then be able to convert to more general definition so as to
facilitate matching for abstract story content. This judgement motivated the precise
format of my film representation, and just how Ingmar can hope to decipher the vast
number of distinct words to be found in the descriptions is further explored in the

sections to follow.

78

3.3 Story Representation

Film stories are built from illimitable quantities of language knowledge. Much of the
knowledge is of a static variety that is perfectly representable in heiarchical structures
like those of HPRL. These I have referred to in chapter two as settings. Other
cognizance can only come from the dynamic interactions of knowledge, as with
character simulation to derive the motives, or plots, that justify any particular shot

selection by Ingmar.

The fundamental level of story representation which was accomplished in the limited
domain of True Dinners was that of the establishment of settings for the basic
vocabulary utilized in character activity specification. Understanding of abstract
entities, like dinner, or conversation, was not even thinkable until the constituent

N

parts, like eating, drinking, and talking, were defined.

The primitive heirarchy realized may be perused by the reader in appendix D. Herein
may be seen an appreciation of minimal rules for English grammar, as well as the

contextual constraints of what transpired in True Dinners.

3.3.1 Class Knowledge

In understanding my heirarchy for English language, the reader must recall HPRL’s
inability to succinctly define the parts-of relation. Nouns, verbs, adjectives, and
adverbs are all parts of the sentence, and these in turn are all parts of what is called
English. To facilitate these distinctions, all definitions stem from what I call the
Thought. Thoughts constitute everything known to Ingmar, including every shot
instance which is traceable via the Film-Noun. There is a tidy philosophical
implication in this arrangement. Since every instance of knowledge, particularly each
image of life, is distinguished in its slots by the very same language of which it is an
example, all knowledge has a kind of self reference. Such circularity may very well be
at the core of sentient existence, and could explain why logic alone never seems to

provide justification for the experiences of being alive.

79

Every thought has a structure. This is a grammatical template with which Ingmar can
expand a fragmentary sentence, as would be comfortable for the specification of stories
and shots by we implication-happy humans, into a fully standardized form, complete
with all default states. For example, when a character’s activity is said to be eating,
what is really meant (at least in True Dinners) is the sentence ’character eats food
from plate’, with the food being the blue spaghetti, and the plate defaulting to the
character’s plate, which is at least not empty, having been served with blue spaghetti.
The excruciating detail of this expansion is absolutely necessary for Ingmar, since he is
made up of nothing more than moronic computer procedures which can take nothing
for granted. When a story script calls for a shot of 'Bianca eating’, and there exists a
shot wherein Bianca’s activity is spelled out to be ’eat spaghetti’, Ingmar mustn’t

ignore the match for lack of higher language understanding.

Structures are defined in a very precise manner. The structure is read left to right,
with parantheses clustering the knowledge for a single target word. When any one of a
number of words is acceptable, they are seperated by or. An option indicates that
what is to immediately follow may or may not be present in any one sentence. Adverbs
are always optional, and have an effect of scaling some consequence. Defaults specify
values which should be assumed when not otherwise derivable. Requires list those
states which must be, as in the negation of .exnpty for a plate when someone wishes to
eat from it. The reader may be entertained with a self-guided tour of my structures,
and anticipate how they will be later used in the actual standardization of a sentence

in just one procedure.

The use of synonyms and antonyms marks an attempt to map many forms of language
together which are functionally equivalent in the pretense of True Dinners. The
brevity of the database is largely due to the interrelationships of English defintions
through these slots. Synonyms proved to be more immediately supportable than
antonyms; when a word is definable by it’s opposite, all the invertable parts of the

antonym'’s knowledge must be identified for the specification to hold. Adjectives have

80

a predicate slot to serve a similar intent for absolving Ingmar of superficial conflicts of

english usage.

Befores, durings, and afters are slots in which to store any and all thoughts concerning
appropriate activity and state implications which are not so‘universally applicable as
to warrant placement in the structure slot. These kinds of knowledge are particularly
interpretable as a primordial source for Ingmar’s story construction, and if used to

expand a script would impose strict chronology, as well as much redundancy.

A contezt slot should be familiar now to the reader as a handy place to deposit more

abstract associations.

Some classes of language lead to numerical scaling, and thus should be so defined to
facilitate Ingmar’s comprehension in terms of magnitudes of transition. The two
examples that were encountered were those of mood-adjectives (a class of adjective)

and adverbs.

Mood-adjectives have a mood slot, which places the mood on an arbitrary intuitive
scale from negative to positive. It is perhaps remarkable that the reader will note no
great distortion of connotation for the mood-adjectives defined in True Dinners. An
interesting case is that of being drunk, for in such instances the attribute does not
specify a single mood so much as a potential to multiply the extent of the previous
mood. For example, when one is happy, getting drunk could make one very happy,
and thus make plausible Ingmar’s decision for a shot combination that shows this
progression. A less convincing case is made for the possibly misnamed mood of

intelligent, by which I simply meant that one is thoughtfully considering a situation.

These potentially controversial definitions of mood must be understood as nothing less
than first steps toward my elusive and distant goal of character simulation, and should

be judged accordingly.

Adverbs have a multiplier slot. The value here is used to scale any other scalable
81

extensive knowledge about only a few sematically distinct things the choice of names
can become confusing (as the reader will have noticed by now as he has attempted to
trace his way through the code for True Dinners, following a myriad of numerical

suffixes).

The state-desc slot contains any number of state description triples. The first element
is enforced or laz, depending on whether or not any shot instance of this object
absolutely must have one of the associated state values. The second term specifies the
connection to other state values. It is nil for enforced states. The final value is the list
of allowable states, in order of a chronology which Ingmar could discover in related

language definitions. This order may restart with some action, especially for lax states.

An example which will make this all clear is that of the food. The bowl of spaghetti in
True Dinners is either unserved or served, and irreversibly in that order because once
the food is served the bow! will be messy and can never be shown unserved again. In
the served state, the food will go from full to half-full to empty as it is served from. If
there were a shot of a character refilling the bowl, this order could restart, but Ingmar

will not find such a view in True Dinners.

3.3.3 The Relationship of Story to the Shots Available
In my explanations of knowledge definitions for the first and most basic level of
Ingmar’s story understanding, the reader may have concocted any number of

extenuating circumstances in which the representations became hopelessly invalid.

It is exactly true that everything I have defined is limited to the scope of True
Dinners. I would very much have liked to make a generalized knowledge base, even
one which contained only those details which apply to True Dinners. But the fact is
that the task of building an Ingmar can proceed only relative to one film library at a
time. It is impossible to foresee all the cases that might arise in order to program for

generality. Ingmar’s knowledge will evolve from each learning assignment in much the

83

same way humans grow in their understanding of the world. Each new experience
forces us to rework all that we have learned, until at last one day we have seen enough
to fall into routines, and possibly court evil by refusing new circumstance that

threatens what we know, and thereby stagnate until we die.

3.4 Library Manipulation

For all the little occasions of incompleteness or inconsistency in Ingmar’s rudimentary
knowledge, the time had come to work toward his initial attempts at film generation.
The first crude procedures had to be sculpted that would tie Ingmar together just
enough to allow a low level script, defined at very nearly a shot level, to be translated

into a movie of some minimal coherence.

3.4.1 Extraction of Spatial Parameters

As has been justified previously, True Dinners requires only the calculation of
coordinate information relative to characters and the camera. Appendix E contains
those Lisp procedures that translate terms of spatial representation into the arbitrarily

referenced numbers which they imply.

3.4.1.1 The Character

The view-vector procedure takes the character’s face and angle values for a single
frame time and returns a vector of the camera’s view. The character is oriented in a
three-dimensional space at (0,0,0), with front facing in the +z direction and the top in
the +y direction. The vector returned is in the form of the coordinates for the point
that is at a distance of one from the origin. The point is where tﬁe camera is located
such that in being turned to the origin the perspective of the character in the shot is

the same.

Location-vector computes a vector for the character’s location from the distance and

84

location slots. The camera is located in 3-space at the orgin, looking down the -z axis.
The procedure returns a point ahead of the camera that represents the location of that

character.

Char-movement calculates a vector of movement from the character’s compound
movement descriptors. A point from the character at origin in the direction of
movement is returned with distance from the character being indicative of velocity.
The movement is not relative to the character’s orientation, and is absolute with

respect to the camera.

Additional procedures return judgements for the centrality of-a character with respect
to the screen, the amount of angular difference between two character movements, and
the effective acceleration between two movements. These and other routines will be

useful to Ingmar in ruling for jump cuts and thrust matches between two shots.

3.4.1.2 The Camera

A single procedure named camera-move computes a six-dimensional representation of
the camera’s movement. The camera is situated at the origin and looks down the -z
axis of a three-space. The first three coordinates define linear movement as (x,y,z)
while the last three denote angulai' change. The distinction is important for Ingmar to

understand how the visibile content of a view changes.

3.4.2 Shot Analysis for Editing Decisions

When Ingmar has sought and discovered an activity within a shot that is required as a
next image for the story, he must ’look around’ the entire shot, making judgements
first about cut points and then about the matching characteristics for an edit between

his last shot selection and this new potential choice.

Two procedures, slot-at-time and time-borders, help Ingmar to move through those

slots of a shot element that are timed to a frame slot descriptor. Characters and
85

cameras have the timed sequences of slot attributes.

Inter-location will return a character’s location value as interpolated between the
bordering definitions of a character’s movement when the frame time Ingmar is
considering is not explicitly described. This procedure assumes a linear and constant

displacement.

The adjust-cut procedure will return a best cut point following on camera movement
to whichever side of a character activity is desired. This is the method by which
Ingmar begins a cut point search. After using this function, Ingmar will wish to
consider what other activities may have begun in the adjusted viewing time, and
whether these are completed or even consistent with the story. Such latter decisions

will involve semantic, story knowledge.

I began writing the procedure jump-potential, which was to decide when the best edit
point between two shots constituted a jump cut, and to what degree. Ingmar would
run this analysis for the entire bag of shots that he was considering as candidates for
next in the story, picking the best shot, if any. Matching characteristics would also
clue Ingmar into the strength of an edit that exhibited thrust continuations. The
reader is reminded that thrust matching can be very important for synedoche,
continuity, and psychological repercussions (like the enforcement of a metaphor
between different objects). When more than one shot satisfied minimal matching
constraints, Ingmar would consider the distances involved to chose the shot which
would move the camera foward or back from the subjects in the shot sequence so far
with maximum smoothness. Angle and distance both enter into the calculations for

psychological as well as spatial consistency.

An important supporting procedure immediately came into play. For all sorts of
matching decisions, it will be vital for Ingmar to decide where the visual focus of a
shot lies. In the character driven narratives of True Dinners, this will involve choosing

which of the two characters has the more important story role in a shot at any one

86

time. Main-char thus required some strategic semantic analysis based on character
activity. My attention shifted to the story level as I pondered the writing of grammar

manipulation functions.

3.4.3 Story and Grammar

In appendix F are located those procedures which address the problem of actually
using the versatile grammar definitions of the English language file to manipulate
fragmented and abbreviated thoughts into standardized story sentences. Ingmar
requires standardized expansion for the accurate matching between story script targets

and the character activities of True Dinners.

The procedure ezpand-phrase seeks to eliminate the confusions that would arise from
the usage of one kind of sentence shorthand. Both the script target sentences and the
library sentences allow ands and ors to build compound depictions. In natural
English, and and or can lead to ambiguities, so it is required that their usage be
delineated within parentheses. Thus, Ingmar should recognize ’(carl and bianca) (eat
or drink)’ as convertible to four seperate sentences, ’carl eat’, 'carl drink’, 'bianca eat’,

"bianca drink’, from which any subset including both carl and bianca is valid.

A story target, without higher levels of language interface, is now definable as a
sentence or list of sentences, which may include ands and ors, and a list of state
descriptors, each of which is a subject plus a state or predicate state pair. The exact
and consistent handling of the optional relationships between sentences expanded from

imbedded ors demands that Ingmar retain the pre-expanded form for later reference.

Once Ingmar has derived a single thought from expansion, he needs to standardize the
thought by following the structure slots retrieved for each word of the thought. This
process will dredge up a number of defaults and requires, which then must be
interwoven with the modifiers that came with the script sentence. Or in the case of

standardizing a sentence from the shot library, Ingmar has to look in the slots of all

87

—

objects referenced by the sentence for the given shot, stringing together the total
modifier list and then resolving that with the grammar derived requires and defaults.
While defaults merely indicate that a state is implied, requires will pinpoint logical
conflicts. Such conflicts may be of a shot in relation to the compiled states to date of a
sequence for which the shot is a possible next view, in which case the shot is simply not
good for immediate use, and the nature of the conflict should guide Ingmar’s choice for
the right shot. A conflict from requires with a script means that Ingmar is missing
something, and a thought for a scene of the missing state transition should be
generated. The reader must recall another option for both script and shot conflicts,
however. The filmmaker’s mandate to contract time translates to the ability to skip
state transitions when a brief passage of time could explain the phenomenon, and
inclusion of the missing state would interrupt the emphasis of the story. So, with a
next level of sophistication, Ingmar should know better than to, for example, show a
serving shot every single time two shots of the characters in passionate argument

display a slight and unexplained increase in the amount of blue spaghetti on the plate.

These are the general motivations behind the programming details of sentence
standardization. The specific next step is taken in the function fit-to-structure. The
procedure is very recursive and entangled, but it works beautifully. It expands a
phrase into its full sentence. It is passed a noun, a phrase, a structure, a control
boolean called options, and a list called expandeds. Expandeds should be nil for the
first iteration, and is used in recursion to prevent very subtle forms of looping that can
otherwise occur due to what an expert in parsing would no doubt quickly identify as a

fault of my grammer (in a precise sense of the word). Options is nil only when any

and all optional words, like adverbs, should be dropped in the expanded form. Ingmar

will want to do just this when making a positive match between, say, eating and
eating fast. The structure is most generally provided as ’sentence’. The noun is the
subject of the phrase, as would be passed in expanding a sentence found in a
character’s slot, which commonly lacks the implied character. The noun is not

currently used, but will be when Ingmar needs to decipher the relativized structure

88

specifications of 'self’,’subject’ and 'other’. The entire procedure returns in a list the
expanded phrase, any phrase leftover (also used in recursion), the requires, and

defaults.

Now! It was at this point that I was halted by a sorry fact of HPRL, or to be fairer, a
fact of my system’s configuration for HPRL. The thing is really big. I was left with a
minimum of running memory, so my system was spending a lot of time garbage
collecting. Every execution of fit-to-structure took a noticeable pause. I couldn’t be
sure how much of that pause was due to garbage collection and how much was actual
run time. I did know that fit-to-structure was still a very low level procedure for
Ingmar, and it would be run innumerable times just for the selection of a single next
shot in movie generation. More imminently critical was the overhead of running any
kind of debugging tools. I spent five hours just chasing down one last bug of fit-to-
structure in a single monitored execution, or so I thought, because five hours later the

bug had vanished. Thereafter, fit-to-structure worked on all my test cases.

The facts are as follows. I was working on an HP Bobcat, for which the sum of static
and dynamic heap space is a maximum of 10.9 Megabytes without kernel
reconfiguration (something I could only accomplish with the infinite patience of a
system guru). Static space is where all programming resides, and dynamic is the
working space leftover. I was using the Nmode environment, which works for a default
configuration of 60% static and 40% dynamic out of a total 8 Meg. To accomodate
HPRL, Hewlett Packard advised bumping the total to at least 10, and this was done

for the same heap ratios.

It is impossible to know exactly what modifications to the memory configuration
might have solved my memory problems, since Lisp tends to hide such detail. A
friendly hacker in the know changed the specs to 10.5 Meg and ratios of 50/50, but
loading problems arose. These were fixed, but not in time to justify further
experimentation. I had to write my thesis. And even such a solution could have proved

quite temporary, since at any time, without warning, my ever increasing programming
89

demands might have again taxed the cluttered space. Not that my code was even
anywhere close to the size that would eventually be called for by Ingmar. Lastly, it
should be noted that the final runtime for Ingmar to construct a movie remains
inestimable, but even with unlimited memory could prove to be so long as to further
hinder progress. Options for the resolution of such difficulties include- the
reconfiguration of the system, development of a representation language specific to
True Dinners, and the simplification of Ingmar. The latter choice is of course the least
feasible, since Ingmar can only increase in complexity to even approach the

requirements for directing.

Computerized movie directing is a goal that remains frustrated.

3.5 An Evaluation of HPRL

In this section, I wish to summarize the faults of HPRL, many of which have been
previously described in some detail. I in no way wish to slander the language. I
benifitted immensely from my experience with it, for HPRL is an elite state-of-the-art
Al tool whose time has come. Only in its application to my specific project did it fall
short, and then often not because it didn’t do what was advertised, but that it didn’t
fulfill enough of my needs, and what it could do became irrelevant. I list the problems

in order of priority.

1) The Memory Requirement - HPRL should be loadable in discrete subsections, so
that the size might be pruned for an application such as mine. I did not need much of
HPRL, and relied primarily upon its most basic of knowledge construction and
retrieval commands. If I could have honed in on that code, I might have alleviated the

space problems which I all too soon ran into.

2) The Parts-of Relation - HPRL’s referencing environments did not satisfy my needs
for a simple and effective implementation of a bidirectional parts-of relationship. I had

to relate such objects explicitly through instance slots.

90

3) Ordered Multiple Values - For most of my representation needs, I required multiple
valued slots whose contents could be retrieved in a guaranteed order. In some cases,
procedural work had to be done on the slot values anyway, so easy access was not
possible. But in all cases, whenever an order had to be retained I was forced to do so in

single-valued slots of lengthy lists, whose dissection for value referencing was left to

my programming.

4) Uniqueness of Names - Every HPRL definition requires a different name. In
semantically oriented applications like my own, this can lead to a usage of clumsy and
confusing suffixes. Perhaps a mechanism for the sharing of names might be feaasible,
whereby the instances could be distinguished with their position in the knowledge

heirarchy, or in combination with a user specifiable pattern of slot contents.

5) Identification of Frames - This is a minor sort of bug. Everything in HPRL is stored
in a system of things called frames, not to be confused with videodisc frames. The
frame-p function returns true when its argument is a frame. Frame returns the frame
when its argument can be parsed to the name of a frame. I had to use a combination of
both to tell when something was a generic frame, which is specified with two words, a
(or an) and the name. Frame-p returns nil for ’a carl’. Frame returns the frame for ’a
carl’, but gives an error on incorrect two word combinations, like 'one carl’. Frame-p

will correctly yield nil for ’one carl’.

91

Acknowledgements

Undying gratitude goes to Glorianna Davenport, who supervised this thesis. Her faith
in my ability to chart a course through great waters allowed me to pusue my vast
project as I saw fit. But she also steered me with wise and timely encouragement,
comment, and suggestion. My experience under her auspices was on the whole
wonderful, and cause for my new enthusiasm for academic research. I wish to continue

the trying project of realizing an Ingmar under her direction.

My dear friend Bianca Philippi provided boundless moral support for the immense
daily expenditure in energy that this thesis represented. She also performed her role in

True Dinners with a true sense of acting professionalism.

A number of the residents of the media lab earned my humble respect. Among those
were Patrick Purcell, Brian Anderson, and Brian Bradley. Innumerable others

contributed to the pleasant and supportive atmosphere of the lab.

Lastly, I thank my loving parents who made everything possible. I can hever say
enough on their behalf, and only hope to reward them with my simple existence in the

years to come.

92

Appendix A

Film Representation

..

;;this file contains Ingmar’s knowledge of film representation;;
; ;>Carl Schroeder<

..

RN N I A A I B R AR A A IR N B A N AR DR I B A A A O B A O O A O I A O

;; default single-valued, plural slots are multiple

..

IR R IR I I I T I T T R I I R BTN N N N B N N I B A A

;:character class of shot descriptors
(define-class CHARACTER {FILM-NOUN}
:instance-slots
((structure :v (character))
(parents
:declare (multiple-valued))
(name
:v God)
(frame
:v end)
; VISIBILITY,
;; one or list of following out obstructed/(by)
Vs partial/(parts) full entire

i past-focus in-focus before-focus
:; full=fully recognizable not necessarily entire
(visibility
:v out)
;+ FACE,
:: one of following na
N top bottom
H front back
i left-side/left right-side/right
(face
:v na)
;» DISTANCE,

;; one of following na
N long med-long med

93

i med-close close ex-close
(distance
:v na)
;. ANGLE,
;; one or list of following na
. (< little/somewhat very/quite extremely >

e (left headon right high low))
(angle
:v na)

;» LOCATION,

;; one or list of following na

o (< little/somewhat very/far >
s (left center right
i upper/up/top lower/low/bottom))
;. for some reasonable centerpoint
(location
:v na)
:» MOVEMENT,
;» one or list of following na none small complex
K (<slow fast swish> (up down left right toward away))
;; ex: (left (slow right))
(movement
:v small)
;; chronological textual phrases built from keywords
(activity
:v na)

))

...

I I A I I R I R A R B R B NN B N A BN N B A B R AR B AR B I I

; ;camera class of shot descriptors
(define-class CAMERA {FILM-NOUN}
:instance-slots
((parents
:declare (multiple-valued))
;: list of frames to which desc is appropriate
(frame
:v end)
;; one or list of following none small complex swish
H zoom-in zoom-out
i dolly-left dolly-right
o pan-left pan-right
i dolly-in dolly-out

94

tilt-up tilt-down
sl rise drop
:: as with characters, can build with + (simultaneous)
: and / (sequence)
(movement
:v small)
;s i.e. filters, slow/fast motion, double-exposure,
HH negative, freeze, handheld, black&white
(effect
:v none)

))

...

;.;object class of shot descriptors
(define-class OBJECT {FILM-NOUN)
:instance-slots
((structure :v (object))
(name)
(parents
:declare (multiple-valued))
; stextual modifier including appearance (start end)
(descriptions
:declare (multiple-valued))
(state-desc)))

..

L N I I e O O O O O R I R I R R O O R I I N O I I I R B I I O 2 2 I I B B BN BN IO I I I I B

;;environment class of shot descriptors
(define-class ENVIRONMENT {FILM-NOUN}

:instance-slots
((structure :v (environment))
(parents

:declare (multiple-valued))
(name

:v space)
(objects

:declare (multiple-valued))
(light

:type (one-of natural artificial)

:v natural)
(lighting
:type (one-of front back top bottom right-side left-side all)

95

v all)
;; i.e. colors, lines, composition
(descriptions
:v (owner God)
:declare (multiple-valued))

))

;;context class of shot descriptors
(define-class CONTEXT {FILM-NOUN}
:instance-slots
((parents
:declare (multiple-valued))
;; i.e. pairs like (bird freedom)
(metaphors
:declare (multiple-valued))
;i i.e. concepts like escape
(themes
:declare (multiple-valued))
;; i.e. concepts like coup
(action)))

...

RN R R T N T I I I SN I N I T T I N B I O O O B O N

(define-class SHOT {FILM-NOUN}
:instance-slots
((in-point
:type number)
(out-point
:type number)
(perspective
:type (one-of character omniscient viewer)
:v omniscient)
::; shots which specifically relate
:: format ({shot} thisin thisout thatin thatout
N [default to starts and ends])
(precedent)
(resultant)
(concurrent)
(exclusive)
;;content specifications

96

., ;camera
(camera)
(characters
:declare (multiple-valued))
;::0bjects
(objects
:declare (multiple-valued))
; ;,environment
(environment)
;5 ;context
(context)
))

.........

................................ .

;; a text instance is used as the object of

;; a say sentence in several shots’ character objects.
;: since sound is not specifically addressed
;s in this implementation, text is the one
;; place to store summary descriptors for
;; particularly involved spoken sentences.
(define-class TEXT {FILM-NOUN}
:instance-slots
((parents
:declare (multiple-valued))
(transcription)
(descriptions

:declare (multiple-valued))))

97

Appendix B

True Dinners

..

:; this file contains Ingmar’'s representation ;;
:; of the True-Dinners film .
;3 >Carl Schroeder< -

..

R EEE R NN R N I R 2 I T T DI T N R N T N R I O B B B D N R 2 A A

;; default single-valued , plural slots are multiple

;i *characters

(define-class BIANCA {CHARACTER}
:instance-slots
((name :v bianca)))

(define-class CARL {CHARACTER}
:instance-slots
((name :v carl)))

(define-class CAT {CHARACTER}
:instance-slots
((name :v cat)))

;i:*objects

(define-class DOOR {OBJECT}

:instance-slots

((name :v door)

(descriptions :v closed)

;; the associated states, in sequence of values,
first value is enforced or lax, second is implied states,
;s third a list ordered values

(state-desc :v (lax nil (closed open)))))

(define-class WINE {OBJECT}
:instance-slots
((name :v wine)

98

(descriptions :vs ((type French) (color white) closed))
(state-desc :vs ((enforced nil (closed open))
(lax open (full half-full empty))))))

(define-class CORKSCREW {0BJECT}
:instance-slots
((name :v corkscrew)))

(define-class TABLE {O0BJECT)}
:instance-slots
((name :v table)))

(define-class FOOD {OBJECT}
:instance-slots
((name :v food)
(descriptions :vs ((type spaghetti) (color blue) unserved))
(state-desc :vs ((enforced nil (unserved served))
(lax served (full half-full empty))))))

(define-class CLOCK {0BJECT}
:instance-slots
((name :v clock)
(descriptions :v (time unknown))))

(define-class BROOM {OBJECT}
:instance-slots
({(name :v broom)))

(define-class GLASS {0BJECT}
‘instance-slots
((name :v glass)
(descriptions :vs (clean whole))
(state-desc :vs ((enforced nil (whole broken))
(enforced nil (clean dirty))
(lax (dirty whole) (full half-full empty))))))

(define-class HIS-GLASS {GLASS}
:instance-slots
((descriptions :v (user Carl))

))

(define-class HER-GLASS {GLASS}
:instance-slots

99

((descriptions :v (user Bianca))

))

(define-class PLATE {OBJECT}
:instance-slots
((name :v plate)
(descriptions :vs (clean whole))
(state-desc :vs ((enforced nil (whole broken))
(enforced nil (clean dirty))
(lax (dirty whole) (full half-full empty))))))

(define-class HIS-PLATE {PLATE}
:instance-slots
((descriptions :v (user Carl))

))

(define-class HER-PLATE {PLATE}
:instance-slots
((descriptions :v (user Bianca))

))
i ;. *environments

(define-class DOORWAY {ENVIRONMENT}
:instance-slots
((name :v doorway)
(objects :v (a door))
(light :v artificial)
(lighting :v top)
(descriptions :v (color white))

))

(define-class KITCHEN {ENVIRONMENT}
:instance-slots
((name :v kitchen)
(objects :vs ((a his-plate) (a her-plate) (a his-glass)
(a her-glass) (a food) (a corkscrew)
(a clock) (a broom) (a table)))
(light :v artificial)
(lighting :v top)
(descriptions :v (color white))))

;s i*contexts = not completable until higher level
of story generation is defined

PR
[I}

100

(define-class ENTRANCE {CONTEXT)

:instance-slots)
((themes :vs (entrance beginning introduction))

(action :v enter)))

(define-class DINNER {CONTEXT}

:instance-slots
((action :v (eat drink talk))))

(define-class BEFORE-DINNER {DINNER}
:instance-slots
((action :v (enter (get food) (get wine) sit toast))))

(define-class MOOD {CONTEXT})

(define-class FORMAL {MOOD}
:instance-slots
((themes :vs (formal unfamiliar introduction nervous))))

(define-class INFORMAL {M0OD}
:instance-slots
((themes :vs (informal familiar friendly relaxed))))

(define-class WHOSE-PLACE {CONTEXT})

(define-class HER-PLACE {WHOSE-PLACE}
:instance-slots
((themes :v (owner bianca))))

(define-class HIS-PLACE {WHOSE-PLACE}

:instance-slots
((themes :v (owner carl))))

(define-class SHE-ENTERS-FORMAL
({ENTRANCE} {FORMAL} {HIS-PLACE})

:instance-slots
((action :v (bianca enters))))

(define-class HE-ENTERS-FORMAL
({HER-PLACE} {ENTRANCE} {FORMAL})

:instance-slots

101

((action :v (carl enters))))

(define-class SHE-ENTERS-INFORMAL
({INFORMAL} {HIS-PLACE} {ENTRANCE})
:instance-slots
((action :v (bianca enters))))

(define-class HE-ENTERS-INFORMAL
({INFORMAL} {HER-PLACE} {ENTRANCE})
:instance-slots
((action :v (carl enters))))

;:: make explicit defaults rather than relying on generic
;. instances so don’'t have to worry about inheritance of
;:; the default’s parents slot (anyway, an instance of a
;;: generic instance is not the same as the genereic instance)

(new-instance {DOOR}
:name door0Q
:slots ((parents :vs ())))

(new-instance {WINE}
:name wineO
:slots ((parents :vs (shot6 shoti4 shoti5 shot17))))

(new-instance {CORKSCREW}
:name corkscrewQ
:slots ((parents :vs (shotil shoti4 shoti5))))

(new-instance {F0OD}
:name foodO _
:slots ((parents :vs (shot16 shot17 shot1901 shot20))))

(new-instance {BROOM}
:name broom0Q
:slots ((parents :vs ())))

(new-instance {HIS-GLASS}
:name his-glassO
:slots ((parents :vs (shot15 shot16 shotl7))))

(new-instance {HER-GLASS}
:name her-glassO
:slots ((parents :vs (shot15 shot16 shot17))))

102

(new-instance {HIS-PLATE}

:name his-plate0
:slots ((parents :vs (shot17 shot1901 shot1902 shot20))))

(new-instance {HER-PLATE}
:name her-plate0
:slots ((parents :vs (shot1901 shot1902 shot20))))

(new-instance {KITCHEN}

:name kitchenO

:slots ((parents :vs (shot9 shoti4 shot15 shot16 shotl?
shot18 shot1901 shot1902 shot20 shot21 shot22
shot23 shot24 shot25 shot26 shot27 shot28 shot29
shot30 shot31 shot32 shot33 shot34 shot35 shot36
shot37 shot38 shot39 shot40 shot4i shot42 shot43
shot44 shotd5 shot46 shot47 shot48 shot49 shotb0))))

(new-instance {CAMERA}
:name camera0l
:slots ((parents :vs (shot16 shot17 shot18 shot1901 shot1902
shot21 shot22 shot24 shot25 shot26 shot27
shot30 shot32 shot33 shot34 shot35))))

(new-instance {CARL}
:name carli
:slots ((parents :v shotl)

(frame :v (22687 22728 end))
(visibility :v (partial partial out))
(face :v (back right-side))
(angle :v (low headon))
(distance :v (med-close close))
(location :v (right center))
(movement :v (complex left))
(activity :v ((open door / take wine / close door)

(exit left)))
))

(new-instance {BIANCA}
:name biancal
:slots ((parents :v shotl)
(frame :v (22450 22573
22634 end))

103

(visibility :v (obstructed partial

partial out))

(face :v (na front
front))
(angle :v (na headon
(low right)))
(distance :v (na medium
med-close))
(location :v (na center
center))
(movement :v (na toward
left))

(activity :v (na

(enter door with wine / give wine)
(exit left)))
))

(new-instance {SHE-ENTERS-FORMAL}
:name contexttl
:slots ((parents :v shotl)
(themes :vs (happy hopeful shy))))

(new-instance {WINE}
:name winel
:slots ((parents :vs (shotl shot3 shot9))
(descriptions :vs (closed (owner bianca)))))

(new-instance {DOOR}
:name doori
:slots ((parents :vs (shotl shot3))
(descriptions :v (owner carl))))

(new-instance {DOORWAY}
:name doorwayl
:slots ((parents :vs (shotl shot3))
(descriptions :v (owner carl))))

(new-instance {SHOT}
:name shoti
:slots ((in-point :v 22364)
(out-point :v 22741)
(characters :vs (biancal carll))
(objects :vs (winel doorl))
(environment :v doorwayl)

104

(context :v contextl)))

(new-instance {CARL}
:name carl2

:slots ((parents :v shot2)

(frame :v

(visibility :v

(face :v
(angle :v
(distance :v
(location :v
(movement :v
(activity :v

(new-instance {BIANCA}
:name bianca2
:slots ((parents

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity
))

v

v

< < < <

(22800
23030

(obstructed
full

(na
(na
(na
(na
(na

(na
(enter door

shot?2)

(22848

(full

(back
((high left)
(med-close
(right
(small
((open door)

(new-instance {HE-ENTERS-FORMAL}

:name context2

:slots ((parents :v shot2)
(themes :vs (happy hopeful shy))))

22974
end))
full
out))
front
front))
headon
headon))
medium
med-close))
center
center))
toward
left))

with wine / give wine)
(exit left)))))

2291
out
na

na
na
na
na

105

8

end))

partial))

back))

(high left)))

close))
right))
small))

(take wine)))

(new-instance {WINE}
‘name wine2
:slots ((parents :vs (shot2 shot4 shot5 shot6))
(descriptions :vs (closed (owner carl)))))

(new-instance {DOOR}
:name door2
:slots ((parents :vs (shot2 shot4))
(descriptions :v (owner bianca))))

(new-instance {DOORWAY}
‘name doorway2
:slots ((parents :vs (shot2 shot4))
(descriptions :v (owner bianca))))

(new-instance {SHOT}

:name shot2

:slots ((in-point :v 22742)
(out-point :v 23034)
(characters :vs (bianca2 carl2))
(objects :vs (wine2 door2))
(environment :v doorway2)
(context :v context2)))

(new-instance {CARL}
:name carl3

:slots ((parents :v shot3)
(frame :v (23203 end))
(visibility :v (full partial))
(face :v (back left-side))
(angle :v (left right))
(distance :v (med-close med))
(location :v (right right))
(movement :v (small left))
(activity :v ((open door / hug bianca)

(close door / exit left)))
))

(new-instance {BIANCA}
:name bianca3
:slots ((parents :v shot3)

106

(frame :v (23057 23204

23284 end))

(visibility :v (obstructed full
' partial out))

(face :v (na front front))
(angle :v (na headon left))
(distance :v (na med med-close))
(location :v (na (center right)

(low left)))
(movement :v (na small left))

(activity :vn (na (enter door with wine / hug carl)
(exit left)))
))

(new-instance {SHE-ENTERS-INFORMAL}
:name context3
:slots ((parents :v shot3)
(themes :v happy)))

(new-instance {SHOT)}

:name shot3

:slots ((in-point :v 23035)
(out-point :v 23389)
(characters :vs (bianca3 carl3))
(objects :vs (winel doori)))
(environment :v doorwayl))
(context :v context3)))

(new-instance {BIANCA}
:name bianca4

:slots ((parents :v shot4)
(frame :v (end))
(visibility :v (partial))
(face :v (back))
(angle :v (high))
(distance :v (med))
(location :v (right))
(movement :v (complex))
(activity :v ((open door / hug carl / close door)))
))

107

(new-instance {CARL}
:name carl4

:slots ((parents :v shot4)

(frame :v (23460 23675

23727 end))
(visibility :v (obstructed full full

out))

(face :v (na front front))
(angle :v (na headon headon))
(distance :v (na med med-close))
(location :v (na center center))
(movement :v (na toward left))
(activity :v (na

(enter door with wine / hug bianca)
(exit left)))
))

(new-instance {HE-ENTERS-INFORMAL}
:name context4
:slots ((parents :v shot4)
(themes :vs (happy))))

(new-instance {SHOT}

:name shot4

:slots ((in-point :v 23390)
(out-point :v 23804)
(characters :vs (bianca4 carl4))
(objects :vs (wine2 door2)))
(environment :v doorway2))
(context :v context4)))

(new-instance {BIANCA}
:name biancab

:slots ((parents :v shot5)
(frame :v (23920 23990 end))
(visibility :v (full out full))
(face :v (left-side na right-side))
(angle :v (headon na high))
(distance :v (med na med))
(location :v (left na center))
(movement :v (right na small))
(activity :v ((enter kitchen)

108

sit))
))

(new-instance {CARL}
:name carlb

:slots ((parents :v shot5)
(frame :v (23920 23997 end))
(visibility :v (out partial out))
(face :v (na left-side))
(angle :v (na low))
(distance :v (na med-close))
(location :v (na left))
(movement :v (na right))
(activity :v (na
(enter kitchen / put wine / exit right)))

))

(new-instance {CAMERA}
:name camerab
:slots ((parents :v shot5)
(frame :v (23900 33958 end))
(movement :v (pan-right
(pan-left + tilt-down) small))))

(new-instance {CLOCK}
:name clockb

:slots ((parents :v shotb)
(descriptions :v (time 7:50 (23840 23930)))))

(new-instance {HIS-GLASS}
:name his-glassb
:slots ((parents :vs (shot5 shot8))
(descriptions :v (owner carl))))

(new-instance {HER-GLASS}
:name her-glassb
:slots ((parents :vs (shot5 shot8))
(descriptions :v (owner carl))))

(new-instance {HIS-PLATE}
:name his-plateb
:slots ((parents :vs (shot5 shot6 shot8))
(descriptions :v (owner carl))))

109

(new-instance {HER-PLATE}
:name her-platebd
:slots ((parents :vs (shotS shot6 shot8))
(descriptions :v (owner carl))))

(new-instance {KITCHEN}
:name kitchenb
:slots ((parents :vs (shot5 shot6 shot7 shot8))
(descriptions :v (owner carl))))

;: note that carl entered with the wine, s0 it seems to be his,
;s though if we prelude with shotl, we see it is bianca’s and
;: she gave it to him
(new-instance {SHOT}
:name shotb S
:slots ((in-point :v 23805)
(out-point :v 24234)
(characters :vs (bianca4d carl4))
(objects :vs (clock5 wine2 his-glass5 her-glassb
her-plateb his-plateb))
(environment :v kitchen5))
(camera :v camera5)))

;: shot 6

(new-instance {CARL)}
:name carlé

:slots ((parents :v shot6)

(frame :v (244587 24566

24712 end))
(visibility :v (full full

partial out))
(face :v (left-side front back))
(angle :v (headon low low))
(distance :v (med-long med-long med-close))
(location :v (center center right))
(movement :v (small toward left))
(activity :v ((get food)

(get corkscrew)
(put (food & corkscrew) / sit)))

))

110

(new-instance {BIANCA}
:name bianca6é

:slots ((parents :v shot6)
(frame :v (24540 end))
(visibility :v (out full))
(face :v (na front))
(angle :v (na headon))
(distance :v (na med))
(location :v (na (center left)))
(movement :v (na small))
(activity :v (na

seated))

))

(new-instance {CAMERA}
:name camerab
:slots ((parents :v shot6)
(frame :v (24517 24577 end))
(movement :v (small pan-left small))))

(new-instance {CLOCK}
:name clock6
:slots ((parents :v shot6)
(descriptions :v (time 7:50 (24542 end)))))

(new-instance {FOOD}
:name food6
:slots ((parents :vs (shot6 shot8))
(descriptions :vs (unserved (owner carl)))))

(new-instance {CORKSCREW}
:name corkscrew6
:slots ((parents :v shot6)
(descriptions :v (owner carl))))

(new-instance {SHOT}

:name shot6

:slots ((in-point :v 24235)
(out-point :v 24943)
(characters :vs (biancaé carl6))
(objects :vs (clock6 wineO food6

her-plateb his-plateb))

(environment :v kitchen5))

111

(camera :v cameraf)))

i+ shot 7

(new-instance {BIANCA}

:name bianca?

:slots ((parents :v shot7)
(frame :v (25052 25281 end))
(visibility :v (partial full out))
(face :v (left-side front))
(angle :v (headon high))
(distance :v (med-close med))
(location :v (left (low right)))
(movement :v (right small))
(activity :v ((enter kitchen / sit)))
))

(new-instance {CARL}

:name carl7

:slots ((parents :v shot7)
(frame :v (25050 25305 end))
(visibility :v (out partial out))
(face :v (na right-side))
(angle :v (na low))
(distance :v (na med-close))
(location :v (na left))
(movement :v (na right))
(activity :v (na

(enter kitchen / put wine / exit right)))
))

(new-instance {CAMERA}
:name camera7
:slots ((parents :v shot7)
(frame :v (25010 end)
(movement :v (pan-right small)))))

(new-instance {CLOCK}
:name clock?
:slots ((parents :v shot7)
(descriptions :v (time 7:50))))

(new-instance {SHOT)}

112

:name shot7

:slots ((in-point :v 24944)
(out-point :v 25325)
(characters :vs (bianca? carl7))
(objects :vs (clock7 wine2)
(environment :v kitchen5))
(camera :v camera7)))

:; shot 8

(new-instance {CARL}
:name carl8

:slots ((parents :v shot8)
(frame :v (25508 25639
(visibility :v (full full partial))
(face :v (left-side front
(angle :v ((right headon) low
(distance :v (med-long med-long med-close))
(location :v (center center
(movement :v (small toward
(activity :v ((get food)

(get corkscrew / put (food & corkscrew))
sit))
))
(new-instance {BIANCA)

:name bianca8

:slots ((parents :v shot8)
(frame :v (26580 end))
(visibility :v (out full))
(face :v (na front))
(angle :v (na headon))
(distance :v (na med-close))
(location :v (na (center left)))
(movement :v (na small))
(activity :v (na

seated))

))

(new-instance {CAMERA}
:name camera$8
:slots ((parents :v shot8)
(frame :v (26572 25672 end)

113

(movement :v (small pan-left small)))))

(new-instance {CLOCK}
:name clock8

:slots ((parents :v shot5)
(descriptions :v (time 7:50 (25603 end)))))

(new-instance {SHOT}
:name shot8

:slots ((in-point :v 25444)
(out-point :v 25844)

(characters

:vs (bianca8 carl8))

(objects :vs (clock8 food6 corkscrew6 his-glassb

her-glass5 her-plate5 his-plate5))
(environment :v kitchen5))
(camera :v camera8)))

;: shot 9

(new-instance {CARL}
:name carl9
:slots ((parents :v
(frame :v

shot9)
(25967

(visibility :v (full
(left-side))

(face :v
(angle :v
(distance :
(location
(movement :
(activity :
))

< < < <

(new-instance {BIANCA}
:name bianca9

(headon))

(med-close))

(left))

(right))

end))
out))

((enter kitchen / sit)))

:slots ((parents :v shot9)
(frame :v (26913
(visibility :v (out
(face :v (na
(angle :v (na
(distance :v (na
(location :v (na
(movement :v (na

114

end))
partial))
back))
right))
med-close))
left))
right))

(activity :v (na
(enter kitchen / put wine)))

))

(new-instance {CAMERA}
:name camera9
:slots ((parents :v shot9)
(frame :v (25928 end))
(movement :v (small pan-right))))

(new-instance {SHOT}

:name shot9

:slots ((in-point :v 26845)
(out-point :v 25984)
(characters :vs (bianca9 carl9))
(objects :v winel)
(environment :v kitchenO)
(camera :v camera9)))

:: shot 10

(new-instance {CARL}
:name carllO

:slots ((parents :v shot10)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))

(distance :v (med))
(location :v (center))
(movement :v (small))
(activity :v ((seated / ask that bianca get corkscrew)))

))

(new-instance {KITCHEN}
:name kitchen1O
:slots ((parents :vs (shot10 shotll shot12 shot13))
(descriptions :v (owner bianca))))

(new-instance {SHOT}
:name shotl10
:slots ((in-point :v 25985)
(out-point :v 26097)

115

(characters

:v carlio)

(environment :v kitcheni10)))

;. shot 11

(new-instance {CARL}
:name carlil
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location
(movement :
(activity :

< < < <

))

(new-instance {BIANCA}
:name biancail
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :v
(location :v

(movement :v

(activity :v

))

shot11)
(26500
:v (out
(na
(na
(na
(na
(na
(na
seated))

shot11)
(26342

:v (full
(front
(left
(med-long
(center

(small

26650 end))
full out))
front))

left))

med-close))

left))

small))

26490

26677 end))
full

out full))
front

na right-side))
low

na left))
med

na med-close))
center

na right))
left

na small))

((get food)
(put food / get corkscrew)

na
sit))

116

(new-instance {CAMERA)
:name cameralil
:slots ((parents :v shotil)
(frame :v (26353 26500 26633 end))
(movement :v (small (pan-left + tilt-down)
(pan-left + tilt-up)
(pan-right + tilt-down / small / pan-right + tilt-up)))))

(new-instance {CLOCK}
:name clockll
:slots ((parents :v shotll)
(descriptions :v (time 7:50 (26410 26434)))))

(new-instance {F0OD}
:name foodil
:slots ((parents :vs (shotil shot13))
(descriptions :vs (unserved (owner bianca)))))

(new-instance {SHOT}

:name shotil

:slots ((in-point :v 26098)
(out-point :v 26762)
(characters :vs (biancall carlil))
(objects :vs (clockll corkscrewO foodil))
(environment :v kitcheniO))
(camera :v camerall)))

;: shot 12

(new-instance {CARL}
:name carli?2

:slots ((parents :v shot12)
(frame :v (end))
(visibility :v (partial))
(face :v (front))
(angle :v (left))
(distance :v (med))
(location :v (left))
(movement :v (complex))
(activity :v ((enter kitchen / sit)))

))

117

(new-instance {BIANCA}
:name biancal2

:slots ((parents :v shot12)

(frame :v (26815 26872 end))
(visibility :v (out partial out))
(face :v (na back))

(angle :v (na right))

(distance :v (na med-close))
(location :v (na left))

(movement :v (na right))

(activity :v (na
(enter kitchen / put wine / exit right)))
)) ‘

(new-instance {CAMERA}
‘name cameral2
:slots ((parents :v shotl2)
(frame :v end)
(movement :v complex)))

(new-instance {HIS-GLASS}
:name his-glassi2
:slots ((parents :vs (shotl12 shot13))
(descriptions :v (owner bianca))))

(new-instance {HER-GLASS}
:name her-glassi2
:slots ((parents :vs (shot12 shot13))
(descriptions :v (owner bianca))))

(new-instance {HIS-PLATE}
:name his-platel2
:slots ((parents :vs (shot12 shot13))
(descriptions :v (owner bianca))))

(new-instance {HER-PLATE}
:name her-platel2
:slots ((parents :vs (shot12 shot13))
(descriptions :v (owner bianca))))

(new-instance {SHOT}
:name shoti2
:slots ((in-point :v 26763)
(out-point :v 27095)

118

(characters :vs (biancal2 carli2))
(objects :vs (winel his-glassl2 her-glassi2
his-platel2 her-platei2))

(environment :v kitcheniO)
(camera :v camerail2)))

;; shot 13

(new-instance {BIANCA}
:name biancaill

:slots ((parents :v shot13)
(frame :v (27427 27543 :
27830 end))
(visibility :v (full full
full out))
(face :v (front front front))
(angle :v (left headon right))
(distance :v (med-long med med-close))
(location :v (center center right))
(movement :v (small left complex))
(activity :v ((get food)
(put food)

((get & put) corkscrew / sit)))
))

(new-instance {CARL}
:name carli3

:slots ((parents :v shot13)
(frame :v (27838 end))
(visibility :v (out partial))
(face :v (na left-side))
(angle :v (na low))
(distance :v (na med-close))
(location :v (na left))
(movement :v (na small))
(activity :v (na

seated))

D)

(new-instance {CAMERA}
:name cameral3
:slots ((parents :v shot13)

119

(frame :v (27435 27559 27828 end))
(movement :v (small pan-left
(pan-right / pan-left) pan-left))))

(new-instance {CORKSCREW}
:name corkscrewl3
:slots ((parents :v shot13)
(descriptions :v (owner bianca)))

(new-instance {CLOCK}
:name clockl13
:slots ((parents :v shot13)
(descriptions :v (time 7:50 (27508 27582)
(27691 27735)))))

(new-instance {SHOT}

:name shoti3

:slots ((in-point :v 27096)
(out-point :v 27879)
(characters :vs (biancal3 carli3))
(objects :vs (foodll corkscrewl3 clocki3 his-glassi2

her-glassi2 his-platel2 her-platel2))

(environment :v kitchen1O))
(camera :v camerail3)))

:; shot 14

(new-instance {BIANCA}
:name biancal4d

:slots ((parents :v shot14)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high headon)))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((use corkscrew)))

))

(new-instance {CAMERA}
:name cameraid
:slots ((parents :v shoti4)

120

(frame :v (27950 end)

(movement :v ((rise + tilt-down) small)))))

(new-instance {SHOT}

:name shoti4

:slots ((in-point :v 27880)
(out-point :v 28101)
(characters :vs (biancaid)
(objects :vs (corkscrew0 wineO))
(environment :v kitchenO)
(camera :v cameraid)))

:; shot 15

(new-instance {BIANCA}
:name biancaib

:slots ((parents :v shot15)

(frame :v (28443 28594
(visibility :v ((partial hands) out
(face :v (na na
(angle :v (na na
(distance :v (close na
(location :v (center na
(movement :v (small na
(activity :v

na

end))
partial))
back))

(high left)))

med-close))
right))
complex))

((seated / use corkscrew / open wine)

(pour wine for carl / pour wine for bianca)))

))

(new-instance {CARL}
:name carlib

:slots ((parents :v shot15)

(frame :v (28451 28602

28843 end))
(visibility :v (out (partial face)

(partial hands) out))
(face :v (na front))
(angle :v (na (high left)))
(distance :v (na close close))
(location :v (na center left))
(movement :v (na . small small))
(activity :v (na

seated

121

(receive wine)))

))

(new-instance {CAMERA}
:name cameral$

:slots ((parents :v shotlb)
(frame :v (28429 28490 28502 28614 28815 end))

(movement :v (small (tilt-up + pan-left) small
(tilt-down + pan-right) small pan-right))))

(new-instance {SHOT}

:name shot1d

:slots ((in-point :v 28102)
(out-point :v 29143)
(characters :vs (biancalb carlib))

(objects :vs (corkscrew0 wineO his-glassO her-glass0))

(environment :v kitchenO)
(camera :v camerailb)))

:; shot 16

(new-instance {BIANCA}
:name biancal6

:slots ((parents :v shot16)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (med))
(location :v (right))
(movement :v (small))
(activity :v ((say that (bianca & carl) toast
/ toast / drink glass)))
))

(new-instance {CARL}
:name carlié

:slots ((parents :v shot16)
(frame :v (end))
(visibility :v (partial))
(face :v (back))
(angle :v ((high right)))

122

(med-close))

(distance :v

(location :v (left))

(movement :v (small))

(activity :v ((toast / drink glass)))
))

(new-instance {HIS-GLASS}
:name his-glassi6
:slots ((parents :vs (shoti6 shot18 shot1901 shot1902 shot20
shot21 shot26 shot26 shot27 shot28 shot29
shot31 shot32 shot33))
(descriptions :v full)))

(new-instance {HER-GLASS}
:name her-glassi6
:slots ((parents :vs (shot16 shot18 shot1901 shot1902 shot20
shot23 shot29 shot30 shot31 shot32 shot34
shot35))
(descriptions :v full))))

(new-instance {WINE}
:name wine16
:slots ((parents :vs (shoti6 shot18 shot1902 shot20
shot29 shot31 shot32 shot34 shot36))
(descriptions :vs (open full))))

(new-instance {SHOT}

:name shot16

:slots ((in-point :v 29144)
(out-point :v 2451)
(characters :vs (biancal6 carli6))
(objects :vs (winel6 foodO his-glassi6 her-glassi6))
(environment :v kitchenO)
(camera :v camera0)))

:; shot 17

(new-instance {CARL}
:name carli?

:slots ((parents :v shot17)
(frame :v (29771 end))
(visibility :v (full partial))
(face :v (front front))

123

(angle :v ((left headon) (low left)))

(distance :v (med-close med-close))
(location :v (center left))
(movement :v (small small))

(activity :v ((seated / use corkscrew / open wine)
(pour wine for carl / pour wine for bianca)))

))

(new-instance {BIANCA}
:name biancal?

:slots ((parents :v shot17)
(frame :v (29809 29990 end))
(visibility :v (out (partial hand) out))
(face :v (na))
(angle :v (na))
(distance :v (na med-close))
(location :v (na right))
(movement :v (na small))
(activity :v (na

(receive wine)))

))

(new-instance {SHOT}

:name shotl7

:slots ((in-point :v 29452)
(out-point :v 30270)
(characters :vs (biancal7 carli7))

(objects :vs (foodO his-plateQ wineO her-glassO his-glass0))
(environment :v kitchenO)
(camera :v camera0)))

:: shot 18

(new-instance {BIANCA}
:name biancal8

:slots ((parents :v shot18)
(frame :v (end))
(visibility :v ((partial hand)))
(face :v (na))
(angle :v (na))

(distance :v (ex-close))
(location :v (right))

124

(movement :v (complex))
(activity :v (toast))
))

(new-instance {CARL}
:name carli8

:slots ((parents :v shot18)
(frame :v (end))
(visibility :v ((partial hand)))
(face :v (na))
(angle :v (na))
(distance :v (ex-close))
(location :v (left))
(movement :v (complex))
(activity :v (toast))
))

(new-instance {SHOT}

:name shoti8

:slots ((in-point :v 30271)
(out-point :v 30391)
(characters :vs (biancal8 carli8))
(objects :vs (winel6 his-glassi6 her-glassi6))
(environment :v kitchenO))
(camera :v cameraQ)))

;; shot 19, in two parts, 1901 and 1902
:; (or could be one shot if damage descriptions supported)

(new-instance {CARL}
:name carl190i

:slots ((parents :v shot1901)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((low left)))
(distance :v (med-close))
(location :v (left))
(movement :v (small))
(activity :v ((serve food for bianca)))

))

125

(new-instance {BIANCA}
:name biancal901
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity :
))

4 <4 € <

shot1901)
(end))

:v (out))
(na))
(na))
(na))
(na))
(na))

((receive food)))

(new-instance {CONTEXT}

:name contexti1901
:slots ((resultants

(new-instance {SHOT}
:name shot1901
:8lots ((in-point :v

:v shot1902)))

30392)

(out-point :v 30689)

(characters :vs (biancal901 carli1901))

(objects :vs (his-glassi6 her-glassi6
his-plateO her-plate0 food0))

(environment :v kitchenO)

(context :v contexti1901)

(camera :v camera0)))

(new-instance {CARL}
:name carli902

:slots ((parents :v shot1902)
(frame :v (end))
(visibility :v (partial))
(face :v (front))
(angle :v ((low left)))
(distance :v (med-close))
(location :v (left))
(movement :v (complex))
(activity :v ((serve food for bianca (start 30817)
/ serve food for carl (30817 end))))
))

(new-instance {BIANCA}

126

:name biancal902

:slots ((parents :v shot1902)
(frame :v (30817 end))
(visibility :v ((partial hands) out))
(face :v (na))
(angle :v (na))
(distance :v (close))
(location :v (right))
(movement :v (small))
(activity :v ((receive food)))
))

(new-instance {F0OD}
:name foodl19
:slots ((parents :vs (shot1902 shot28 shot29 shot31 shot32))
(descriptions :vs (served full))))

(new-instance {CONTEXT}
:name context1902
:slots ((precedents :v shot1901)))

(new-instance {SHOT}

:name shot1902

:slots ((in-point :v 30590)
(out-point :v 30950)
(characters :vs (biancal902 carl1902))
(objects :vs (winel6 his-glass16 her-glassié

his-plateO her-plate0 foodi9))

(environment :v kitchenO)
(context :v context1902)
(camera :v camera0)))

::; shot 20

(new-instance {BIANCA}
:name bianca20

:slots ((parents :v shot20)
(frame :v (end))
(visibility :v (partial))
(face :v (right-side))
(angle :v (high))
(distance :v (med))
(location :v (right))

(movement :v (complex))

127

(activity :v ((serve food for carl (31006 31627)
/ serve food for bianca (31669 end))))

))

(new-instance {CARL}
:name carl20

:slots ((parents :v shot20)
(frame :v (31196 31690 end))
(visibility :v (out full out))
(face :v (na front))
(angle :v (na left))
(distance :v (na med))
(location :v (na left))
(movement :v (na complex))
(activity :v (na

(receive food)))

))

(new-instance {CAMERA}
:name camera20
:slots ((parents :v shot20)
(frame :v (31049 31649 end)
(movement :v ((tilt-down + pan-left)
small pan-right small)))))

(new-instance {CLOCK}
‘name clock20
:slots ((parents :v shot20)
(descriptions :v (time 7:54 (start 30979)))))

(new-instance {SHOT}

:name shot20

:slots ((in-point :v 30951)
(out-point :v 32104)
(characters :vs (bianca20 carl20))
(objects :vs (food0 winel6 his-glassi6 her-glassi6

his-plate0 her-plateO clock20))

(environment :v kitchenO)
(camera :v camera20)))

;: shot 21

(new-instance {CARL}

128

:name carl2l

:slots ((parents :v shot21)
(frame :v (end))
(visibility :v (partial))
(face :v (front))
(angle :v ((low left)))
(distance :v (ex-close))
(location :v (left))
(movement :v (complex))
(activity :v (eat))

))

(new-instance {HIS-PLATE}
:name his-plate2l
:slots ((parents :vs (shot21 shot25 shot26 shot28
shot29 shot31 shot32 shot33))
(descriptions :v full)))

(new-instance {SHOT}

:name shot2l

:8lots ((in-point :v 32105)
(out-point :v 32267)
(characters :v carl2l)
(objects :vs (his-glass16 his-plate2i))
(environment :v kitchenO)
(camera :v camera0)))

;: shot 22

(new-instance {BIANCA}
:name bianca22

:slots ((parents :v shot22)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v ((high right)))
(distance :v (ex-close))
(location :v (right))
(movement :v (small))
(activity :v (eat))
))

129

(new-instance {HER-PLATE}

:name her-plate22
:slots ((parents :vs (shot22 shot23 shot24 shot29

shot30 shot31 shot32 shot34 shot35))
(descriptions :v full)))

(new-instance {SHOT}

:name shot22

:slots ((in-point :v 32268)
(out-point :v 32434)
(characters :v bianca22)
(objects :vs (her-plate22))
(environment :v kitchenO)
(camera :v cameral)))

;; shot 23

(new-instance {BIANCA}
:name bianca23

:slots ((parents :v shot23)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((low right)))
(distance :v (close))
(location :v ((center right)))
(movement :v (small))
(activity :v (eat))
))

(new-instance {CAMERA}
‘name camera23
:slots ((parents :v shot23)
(frame :v (32478 end))
(movement :v (tilt-down small))))

(new-instance {CLOCK}
:name clock23
:slots ((parents :v shot23)
(descriptions :v (time 7:54 (start 32460)))))

(new-instance {HER-PLATE}
:name her-plate22

130

:slots ((parents :vs (shot22))
(descriptions :v full)))

(new-instance {SHOT}

:name shot23

:slots ((in-point :v 32435)
(out-point :v 32677)
(characters :v bianca23)
(objects :vs (her-plate22 her-glassi6 clock23)
(environment :v kitchenO)
(camera :v camera23)))

. :shot 24

(new-instance {BIANCA}
:name bianca24

:slots ((parents :v shot24)
(frame :v (end))
(visibility :v ((partial hand)))
(face :v (na))
(angle :v (high))
(distance :v (ex-close))
(location :v (center))
(movement :v (small))
(activity :v (eat))
))

(new-instance {SHOT}

:name shot24

:slots ((in-point :v 32578)
(out-point :v 32644)
(characters :v bianca24)
(objects :vs (her-plate22))
(environment :v kitchenO)
(camera :v cameral)))

;: shot 25

(new-instance {CARL}
:name carl2b
:slots ((parents :v shot25)
(frame :v (end))
(visibility :v (full))

131

(face :v
(angle :v

(distance :
(location :

(movement

(activity :

))

(new-instance {F0OOD}

:name food25

< <4 <<

(front))
(headon))
(med-close))
((center top)))
(small))

(eat))

:slots ((parents :vs (shot25 shot26))
(descriptions :vs (served half-full))))

(new-instance {SHOT}

:name shot25

:slots ((in-point :v 32645)
(out-point :v 32801)
(characters :v carl25)
(objects :vs (food25 his-plate2l his-glassi6))
(environment :v kitchenO)
(camera :v camera0)))

; ;shot 26

(new-instance {CARL}

:name carl26

:slots ((parents :v shot26)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (complex))
(activity :v ((eat + is somewhat mad)))
))

(new-instance {SHOT}

:name shot26

:slots ((in-point :v 32802)
(out-point :v 32915)
(characters :v carl26)
(objects :vs (food25 his-plate2l his-glassi6))

132

(environment :v kitchenO)
(camera :v camera0)))

;. shot 27

(new-instance {CARL}
:name carl2?

:slots ((parents :v shot27)
(frame :v (end))
(visibility :v (partial))
(face :v (front))
(angle :v ((high left)))
(distance :v (ex-close))
(location :v (center))
(movement :v (complex))
(activity :v ((eat + is mad)))

))

(new-instance {HIS-PLATE}
:name his-plate2?7
:slots ((parents :vs (shot27))
(descriptions :v half-full)))

(new-instance {CAMERA}
:name camera27
:slots ((parents :v shot27)
(frame :v (32953 33009 end)
(movement :v (small tilt-up small)))))

(new-instance {SHOT}

:name shot27

:slots ((in-point :v 32916)
(out-point :v 33078)
(characters :v carl2T7)
(objects :vs (his-plate27 his-glassi6))
(environment :v kitchenO)
(camera :v camera0)))

:; shot 28

(new-instance {CARL}
:name carl28
:slots ((parents :v shot28)
(frame :v (end))

133

(visibility :v (full))

(face :v (left-side))
(angle :v (right))
(distance :v (close))
(location :v ((center left)))
(movement :v (complex))
(activity :v (eat))

))

(new-instance {CAMERA}
:name camera28
:slots ((parents :v shot28)
(frame :v (33126 end)
(movement :v ((tilt-down + pan-right) small)))))

(new-instance {SHOT}

:name shot28

:slots ((in-point :v 33079)
(out-point :v 33167)
(characters :v carl28)
(objects :vs (foodl19 his-plate2l his-glassi6))
(environment :v kitchenO)
(camera :v camera28)))

;: shot 29

(new-instance {BIANCA}
:name bianca29

:8lots ((parents :v shot29)

(frame :v (33206 33416 end))
(visibility :v (full out full))
(face :v (right-side na right-side))
(angle :v (left na left))
(distance :v (close na close))
(location :v (right na right))
(movement :v (small na small))
(activity :v (eat

na

eat))
))

(new-instance {CARL}
:name carl29

134

:slots ((parents :v shot29)

(frame :v (33304 33415 end))
(visibility :v (out full out))
(face :v (na front))
(angle :v (na left))
(distance :v (na close))
(location :v (na left))
(movement :v (na small))
(activity :v (na
eat))
))

(new-instance {CAMERA}
:name camera29
:slots ((parents :v shot29)
(frame :v (33278 33333 33398 33456 end))
(movement :v (small pan-left small pan-right small)))) °

(new-instance {SHOT)}

:name shot29

:slots ((in-point :v 33168)
(out-point :v 33657)
(characters :vs (carl29 bianca29))
(objects :vs (foodi9 his-plate2l his-glassif

her-plate22 her-glassi6 wine16))

(environment :v kitchenO)
(camera :v camera29)))

:: shot 30

(new-instance {BIANCA}
:name bianca30

:slots ((parents :v shot30)
(frame :v (end))
(visibility :v (full))

(face :v (right-side))
(angle :v (headon))
(distance :v (close))
(location :v (right))
(movement :v (small))
(activity :v (eat))

))

135

(new-instance {SHOT}

:name shot30

:slots ((in-point :v 33668)
(out-point :v 33887)
(characters :vs (bianca30))
(objects :vs (her-plate22 her-glassi6))
(environment :v kitchenO)
(camera :v camera0)))

;:; shot 31

(new-instance {BIANCA}
:name bianca3i

:slots ((parents :v shot31)
(frame :v (34062 end))
(visibility :v (full out))
(face :v (right-side))
(angle :v (high))
(distance :v (med))
(location :v (right))
(movement :v (small))
(activity :v (eat))
))

(new-instance {CARL}
:name carl3i

:slots ((parents :v shot31)
(frame :v (34066 end))
(visibility :v (out full))
(face :v (na left-side))
(angle :v (na high))
(distance :v (na med))
(location :v (na left))
(movement :v (na small))
(activity :v (na

eat))

))

(new-instance {CAMERA}
‘name camera3i
:slots ((parents :v shot31)
(frame :v (34045 34097 end))
(movement :v (small pan-left small))))

136

(new-instance {SHOT}

:name shot3l

:slots ((in-point :v 33888)
(out-point :v 34295)
(characters :vs (carl3i bianca3il))
(objects :vs (food19 his-plate2i his-glassl6

her-plate22 her-glassl6 winel6))

(environment :v kitchenO)
(camera :v camera3i)))

:: shot 32

(new-instance {CARL)}
:name carl32

:slots ((parents :v shot32)
(frame :v (end))
(visibility :v (full))
(face :v (left-side))
(angle :v (hgih))
(distance :v (med-long))
(location :v (left))
(movement :v (small))
(activity :v ((eat + drink)))
))

(new-instance {BIANCA}
:name bianca32

:slots ((parents :v shot32)
(frame :v (end))
(visibility :v (full))

(face :v (right-side))
(angle :v (high))
(distance :v (med-long))
(location :v (right))
(movement :v (small))
(activity :v (eat))

))

(new-instance {SHOT}
:name shot32
:slots ((in-point :v 34296)
(out-point :v 34606)
(characters :vs (carl32 bianca32))

137

(objects :vs (foodl9 his-plate2l his-glassi6
her-plate22 her-glassi6 winei16))

(environment :v kitchenO)
(camera :v camera0)))

;. shot 33

(new-instance {CARL}
:name carl33

:slots ((parents :v shot33)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))

(distance :v (close))
(location :v ((left center)))
(movement :v (small))
(activity :v ((drink (start 34731) / eat (34748 end))))
))

(new-instance {SHOT}

:name shot33

:slots ((in-point :v 34606)
(out-point :v 34871)
(characters :vs (carl33))
(objects :vs (his-plate2l his-glassi6))
(environment :v kitchenO)
(camera :v camera0)))

;. shot 34

(new-instance {BIANCA}
:name bianca34

:slots ((parents :v shot34)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (close))
(location :v ((right center)))
(movement :v (small))
(activity :v ((drink (start 34978) / is happy
/ eat (34995 end))))
))

138

(new-instance {SHOT}
:name shot34
:slots ((in-point :v 34872)
(out-point :v 35119)
(characters :vs (bianca34))
(objects :vs (her-plate22 her-glassi6 winel6))

(environment :v kitchenO)
(camera :v camera0)))

:: shot 35

(new-instance {BIANCA}
:name bianca3b

:slots ((parents :v shot35)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (med-close))
(location :v (right))
(novement :v (complex))
(activity :v ((drink / is mad

/ is impatient (35385 end))))

))

(new-instance {SHOT}

:name shot35

:slots ((in-point :v 35120)
(out-point :v 35466)
(characters :vs (bianca35))
(objects :vs (her-plate22 her-glassi6))
(environment :v kitchenO)
(camera :v cameraO)))

: ;shot 36

(new-instance {BIANCA}
:name bianca36

:slots ((parents :v shot36)
(frame :v (35525 end))
(visibility :v (full out))
(face :v (right-side))
(angle :v (left))

(distance :v (med))

139

(location :v ((right center)))
(movement :v (none))

(activity :v (seated))

))

(new-instance {CARL}
:name carl36

:slots ((parents :v shot36)

(frame :v (33509 end))
(visibility :v (out full))
(face :v (na left-side))
(angle :v (na headon))
(distance :v (na med-close))
(location :v (na left))
(movement :v (na small))

(activity v (na
(drink / is (mad or impatient) (35637 end))))
))

(new-instance {CAMERA}
:name camera36
:slots ((parents :v shot36)
(frame :v (35504 35543 end))
(movement :v (none pan-left small))))

(new-instance {HIS-GLASS}
:name his-glass36
:slots ((parents :vs (shot36)
(descriptions :v (half-full (35514 end))))))

(new-instance {HER-GLASS}
:name her-glass36
:slots ((parents :vs (shot36))
(descriptions :v (half-full (start 35540)))))

(new-instance {HIS-PLATE}
:name his-plate36
:slots ((parents :vs (shot36))
(descriptions :v (half-full (35513 end)))))

(new-instance {HER-PLATE}
‘name her-plate36
:slots ((parents :vs (shot36))

140

(descriptions :v (half-full (start 35529)))))

(new-instance {F0OOD}
:name food36
:slots ((parents :vs (shot36))
(descriptions :vs (half-full (35510 end)))))

(new-instance {SHOT}

:name shot36

:slots ((in-point :v 35467)
(out-point :v 36720)
(characters :vs (bianca36 carl36))
(objects :vs (wine1l6 food36 his-plate36

her-plate36 his-glass36 her-glass36))

(environment :v kitchenO)
(camera :v camera36)))

:; shot 37

(new-instance {BIANCA)
:name bianca37

:slots ((parents :v shot37)
(frame :v (35753 end))
(visibility :v (out full))
(face :v (na right-side))
(angle :v (na headon))
(distance :v (na close))
(location :v (na center))
(movement :v (na none))
(activity :v (na
seated))
))
;. shot 38

(new-instance {CARL}
:name carl38

:slots ((parents :v shot38)
(frame :v (end))
(visibility :v (full))

(face :v (front))
(angle :v ((high left)))

(distance :v (med))
(location :v (center))

141

(movement :v (small))
(activity :v ((sigh (start 35869)
/ drink + is mad)))

))
;; shot 39

(new-instance {BIANCA}
:name bianca39

:slots ((parents :v shot39)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((low headon right)))

(distance :v (med))
(location :v ((bottom right)))
(movement :v (small))
(activity :v ((say textl) + is mad / sigh (36366 end))))
))

(new-instance {TEXT}
‘name textl
:slots ((parents :vs (shot39 shotd2))
(transcription :v (the true artist is one who can make you say
'wow!’, to which he replies ’'so what?’))
(descriptions :vs (opinion art truth vanity))))

;: shot 40

(new-instance {CARL}
:name carl4O

:slots ((parents :v shot40)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high left)))
(distance :v (med))
(location :v (center))
(movement :v (small))
(activity :v ((say text2 / drink (36667 end))))

))

(new-instance {TEXT}
:name text2

142

:slots ((parents :vs (shot40 shot41))

(transcription :v (in this country, education is obtained
only at a price. Indoctrination is free,
but often disguised as education.))

(descriptions :vs (opinion problem education freedom))))

:: shot 41

(new-instance {CARL}
:name carl4l

:slots ((parents :v shot41)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((low left)))
(distance :v (med-close))
(location :v (center))
(movement :v (small)) ,
(activity :v ((say text2 + is mad)))
))

:: shot 42

(new-instance {BIANCA}
:name bianca42

:slots ((parents :v shot42)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high right)))
(distance :v (med))
(location :v (center))
(movement :v (small))
(activity :v ((say textl + is thoughtful)))
))

;: shot 43

(new-instance {CARL}
:name carl43

:slots ((parents :v shot43)
(frame :v (end))
(visibility :v (full))
(face :v (front))

143

(angle :v (headon))

(distance :v (close))

(location :v (center))

(movement :v (small))

(activity :v ((say text3 + is thoughtful
/ drink (375859 end))))

))

(new-instance {TEXT}

‘name text3

:slots ((parents :v shot43)
(transcription :v
(where is the coninuity of self? I have only some

rapidly decaying flesh in common with yesterday.
Soon, I will become unrecognizable.))

(descriptions :vs (life self fear))))

:: shot 44

(new-instance {BIANCA}
:name biancad44

:slots ((parents :v shot44)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v ((low right)))
(distance :v (ex-close))
(location :v ((center right)))
(movement :v (small))

(activity :v ((say text4 (start 38087)
/ is thoughtful / drink slow (38040 38199)
/ drink fast all (38192 end))))

))

(new-instance {TEXT}
:name text4
:slots ((parents :v shotd4)
(transcription :v
(I have become superstitious. History is reducible
to a numinous sequence. We spend our lives preparing
for a single moment of symbolic relevance.))
(descriptions :vs (self life history meaning))))

;; shot 45

144

(new-instance {BIANCA}
:name bianca4b

:slots ((parents :v shot45)
(frame :v (end))
(visibility :v (full))
(face :v (left-side))
(angle :v ((very high)))
(distance :v (med))
(location :v (center))
(movement :v (small))
(activity :v ((play with food (start 38507)

/ say text4a)))
))

(new-instance {TEXT}
:name text4a
:slots ((parents :v shot4b)
(transcription :v (I have become superstitious.))
(descriptions :vs (self magic))))

:: shot 46

(new-instance {CARL}
:name carl46é

:slots ((parents :v shot46)
(frame :v (end))
(visibility :v (full))
(face :v (left-side))
(angle :v ((very high)))
(distance :v (med))
(location :v ((left center)))
(movement :v (small))
(activity :v ((say text5)))

))

(new-instance {TEXT}
:name textd
:slots ((parents :v shotd6)
(transcription :v (this is the age of polymorphism!
the whims of nature invite whimsical response.))
(descriptions :vs (opinion present mankind))))

.. shot 47

145

(new-instance {BIANCA}
:name bianca47

:slots ((parents :v shot47)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (close))
(location :v (right))
(movement :v (small))
(activity :v ((play with food

/ show that bianca is uninterested)))
))
;; shot 48

(new-instance {BIANCA}
:name bianca48

:slots ((parents :v shot48)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (close))
(location :v ((right center)))
(movement :v (small))
(activity :v ((show agreement (start 39066)

/ show impatience (39066 end))))
))
;; shot 49

(new-instance {BIANCA}
:name bianca49

:slots ((parents :v shot49)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (close))
(location :v ((center right)))
(movement :v (right))
(activity :v ((show anger (39291 end)

/ show agreement)))

146

——

))
;» shot 50

(new-instance {CARL}
:name carlbo0

:slots ((parents :v shot50)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (close))
(location :v (center))
(movement :v (small))

(activity :v ((show disinterest (start 39468)

/ show agreement & is thoughtful (39453 39563)
/ drink (39563 39622) / show impatience (39620 end))))
))

(new-instance {CARL}
:name carlbil

:slots ((parents :v shot51)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med))
(location :v (center))
(movement :v (small))
(activity :v ((show interest (start 39887)

/ show impatience (39887 end))))
))

(new-instance {BIANCA}
:name biancab2

:slots ((parents :v shot52)
(frame :v (end))
(visibility :v (full))

(face :v (right-side))
(angle :v (left))

(distance :v (close))
(location :v ((center left)))

147

(movement :v (small))
(activity :v ((drink + show (impatience or disagreement)
(start 40179) / drink + show anger (40085 end))))

))

(new-instance {BIANCA}
:name biancab3

:slots ((parents :v shot53)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (med-close))
(location :v (right))
(movement :v (small))

(activity :v ((show anger (start 40515)
/ show (disagreement or impatience) (40505 end))))
))

(new-instance {BIANCA}
:name biancab4

:slots ((parents :v shot54)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (med))
(location :v ((center right)))
(movement :v (small))
(activity :v ((show impatience)))

))

(new-instance {BIANCA}
:name biancabb

:slots ((parents :v shot55)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v (right))

(distance :v (close))
(location :v (center))

148

(movement :v (small))
(activity :v ((eat + show (agreement or happy))))

))

(new-instance {CARL}
:name carlb6

:slots ((parents :v shot56)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((show disagreement / drink)))
)

(new-instance {CARL}
:name carlb7

:8lots ((parents :v shot57)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
 (activity :v ((show agreement + is thoughtful)))
)

(new-instance {CARL}
:name carlb8

:slots ((parents :v shot58)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((show agreement)))

149

))

(new-instance {CARL}
:name carlb9

:slots ((parents :v shot59)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((show (anger or impatience)
/ reply is very mad)))
)

(new-instance {CARL}
:name carl60

:slots ((parents :v shot60)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v (left))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((reply disinterest)))
)

(new-instance {BIANCA}
:name bianca6l

:slots ((parents :v shot61)
(frame :v (end))
(visibility :v (full))
(face :v (right-side))
(angle :v (high))
(distance :v (med-close))
(location :v (right))
(movement :v (small))
(activity :v ((show that bianca like food)))
))

150

(new-instance {BIANCA}
:name bianca62
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement
(activity :

< < < <

))

(new-instance {BIANCA}
:name bianca63
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity :
))

< < < <

(new-instance {BIANCA}
:name bianca64
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity
))

< < < <

(new-instance {BIANCA}

shot62)
(end))

:v (full))

(front))
(right))
(close))
(right))
(small))
((drink wine from glass
/ show dislike wine)))

shot63)
(end))

:v (full))

(right-side))

(high))

(med-close))

(right))

(small))

((show dislike food)))

shot64)
(end))

:v (full))

(front))
(right))
(close))
((center right)))
(right))

((show dislike food / is impatient)))

151

:name biancaéb

:slots ((parents :v shot65)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((drink / say like wine)))
))

(new-instance {BIANCA}
:name biancaé6

:slots ((parents :v shot66)
(frame :v (42076 end))
(visibility :v (partial full))
(face :v (front front))
(angle :v (low headon))
(distance :v (close close))
(location :v ((top right) center))
(movement :v (small small))
(activity :v

((is mad + ask that carl pour wine for bianca / receive wine)
(drink + is thoughtful)))

))

(new-instance {CARL}
:name carl66

:slots ((parents :v shot66)
(frame :v (42075 end))
(visibility :v ((partial hand) out))
(face :v (na))
(angle :v (na))
(distance :v (na))
(location :v (na))
(movement :v (na))
(activity :v ((pour wine for bianca)))

))

(new-instance {BIANCA}

152

:name bianca67

:slots ((parents :v shot67)

(frame :v (42308 end))

(visibility :v (full partial))

(face :v (front))

(angle :v (headon))

(distance :v (close))

(location :v (center))

(movement :v (small))

(activity :v

((ask that carl (serve or pour) for bianca)

(receive wine)))

))

(new-instance {CARL}
:name carl67

:slots ((parents :v shot67)

(frame :v (out))

(visibility :v (na))

(face :v (na))

(angle :v (na))

(distance :v (na))

(location :v (na))

(movement :v (na))

(activity :v ((pour wine for bianca)))
)

(new-instance {CARL}
:name carl68

:slots ((parents :v shot68)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((show dislike food + is mad
/ is sick)))
))

153

(new-instance {CARL}
:name carl69

:slots ((parents :v shot69)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((say is happy)))
))

(new-instance {CARL}
:name carl70

:slots ((parents :v shot70)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high headon)))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((say is happy / drink)))
))

(new-instance {CARL}
:name carl71

:slots ((parents :v shot71)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((say dislike wine)))
))

(new-instance {CARL}
:name carl72

154

:slots ((parents :v shot72)

(frame :v (43081 end))

(visibility :v (partial full))

(face :v (front front))

(angle :v ((low left) (headon left)))
(distance :v (close close))

(location :v (left left))

(movement :v (small small))

(activity :v ((ask that bianca pour / receive wine)

(say like wine / drink)))
))

(new-instance {BIANCA}
:name bianca72

:slots ((parents :v shot72)

(frame :v (42939 43080 end))
(visibility :v (out partial out))
(face :v (na))

(angle :v (na))

(distance :v (na))

(location :v (na))

(movement :v (na))

(activity :v (na

(pour wine for carl)))

))

(new-instance {CARL}
:name carl73

:slots ((parents :v shot73)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((say is sick)))

))

(new-instance {BIANCA}
:name bianca74

155

:slots ((parents :v
(frame :v

shot74)
(end))

(visibility :v (full))

(face :v
(angle :v
(distance :
(location :
(movement :
(activity
))

< < < <

(new-instance {CARL}

:name carl75

:slots ((parents :v
(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(novement :
(activity
))

4 < a <

(new-instance {CARL}

:name carl76

:slots ((parents :v
(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement
(activity
))

< <4« <

(new-instance {BIANCA}

:name bianca77
:slots ((parents :v
(frame :v

(front))

((high right)))
(med-close))
((bottom center)))
(small))

((say is happy)))

shot75)
(end))

'v (full))

(front))

(left))

(close))

(center))

(small))

((say is unhappy)))

shot76)
(end))

:v (full))

(front))
(left))

(med))
(center))
(small))

((say is mad)))

shot77)
(end))

156

(visibility :v (partial))

(face :v (na))

(angle :v (na))

(distance :v (med-close))

(location :v (left))

(movement :v (small))

(activity :v ((seated / play with cat)))
))

(new-instance {CAT}
:name cat77

:slots ((parents :v shot77)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high right)))
(distance :v (med-close))
(location :v ((top right)))
(movement :v ((down left)))
(activity :v (walk))
))

(new-instance {CARL}

:name carl78

:slots ((parents :v shot78)
(frame :v (43692 end))
(visibility :v (out full))
(face :v (na front))
(angle :v (na headon))
(distance :v (na med-close))
(location :v (na center))
(movement :v (na small))
(activity :v (na

(is happy (43271 end))))
))
(new-instance {BIANCA}

:name bianca79

:slots ((parents :v shot79)
(frame :v (43930 end))
(visibility :v (full partial))

157

|
o .

(face :v (back left-side))

(angle :v ((low headon) low))
(distance :v (med-close close))
(location :v (center right))
(movement :v (small (left down)))
(activity :v ((get broom)

walk))
))

(new-instance {BIANCA}
:name bianca80

:slots ((parents :v shot80)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (high))
(distance :v (med))
(location :v ((center top)))
(novement :v (small))
(activity :v ((use broom / get glass)))

))

(new-instance {CARL}
:name carl8l

:slots ((parents :v shot81)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((is thoughtful)))

))

(new-instance {BIANCA}
:name bianca8l

:slots ((parents :v shot81)
(frame :v (end))
(visibility :v (out))
(face :v (na))

158

(angle :v (na))

(distance :v (na))
(location :v (na))
(movement :v (na))
(activity :v ((put glass))) ;; glass is broken
))
(new-instance {BIANCA}
:name bianca82
:slots ((parents :v shot82)
(frame :v (end))
(visibility :v (full))
(face :v (back))
(angle :v (low))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v (sit))
))
(new-instance {CARL}
:name carl83
:slots ((parents :v shot83)
(frame :v (44612 44692 end))
(visibility :v (full out full))
(face :v (front na front))
(angle :v (left na left))
(distance :v (med na med))
(location :v (center na center))
(movement :v (small na small))
(activity :v ((drop glassi accidently)
;: his glass
na
(say is sorry + show sad)))
))
(new-instance {CARL}
:name carl84
:slots ((parents :v shot84)
(frame :v (44917 44972

45222 end))

159

(visibility :v (full full

full partial))
(face :v (front front back))
(angle :v (headon headon headon))
(distance :v (med med-close
med-close close))
(location :v (left left
right center))
(movement :v (up right
complex complex))

(activity :v (stand
walk
(get broom)
(use broom / get glass / put (glass & broom) / exit left)))
))

(new-instance {BIANCA}
:name bianca84

:slots ((parents :v shot84)
(frame :v (44977 45213
45325 end))
(visibility :v (out partial
out partial))
(face :v (na right-side
na right-side))
(angle :v (na headon
na headon))
(distance :v (na med
na med))
(location :v (na center
na center))
(movement :v (na small
na small))
(activity :v (na
seated))
)
(new-instance {BIANCA}
:name bianca85
:slots ((parents :v shot85)
(frame :v (45632 45675 end))
(visibility :v (full partial full))

160

(face :Vv (front na front))

(angle :v ((headon right) na (headon right)))
(distance :Vv (close na close))
(location :v (center na center))
(movement :v (small na small))
(activity :v ((drink / drop glass accidently)

na

(is sorry)))
))

(new-instance {BIANCA}
:name bianca86

:slots ((parents :v shot86)
(frame :v (45843 end)) .
(visibility :v (partial full))
(face :v (na front))
(angle :v (na (low right))) >
(distance :v (na med-long))
(location :v (na (up left)))
(movement :v (na small))
(activity :v (na

(is happy)))
))

(new-instance {BIANCA}
:name bianca87

:slots ((parents :v shot87)
(frame :v (end))
(visibility :v (full))
(face :v (right-side))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (small))
(activity :v ((throw glass)))
))

(new-instance {CARL}
:name carl8s8
:slots ((parents :v shot88)
(frame :v (end))

161

(visibility :v (partial))

(face :v
(angle :v
(distance :
(location :
(novement
(activity :
))

< 2 < <

(front))
(headon))
(ex-close))
(center))
(complex))
((throw glass)))

(new-instance {CARL}
:name carl89

:slots ((parents :v shot89)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v ((headon left)))
(distance :v (ex-close))
(location :v (center))
(movement :v (small))
(activity :v ((drink + is drunk (start 46336)
/ drink + is impatient (46335 end))))
))

(new-instance {CARL}
‘name c¢arl90

:slots ((parents :v shot90)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v ((headon left)))
(distance :v (ex-close))
(location :v (center))
(movement :v (small))
(activity :v ((ask about bianca is drunk / is mad)))
))

(new-instance {CARL}
:name carl9l

:slots ((parents :v shot91)

(frame :v

(end))

(visibility :v (full))

162

(face :v (front))

(angle :v ((high headon left)))

(distance :v (med))

(location :v (center))

(movement :v (small))

(activity :v ((drink + is (drunk or happy))))

))

(new-instance {BIANCA}
:name bianca92

:slots ((parents :v shot92)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v ((high right)))
(distance :v (med-close))
(location :v ((center right)))
(movement :v (small))

(activity :v ((ask about carl is drunk (start 46723)
/ laugh (46723 46818) / drink + laugh (46818 end))))
)

(new-instance {BIANCA}
:name bianca93

:slots ((parents :v shot93)
(frame :v (end))
(visibility :v (full))
(face :v (right-side))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))
(activity :v ((is (sick or unhappy or impatient))))

))

(new-instance {BIANCA}
:name bianca94

:slots ((parents :v shot94)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))

163

(angle :v

(distance :v
(location :v
(movement :V
(activity :v

))

(new-instance {CARL}
:name carlob
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity

))

< < < <

(new-instance {BIANCA}
:name bianca8b
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity :
))

< < < <

(new-instance {CARL}
:name carl96
:slots ((parents :v
(frame :v
(visibility
(face :v
(angle :v

(headon))
(ex-close))
(center))
(small))

((say is (unhappy or mad) (start 47450)
/ sigh + is mad (47450 end))))

shot95)

(47620

:v (partial
(back))
((high right)))
(med-close))
((low left)))
(small))
(eat))

end))

shot95)
(47620
;v (full
(front))
((high right)))
(med))
((top right)))
(small))
(eat))

end))
out))

shot96)
(47729
:v (full
(front))
((high left)))

end))
out))

164

out))

(distance :v (med))
(location :v (left))
(movement :v (small))
(activity :v (eat))
))
(new-instance {BIANCA}
:name bianca96
:slots ((parents :v shot96)
(frame :v (47750 end))
(visibility :v (partial out))
(face :v (back))
(angle :v ((high left)))
(distance :v (med-close))
(location :v ((low right)))
(novement :v (small))
(activity :v (eat))
)
(new-instance {BIANCA}
:name bianca97
:slots ((parents :v shot97)
(frame :v (47837 end))
(visibility :v (out full))
(face :v (na front))
(angle :v (na (high center right)))
(distance :v (na med-close))
(location :v (na right))
(movement :v (na small))
(activity :v (na
eat))
))
(new-instance {CARL}
‘name carl98
:slots ((parents :v shot98)
(frame :v (47989 48498 end))
(visibility :v (out partial out))
(face :v (na front))
(angle :v (na left))
(distance :v (na med))

165

(location :v
(movement :Vv
(activity :v

))

(new-instance {BIANCA}
:name bianca98
:slots ((parents

(frame :v
(visibility
(face :v
(angle :v
(distance :v
(location :v
v
v

v

(movement
(activity :
(stan

))

(new-instance {BIANCA}
:name bianca99
:slots ((parents

(frame :v
(visibility
(face :v

(angle :v

(distance :
(location :
(movement :
(activity

v

< < 4 <

))

(new-instance {CARL}
:name carl99
:slots ((parents

(frame :v
(visibility
(face :v

(angle :v
(distance

v

v

(na
(na
(na

left))
complex))

(stands / clear table / exit right)))

shot98)
(47977
:v (out
(na
(na
(na
(na
(na
(na

48568
partial
right-side))
headon))
med))
right))
complex))

end))
out))

N

/ help carl clear table / exit right)))

shot99)
(48607
:v (out
(na
(na
(na
(na
(na
(na
(stand / clear

shot99)
(48626
:v (out
(front))
(left))
(med-long))

166

end))
out))

48911

partial
right-side))
(high headon)))
med))

right))
complex))

table / exit right)))

end))
partial))

(location :v (left))
(movement :v (complex))
(activity :v ((stand
/ help bianca clear table / exit right)))

))

(new-instance {CARL}
:name carliOo0

:slots ((parents :v shot100)
(frame :v (49089 end))
(visibility :v (full out))
(face :v (front))
(angle :v (left))
(distance :v (med-close))
(location :v (center))
(movement :v (complex))
(activity :v ((show is mad / exit left)))
))

(new-instance {BIANCA}
:name biancalQO

:slots ((parents :v shot100)
(frame :v (49099 end))
(visibility :v (out full))
(face :v (na right-side))
(angle :v (na headon))
(distance :v (na med-close))
(location :v (na (center right)))
(movement :v (na small))
(activity :v (na

(is (thoughtful or sad))))
))

(new-instance {BIANCA}
:name biancalOl

:slots ((parents :v shot101)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))

(distance :v (med-close))

167

(location :v ((center right)))
(movement :v (small))
(activity :v ((say is sorry / is sad)))

))

(new-instance {CARL}
:name carlioOl

:slots ((parents :v shot101)
(frame :v (end))
(visibility :v (out))
(face :v (na))
(angle :v (na))
(distance :v (na))
(location :v (na))
(movement :v (na))
(activity :v ((is mad / stand)))

))

(new-instance {BIANCA}
:name biancalO2

:slots ((parents :v shot102)
(frame :v (end))
(visibility :v (full))
(face :v (front))
(angle :v (right))
(distance :v (med-close))
(location :v ((center right)))
(movement :v (small))
(activity :v ((say is mad)))
))

(new-instance {CARL}
:name carllo2

:slots ((parents :v shot102)
(frame :v (end))
(visibility :v (out))
(face :v (na))
(angle :v (na))
(distance :v (na))
(location :v (na))

(movement :v (na))

168

(activity :v
((say that carl exit kitchen + is mad / stand)))
M)

(new-instance {CARL}
:name carliO3

:slots ((parents :v shot103)
(frame :v (end))
(visibility :v (full))
(face :v (left-side))
(angle :v (headon))
(distance :v (close))
(location :v (center))
(movement :v (small))

(activity :v
((say is sorry about glass is broken)))

))

(new-instance {BIANCA}
:name biancalO3

:slots ((parents :v shot103)

(frame :v (end))

(visibility :v (out))

(face :v (na))

(angle :v (na))

(distance :v (na))

(location :v (na))

(movement :v (na))

(activity :v ((say is (happy & agreeing))))

))

(new-instance {BIANCA}
:name biancalO4

:slots ((parents :v shot104)
(frame :v (end))
(visibility :v (full))

(face :v (right-side))
(angle :v (headon))
(distance :v (close))
(location :v (center))

(movement :v (small))

169

(activity :v .
((say is sorry about glass is broken)))

))

(new-instance {CARL}
‘name carliO4

:slots ((parents :v shot104)
(frame :v (end))
(visibility :v (out))
(face :v (na))
(angle :v (na))
(distance :v (na))
(location :v (na))
(movement :v (na))
(activity :v ((say is (happy & agreeing))))

))

(new-instance {BIANCA}
:name biancaiOb

:slots ((parents :v shot105)
(frame :v (50526 end))
(visibility :v (full out))
(face :v (front))
(angle :v (right))
(distance :v (med-close))
(location :v (right))
(movement :v ((complex left)))
(activity :v ((say is mad / stand / exit kitchen)

(is mad)))
))
(new-instance {CARL}

‘name carlioOb

:slots ((parents :v shot105)
(frame :v (50830 end))
(visibility :v (out (partial face)))
(face :v (na front))
(angle :v (na headon))
(distance :v (na close))
(location :v (na center))
(movement :v (na small))

170

(activity :v

))

(new-instance {CARL}
:name carll06

(na
(say is sorry + unhappy)))

:slots ((parents :v shot106)
(frame :v (end))
(visibility :v ((partial face)))
(face :v (front))
(angle :v (headon))
(distance :v (ex-close))
(location :v (center))
(movement :v (small))
(activity :v ((say is mad)))
))

(new-instance {BIANCA}
:name biancalO6
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity
))

< < < <

(new-instance {BIANCA}
:name biancalO7
:slots ((parents :v

(frame :v
(visibility
(face :v
(angle :v
(distance :
(location :
(movement :
(activity :

< < < <

shot106)
(end))

:v (out))

(na))
(na))
(na))
(na))
(na))
((exit kitchen)))

shot107)
(51022 end))

;v (full full))
(left-side back))
(right headon))

(med med-close))
(left center))
(right away))

((walk fast + is mad)

171

))

(new-instance {CARL}

:name carlios

(open door / exit door)))

end))
full))

back))
headon))
med-close))
center))
away))

((walk fast + is mad)
(open door / exit door)))

:slots ((parents :v shot108)
(frame :v (561175
(visibility :v (full
(face :v (left-side
(angle :v (right
(distance :v (med
(location :v (left
(movement :v (right
(activity :v
))

172

Appendix C

Representation Utility

:::;;time saving hprl constructor

(defun build ()
(format t "~% i mindlessly format character instances")
(format t "~% what shot number do i start at?”%")
(setq shotnum (parse-integer (read-line)))
(loop
(char-format shotnum)
(format t
n~% done. increment shot? (default yes - quit to stop)™%")
(setq incrmp (read-line))
(cond ((string= incrmp "quit") (return))
(t
(setq shotnum (cond ((string= incrmp "no") shotnum)
(t (1+ shotnum))))))))

(defun char-format (shotnum)
(with-open-file
(stream "true-dinners/images.l"
:direction :output :if-exists :append)
(format t "~% which character (1=carl 2=bianca 3=cat) ~%")
(setq char (read-line))
(format t "~% frames?™%")
(setq frames (read-delimited-list #\.))
(format t ""% visibility?~%")
(setq visibility (read-delimited-list #\.))
(format t "~% face?”%")
(setq face (read-delimited-list #\.))
(format t "~% angle?”%")
(setq angle (read-delimited-list #\.))
(format t "~% distance?"%")
(setq distance (read-delimited-list #\.))
(format t "~% location?”%")
(setq location (read-delimited-list #\.))
(format t "~% movement? %")
(setq movement (read-delimited-list #\.))

173

(format t "% activity? %")
(setq activity (read-delimited-list #\.))
(setq name (cond ((string= char "1") "carl")
((string= char "2") "bianca")
(t "cat")))
(format stream
n=%(new-instance {"A}"%" (string-upcase name))
(format stream " :name ~A“A"%" name shotnum)
(format stream
" :slots ((parents :v
(format stream

{shot~A}) %" shotnum)

" (frames :vs “A)"%" (hprlformat frames))
(format stream
" (visibility :vs ~“A)"%" (hprlformat visibility))
(format stream
" (face : “A)"%" (hprlformat face))
(format stream :
" (angle :vs “A)~%" (hprlformat angle))
(format stream
" (distance :vs ~A)"%" (hprlformat distance))
(format stream
" (location :vs ~A)"%" (hprlformat location))
(format stream
" (novement :vs ~A)"%" (hprlformat movement))
(format stream
" (activity :vs ~"A)"%" (formatbig activity))
(format stream " NTRTAM)
))

(defun hprlformat (list)
(cond ((> (length list) 5) (formatbig list))
(t (formatsmall list))))

(defun formatlist (list padder)
(do ((linelist (concatenate ’string "("
(string-downcase (princ-to-string (car list))))
(concatenate ’'string linelist padder
(string-downcase (princ-to-string (car 1list))))))

(nil)

(setq list (cdr list))

(if (equal list ())

(return (concatenate ’string linelist ")")))

))

174

(defun formatsmall (list)
(setq padder '(#\Tab #\Tab))
(formatlist list padder))

(defun formatbig (list)

(setq padder ’(#\Newline #\Tab #\Tab #\Tab #\Tab))
(formatlist list padder))

175

Appendix D

English Representation

..

. this file contains the "meta-knowledge" of the english ;;
; langauge that INGMAR needs to understand film. i
. the heirarchical structure of all hprl knowledge Ly
;; begins here. -
:; >Carl Schroeder< N

..

:; default = single-valued, plural slots are multipfé valued
(define-class THOUGHT ()
:instance-slots
((structure)
(synonyms
:declare (multiple-valued))
(antonyms
:declare (multiple-valued))
(contexts
:declare (multiple-valued))))

....................................

::sentences are homes of specific ;;
; ;knowledge sequences ‘e

....................................

(define-class SENTENCE {THOUGHT}
:instance-slots
((structure :v (noun
((verb-phrase or pred-phrase) (default pred-phrase))))
(befores
:declare (multiple-valued))
(afters
:declare (multiple-valued))))

(new-instance {SENTENCE}
:name open-wine

176

:slots ((structure :v (noun open wine))
(befores :v (noun has corkscrew))))

...............................

R RN I R I I I I B B

(define-class NOUN {THOUGHT}
:instance-slots
((structure :v (((character or object) (default self))))))

(define-class PRED-PHRASE {THOUGHT}
:instance-slots
((structure :v ((((is or are) adjective) or
((has-the or have-the) pred-noun))))))

(define-class PRED-NOUN {NOUN}
:instance-slots
((structure)))

(new-instance {PRED-NOUN}
‘name owner
:slots ((structure :v (owner character))))

;; distinguish between who uses and who owns
(new-instance {PRED-NOUN}

:name user

:slots ((structure :v (user character))))

(new-instance {PRED-NOUN}
:name mood
:slots ((structure :v (mood mood-adjective))))

(new-instance {PRED-NOUN}
:name time
'slots ((structure :v (time number))))

(define-class STORY-NOUN {NOUN})

(define-class FILM-NOUN {NOUN})

...............................

(define-class VERB-PHRASE {THOUGHT}
:instance-slots
((structure :v (verb-phrase »

177

(befores

.declare (multiple-valued))
(durings

:declare (multiple-valued))
(afters

:declare (multiple-valued))))

(new-instance {VERB-PHRASE}
:name eat
-slots ((structure :v (eat (option (fast or slow or all))
food from (platel (require (state (not empty)))
(default (owner self)))))

(befores :v (serve food))
(synonyms :vs (eats eating ate))
(afters :v (platel is (not full)))
(contexts :v dinner)))

(new-instance {VERB-PHRASE}
:name drink
.glots ((structure :v (drink (option (fast or slow or all))
wine from (glassi (require (state (not empty)))
(default (owner self)))))

(befores :v (pour wine))
(afters :v ((glassi is (not full))));;become drunk?
(synonyms :vs (drinks drinking drank))
(contexts :v dinner)))

(new-instance {VERB-PHRASE}
:name serve
:slots ((structure :v (serve (option (fast or slow or all))
(food (require (state (not empty))))
(on or onto or to)
(platel (require (state (not full)))
(default (owner characterl)))
for (characterl (default other))))
(afters :vs ((food (not full)) (platel (not empty))))
(contexts :v dinner)
(synonyms :vs (serves serving served))
(antonyms :v receive)))

(new-instance {VERB-PHRASE}
‘name pour

178

—

.slots ((structure :v (pour (option (fast or slow or all))
(wine (require (state (not empty))))
(to or into or in)
(glassl (require (state (not full)))
(default (owner characteri)))
for (characteri (default other))))
(befores :v (wine opened))
(afters :vs ((wine (not full)) (glassi (not empty))))
(contexts :v dinner)
(antonyms :v receive)
(synonyms :vs (pours pouring poured))))

(new-instance {VERB-PHRASE}
:name receive
:glots ((structure :v (receive
((wine or food) (require (state (not empty))))
(in or on)
((glass or plate) (require (state (not full)))
(default (owner characterl)))
from (characteri (default other))))
(durings :v (character2 (pour or serve) for subject))
(contexts :v dinner)))

(new-instance {VERB-PHRASE}
:name enter
:slots ((structure :v (enter
(left or right or door or environment (default environment))
(option with object)))
(antonyms :v exit)
(befores :v (not (present subject)))
(afters :v (present subject))
(contexts :v entrance)
(synonyms :vs (enters entering entered))))

(new-instance {VERB-PHRASE}
:name close
:slots ((structure :v (close
((door or wine) (require (state opened)))))
(synonyms :vs (closes closing closed))
(antonyms :v open)))

(new-instance {VERB-PHRASE}
‘name give .
:slots ((structure :v (give objectl

179

(to or on or in)
((object2 or environment or character)
(default environment))))
(synonyms :vs (gives gave giving put puts putting))
(antonyms :vs (take get))
(befores :vs ((subject has objectl)
((object2 or environment or character) (not have) objecti)))
(afters :vs ((subject (not have) objectl)
((object2 or environment or character) has object1)))))

(new-instance {VERB-PHRASE}
:name has
:slots ((structure :v (has object))
(synonyms :vs (have having had))
(befores :v (subject get object))))

(new-instance {VERB-PHRASE}
‘name show
:slots ((structure :v (show that sentence))
(synonyms :vs (shows showing showed demonstrate
demonstrates demonstrating demonstrated))))

(new-instance {VERB-PHRASE}
:name say
:slots ((structure :v (say that sentence))
(synonyms :vs (said says saying claim claims
claiming remark remarks remarking))))

(new-instance {VERB-PHRASE}
‘name ask
:slots ((structure :v (ask that sentence))
(synonyms :vs (asks asking asked))
(afters :v (sentence or reply))))

(new-instance {VERB-PHRASE}
‘name reply
:slots ((structure :v (reply that sentence))
(synonyms :vs (replies replying replied
answer answers answering))
(befores :v ask)))

(new-instance {VERB-PHRASE}
:name hug

180

:slots ((structure :v (hug (other or object)))
(synonyms :vs (hugs hugging hugged))
(durings :v ((other or object) hugs subject))
(afters :vs ((subject is happy)
((other or object) is happy)))))

(new-instance {VERB-PHRASE}
‘name use
.slots ((structure :v (use object to verb-phrase))
(synonyms :vs (uses using used))
(befores :v (subject has object))))

(new-instance {VERB-PHRASE}

‘name toast

.slots ((structure :v (toast with other))
(synonyms :vs (toasts toasting))
(durings :v (other toasts with subject))
(vefores :v (pour wine))
(afters :v (drink wine))
(contexts :v dinner)))

(new-instance {VERB-PHRASE}
:name break
:slots ((structure :v (break object))
(durings :v (subject (throw or drop) object))
(befores :vs ((subject has object)
(subject is very (happy or mad))))
(afters :vs ((subject (not have) object)
(object is broken)))
(synonyms :vs (breaks breaking broke))))

(new-instance {VERB-PHRASE}
:name throw
:slots ((structure :v (throw object))
(synonyms :vs (throws threw throwing))
(befores :vs ((subject has object)
(subject is very (happy or mad))))
(afters :vs ((subject (not have) object)
(object broken)))))

(new-instance {VERB-PHRASE}
:name drop
:slots ((structure :v (drop object))
(synonyms :vs (drops dropped dropping))

181

(befores :v (subject has object))
(afters :v (subject is sorry))
(contexts :v accident)))

(new-instance {VERB-PHRASE}
:name clear
:slots ((structure :v (clear table))
(synonyms :vs (clears clearing cleared))
(durings :v (get (glass & plate & wine & food)))
(contexts :v dinner)))

(new-instance {VERB-PHRASE}
:name help
:slots ((structure :v (help
(sentence (default other clean))))
(synonyms :vs (helps helping helped))))

(new-instance {VERB-PHRASE}
:name laugh
:slots ((structure :v (laugh
(option at (object or character))))
(synonyms :vs (laughs laughing laughed))
(contexts :vs (happy mad drunk))))

(new-instance {VERB-PHRASE}
:name sigh
:slots ((structure :v sigh)
(synonyms :vs (sighs sighed sighing))
(contexts :vs (sad bored))))

(new-instance {VERB-PHRASE}
:name play
:slots ((structure :v (play with (object or character)))
(synonyms :vs (plays playing played))
(contexts :vs (happy bored))))

(new-instance {VERB-PHRASE}
:name like
.slots ((structure :v (like (object or character)))
(synonyms :v (likes liking liked))
(durings :v (subject is happy
with (object or character)))
(contexts :v happy)))

182

(new-instance {VERB-PHRASE}
:name agree
.slots ((structure :v (agree with character))
(synonyms :v (agrees agreed agreeing agreement))))

R R I I I I B B 2 B B

(define-class ADJECTIVE {THOUGHT}
:instance-slots
((structure :v (((state-adjective or mood-adjective)
(default mood-adjective))))
(predicates
:declare (multiple-valued))))

(define-class STATE-ADJECTIVE {ADJECTIVE}
" :instance-slots
((structure :v ((state-adjective (default present))))))

(new-instance {STATE-ADJECTIVE}
‘name color)

(new-instance {STATE-ADJECTIVE}
:name open
:slots ((antonyms :v closed)
(synonyms :v opened)))

(new-instance {STATE-ADJECTIVE}
:name closed
:slots ((antonyms :vs (opened open))
(synonyms :v shut)))

(new-instance {STATE-ADJECTIVE}
‘name present
:slots ((synonyms :v existing)))

(new-instance {STATE-ADJECTIVE}

:name unserved
:slots ((antonyms :v (served touched))))

(new-instance {STATE-ADJECTIVE}
:name served
:slots ((synonyms :v touched)
(antonyms :v unserved)))

183

(new-instance {STATE-ADJECTIVE}
:name untouched
:slots ((synonyms :v untouched)))

(new-instance {STATE-ADJECTIVE}

:name whole
.slots ((synonyms :v unbroken)
(antonyms :v broken)))

(new-instance {STATE-ADJECTIVE}
:name clean
:slots ((antonyms :v dirty)))

(define-class MOOD-ADJECTIVE {ADJECTIVE}
:instance-slots
((structure :v ((option adverb)
(mood-adjective (default happy))
(option (about or with) (noun or sentence))))
.: one of very (-10 to 10)
(mood :v 0)))

(new-instance {MOOD-ADJECTIVE}
:name happy
:slots ((predicates :v happiness)
(synonyms :v like)
(antonyms :v (mad sad))
(mood :v 7)))

(new-instance {MOOD-ADJECTIVE}
:name mad
.slots ((predicates :v anger)
(synonyms :v (very impatient))
(antonyms :v happy)
(mood :v -7)))

(new-instance {MOOD-ADJECTIVE}
:name sad
:slots ((predicates :v regret)
(synonyms :v sorry)
(antonyms :v happy)
(mood :v -2)))

184

(new-instance {MOOD-ADJECTIVE}
:name impatient
:slots ((predicates :v impatience)
(synonyms :vs (unhappy (somewhat mad)))
the antonym patient is caught in the antonym rule
(mood :v -4)))

(new-instance {MOOD-ADJECTIVE}
:name interested
:slots ((predicates :v interest)
(synonyms :vs (thoughtful patient))
(antonyms :v bored)
(mood :v 2)))

(new-instance {MOOD-ADJECTIVE}
:name agreeable
:slots ((predicates :v agreement)
(synonyms :vs (agree agreeing))
(moed :v 4)))

(new-instance {MOOD-ADJECTIVE}
:name intelligent
:slots ((predicates :v intelligence)
(synonyms :v (very interested))
(antonyms :vs (stupid dumb))
(mood :v very)))

(new-instance {MOOD-ADJECTIVE)
:name drunk
:slots ((predicates :v drunkeness)
(antonyms :v sober)
(mood :v very)))

(new-instance {MOOD-ADJECTIVE}
:name sick
:slots ((synonyms :v ill)
(predicates :vs (illness sickness))
(mood :v -5)))

..............................

R N N RN T 2 I I I I I TN I B N A 4

(define-class ADVERB {THOUGHT}
:instance-slots
: . assume that adverb modifies some

185

.. scaleable property (like mood)
((structure :v (adverb))
(multiplier :v 1)))

;;adverbs of degree o

(new-instance {ADVERB}
:name somewhat
:slots ((multiplier :v .5)))

(new-instance {ADVERB}
:name very
:slots ((synonyms :v strongly)
(multiplier :v 1.5)))

(new-instance {ADVERB}
‘name extremely
:slots ((multiplier :v 2)))

(new-instance {ADVERB}
:name all
:slots ((multiplier :v 0)))

:;:adverbs of rate

(new-instance {ADVERB}
:name slow
:slots ((multiplier :v .5)))

(new-instance {ADVERB}
:name fast
:slots ((multiplier :v 1.5)
(synonyms :v quickly)))

..............................

:: (define-class CONNECTOR {THOUGHT})
;; with to from about ..
appear in structures but don’t merit definition right now

..
LN

186

Appendix E

Editing Procedures

..

.. this file contains Ingmar’s lowest level of ;;
;; editing knowledge, simple image decoding and :;
;, comparison procedures. HH
;3 >Carl Schroeder< HH

;; general note: lists are the preferred processing form but
:: the listed function is often used to protect against errors

:: makes a list if needed
(defun listed (thing)
(cond ((listp thing) thing)
(t (list thing))))

Bt R

» A R D N R I I T O I N O O

: functions on vectors

......................

IR R U TN I I T A D B I D N BN R 4

;; adds two xyz lists
(defun vadd (these those)
(mapcar #'+ these those))

(defun vsub (these those)
(mapcar #'- these those))

:; multiplies two xyz lists
(defun vmult (these those)
(mapcar #'* these those))

;; multiplies scalar over xyz list
(defun smult (this those)
(list (* this (first those))
(* this (second those))
(* this (third those))))

.. returns a vector x fractions

187

:: between vi and v2 for each elt
(defun vscale (vl v2 x)
(mapcar #’'sscale vi v2 '(x X x)))

(defun sscale (a b ¢)

(+ a (x (- ba)c)))

:: returns an angle of change
.. between two vectors (points from 0,0,0)
;; in : two x,y.z lists
.. out : an absolute angle between
(defun angle-between (vi v2)
(progn
(setq sidel (vlength v1))
(setq side2 (vlength v2))
(setq side3 (vdist vi v2))
:; side-side-side derivation
(setq x (/ (* (- side2 sidel)
(+ side2 sidel)) side3d))
(setq d2 (/ (+ side3 x) 2))
(setq d1 (/ (- side3 x) 2))
(- 180 (+ (rad-deg (acos (/ d2 side2)))
(rad-deg (acos (/ di sidel)))))))

.. converts radians to degrees
(defun rad-deg (radians)
(x radians (/ 180 pi)))

.. returns the distance from origin of (xy 2)
(defun vlength (vector)
(vdist '(0 O O) vector))

:: returns the distance between two vector endpoints
(defun vdist (vi v2)
(sqrt (+ (expt (- (first v2) (first v1)) 2)
(expt (- (second v2) (second v1)) 2)
(expt (- (third v2) (third v1)) 2))))

'Y IR S N L S

’ IS AR B N I N BN IR B A

. fuctions on lists

(defun inlist (that these)
(member that these :test 'equal))

188

(defun comlist (these those)
(dolist (this these)
(if (inlist this those) (return t))))

L A N R R R R A A R L

; the procedures that deal with char angle view

..

;; given a char’s face and angles,

.. derive in coordinates the vector of view

:; in : char-face, list of a oneof

s : char-angles, list of oneof(s), allowing adverbs
.. out : 3 elt list of x,y.z view for char at 0,0,0

i nil = na,nil

(defun view-vector (char-face char-angles)

(do ((fpos (face-coord (first (listed char-face))))
fangle adjusts the aangle vector according to the face seen
.. this is needed because , for example,

:; a low top view is close to a high front view
(fangle (face-angle (first (listed char-face))))
(new-angle ’(0 0 0))

(char-angles (listed char-angles)))
(nil)
(if (inlist (car char-angles)

'(little somewhat very quite extreme extremely))

;protect against one list too few

(setq char-angles (list char-angles)))
(cond ((or (equal char-angles ’'())
(equal char-angles ’(na)))

(return nil))

(t

(dolist (angle char-angles)

(cond ((listp angle)

. ex. high very
(cond ((listp (ch-angle-case (car angle)))
(setq new-angle (vadd new-angle
(vmult fangle
(smult (ch-angle-case (second angle))
(if (equal (car angle) ’headon)
fpos

(ch-angle-case (first angle))))))))

(t
(setq new-angle (vadd new-angle
(vmult fangle

189

(smult (ch-angle-case (first angle))
(if (equal (second angle) ’headon)

fpos

(ch-angle-case (second angle))))))))))

(¢t

(setq new-angle (vadd new-angle

(vmult fangle

(if (equal angle 'headon)

fpos

(ch-angle-case angle))))))))
(return (vadd new-angle fpos))))))

(defun face-coord (char-face)
(case char-face

(top (0 1 0))
(bottom '(O -1 0))
(front '(0 O 1))
(back (0 O -1))
((left

left-side) ' (-1
(1

((right right-side) ’

(defun face-angle (char-face)
(case char-face

(top (-1
(bottom '(1
(front (1
(back ' (-1
(left (O
(right '(O

0 -1))
o 1))
1 0)
1 0)
1 1))
1 -1))))

(defun ch-angle-case (char-angle)
(case char-angle

((little somewhat) .5)
((very quite) 2)
((extreme extremely) 3)
(high '(0 1 1))
(low (0 -1 -1))
(left (-1 0 -1))
(right '(1 0 1))))

(defun d-view-angle (v1i v2)
(angle-between vi v2))

0))
0))))

..

;; given a char’s distance and location,
.+ derive in coordinates the vector of location (3 dimensional)
.. in : char-distance, list of a oneof
& : char-location, list of oneof(s)
;; out : 3 elt x,y.z list
HH : nil = na or nil
(defun location-vector (char-distance char-location)
(progn
(setq depth (depth-vector (listed char-distance)))
(when (null depth) nil)
(setq pos (position-vector char-location))
(when (null pos) nil)
(vadd depth (position-vector char-location))))

;: given a char’s distance,
.; derive in coordinates the vector of depth
:: in : char-distance, list of a oneof
;; out : 3 elt x,y.z list
N : nil = na or nil
(defun depth-vector (char-distance)
(case (car char-distance)
((na nil) nil)
((extreme-close ex-close) '(0 O -1))

(close '(0 0 -2))
((medium-close med-close) '(0 O -3))
((medium med) '(0 0 -4))
((zedium-long med-long) (0 O -5))
(long (0 0 -6))))

;; given a char’s position, derive in coordinates
:: the vector of position (2 dimensional)
:: in : char-positions, list of oneof(s) allowing adverbs
;; out : 3 elt x,y,z list
HH : nil = na or nil
(defun position-vector (char-positions)
(do ((char-positions (listed char-positions))
(new-pos '(0 0 0))
(div 1))
(nil)
(when (inlist (car char-positions)

191

*(nil na)) (return nil))
(if (in-1list (car char-positions)
' (somewhat little very far))
;protect against one list too few
(setq char-positions (list char-positions)))
(cond ((or (equal char-positions ’'())
(equal char-positions ’'(na)))
(return ’()))
(t
(dolist (pos char-positions)
(cond ((equal pos ’‘center)
(setq div (1+ div)))
((listp pos)
(cond ((listp (ch-pos-case (car pos)))
(setq new-pos (vadd new-pos
(smult (ch-pos-case (second pos))
(ch-pos-case (first pos))))))
(t
(setq new-pos (vadd new-pos
(smult (ch-pos-case (first pos))
(ch-pos-case (second pos))))))))
(t
(steq new-pos (vadd new-pos
(ch-pos-case pos))))))
(return (smult (/ 1 div) new-pos))))))

(defun ch-pos-case (pos)
(case pos
((somewhat little) .5)
((very far) 2)

((upper up top) (0 5 0))
((lower low bottom) (0 -5 0))
(left (-6 0 0))
(right (5 0 0))))

.. returns a measure of centrality of the location
;7 in : location vector
;; out : number
(defun centrality (loc)
(vlength (vmult loc (1 1 0))))

:: returns the difference in two locations
;; (apparent motion vector)

192

N ;

(defun d-loc-v (loct loc2)
(vsub loc2 locl))

.. returns the difference in depth-
(defun d-depth-dist (locl loc2)
(- (third loc2) (third loc1)))

.. returns the differnce in position
(defun d-pos-v (locl loc2)
(vsub (vmult loc2 '(1 1 0)) (vmult locl ’(1 1 0))))

.. returns the distance between positions
(defun d-pos-dist (locl loc2)
(vdist (vmult locl ’'(1 1 0)) (vmult loc2 ’(1 1 0))))

...

;. given a char’s movement, derive in
.: coordinates the vector of movement or modifiers
:: in : char-move, list of oneof (s)
.. out : 3 elt list of x,y,z movement for char at 0,0.,0
HH (speed proportional to length, >0 , 1 is "average")
g (0,0,0)= none or small
i nil = na, nil or complex
(defun char-movement (char-moves)
(do ((char-moves (listed char-moves))
(new-move '(0 0 0)))
(nil)
(if (comlist char-moves '(fast slow swish))
;protect against one list too few
(setq char-moves (list char-moves)))
(cond ((or (equal char-moves '())
(equal char-moves ’'(na))
(inlist ’'complex char-moves))
(return nil))
(t
(dolist (move char-moves)
(cond ((listp move)
(cond ((listp (ch-move-case (car move)))
(setq new-move (vadd new-move
(smult (ch-move-case (cadr move))
(ch-move-case (car move))))))

193

—

(t

(setq new-move (vadd new-move
(smult (ch-move-case (car move))
(ch-move-case (cadr move))))))))

(t

(setq new-move (vadd new-move

(return new-move)))))

(defun ch-move-case (move)
(case move

(slow .5)

(fast 2)

(swish 3)

(up (0 1 0))

(down '(0 -1 0))

(left (-1 0 0))
(right '(1 0 0))
(toward '(0 O 1))

(away '(0 0 -1))
((none small) '(0 0 0))))

(defun d-char-move-angle (ml m2)
(angle-between ml m2))

.. returns a measure of the apparent
:: acceleration between two move vectors

(defun d-char-move-accel (mi m2)
(- (vlength m1) (vlength m2)))

(ch-move-case move))))))

.....................

L N R R R R R R R R R I R R R A R

procedures that deal with camera movements

..

.. returns two vectors for a camera’s movement

:: in : camera-moves

.. out : 2 3 elt xyz lists, move-vector and angle-vector
i ((000) (000)) = none or small
s nil = na, nil or complex

(defun camera-move (cam-moves)

(do ((cam-moves (listed cam-moves))
(new-move '((0 0 0) (0 0 0))))

(nil)

(if (comlist (list (car cam-moves)

194

N

(cadr cam-moves)) ’'(fast slow swish))
;protect against one list too few
(setq cam-moves (list cam-moves)))
(cond ((or (equal cam-moves '())
(equal cam-moves ’(na))
(inlist ’'complex cam-moves))
(return nil))
(t
(dolist (move cam-moves)
(cond ((listp move)
(cond ((listp (cm-move-case (car move)))
(setq new-move (vadd new-move
(smult (cm-move-case (second move))
(cm-move-case (first move))))))
(t
(setq new-move (vadd new-move
(smult (cm-move-case (first move))
(cm-move-case (second move))))))))
(¢
(setq new-move (vadd new-move
(cm-move-case move))))))
(return (list (butlast new-move 3)
(cdddr new-move)))))))

(defun cm-move-case (move)

.
’

(case move

(slow .5)

(fast 2)

(swish 3)

(zoom-in (0 0 0 0 0-1))
(zoom-out (0 0 0 0 0 1))
(pan-left '(0 0 0-1 0 0))
(pan-right (0 0 01 0 0))
(tilt-up (0 0 0 0 1 0))
(tilt-down '(0 0 0 0-1 0))
(dolly-in (0 0-1 0 0 0))
(dolly-out (0 01 0 0 0))
(dolly-left '(-1 0 0 0 0 0))
(dolly-right '(1 0 0 0 O 0))
(rise (01 0 0 0 O)
(drop '(0-1 0 0 0 0))
(Cnone small) '(0 O 0 O O 0))))

**;;::;;:;::;;;;;;;;;'l'.l".'l’ll'llll'l"ll'l".

195

—

; procedures that deal with analyzing a single shot

...

.. returns the sublist of the film-object’s slot
.. that corresponds to the frame time
does not make judgements for applicability in
case much time has elapsed from sublist to frame time!!
.. in : film-object, slot, frame-time (could be ’end, ’'start)
.. out : sublist (could be nil)
;; req : film-obj has slots slot and ’'frame
(defun slot-at-time (film-object slot frame-time)
(do ((values (listed (ask (frame film-object) slot)))
(times (listed (ask (frame film-object) ’frame)))
(index O (1+ index))) a
(nil)
(cond ((equal frame-time ’start)
(cond ((equal (first values) ’na)
(return nil))
(t (return (listed (first values))))))
((or (equal frame-time ’end)
(>= index (length times)))
(cond ((or (> (length times) (length values))
(equal (last values) ’'na))
(return nil))
(t (listed (last values)))))
((<= frame-time (nth index times))
(cond ((or (> index (length values))
(equal (nth index values) ’'na))
(return nil)) .
(t (listed (nth index values))))))))

:: returns the frame numbers of desc’s on the

:: two sides of a frame number

.. ex. 01 2 34 frames in shot

HH 2 end frames in obj

o Oor 1 =>(02)

e 2,3 or 4 => (2 nil)

(used to interpolate a location between desc borders)
. in : frame-time (number, start or end)

.. out : (before-time after-time), (numbers or nil)

;; req : frame-time is in range of obj’'s slot frame-times

196

(defun time-borders (shot obj time)
(do* ((shot (frame shot))
(times (ask (frame obj) ’'frame))
(in (ask shot ’in-point))
(out (ask shot ’out-point))
(index O (1+ index))
(tme (nth index times) (nth index times)))
(nil)
(when (equal time 'start) (setq time in))
(when (equal time ’end) (setq time out))
(when (equal tme 'end) (setq tme out))
(when (<= time tme)
(cond ((= index 1)
(return (list in
(cond ((= (length times) 1)
nil)
(t
(1+ tme))))))
(t
(return (list (1+ (nth (1- index) times))
(cond ((= index (length times))
nil)
(¢
(1+ tme)))))))

.. returns a location vector averaged between frame-time
;; positions to approximate the character’s movement
;; in : shot,char,time
;; out : (x y z) location
o : nil = na, or was last descriptor time
HH (inability to project location for last time
HS should not be a problem because assume that
:;available shots were ended on small movement or char was out)
(defun inter-location (shot char time)
(progn
(setq borders (time-borders shot char time))
(setq timel (first borders))
(setq time2 (second borders))
(when (null time2) nil) ;last desc
(setq locl (location-vector
(slot-at-time char ’distance timel)
(slot-at-time char ’'location timel)))
(setq loc2 (location-vector

197

1
..
[
..
(3]
..
()

(slot-at-time char ’'distance time2)
(slot-at-time char ’location time2)))
(when (or (null loci) (null loc2)) null) ;can’t interp
(vscale locl loc2 (/ (- time timel) (- time2 timel)))))

.. returns a cut point adjusted to the nearest camera pause

(limited to start and end of course)
adjusted backward for ’in and foward for ’'out
in : in/out, shot, time (number, ’start or 'end)
out : time or nil (if next cam move desc was na)

(defun adjust-cut (type shot time)

(do* ((shot (frame shot))
(start (ask shot 'in-point))
(end (ask shot ’out-point))
(camera (frame (ask shot ’camera)))
(next-time (cdr (borders shot camera time)))
(times (ask camera ’frame)))
(nil)
;; replace mnemonics
(when (equal time ’start)
(setq time start))
(when (equal time ’end)
(setq time end))
(when (equal (car (last times)) ’end)
(setq times (append (butlast times) end)))
;; get actual time in frame list
(setq time (if (null next-time)
end
(1- next-time)))
.. find next time appropriate in correct direction
(when (equal type ’'in)
(setq times (reverse times)))
(setq times (nthcdr (position time times) times))
(do ((index O (1+ index))
(tme (nth index times)))
((= index (length times)) ;as far as it goes
(if (equal type 'in)
start
end))
(setq cammove (camera-move
(slot-at-time camera ’'movement tme)))
(cond ((null cammove)
(return nil))
((equal cammove ’((0 0 0) (0 0 0)))

198

(return (if (equal type 'in)
;going backward need beginning of desc time
(1+ (nth (1+ index) times))
tme)))))))
:; -> incomplete code - do not evaluate
:: returns the character most visible
.. and thus to be empathized with in a shot
.. in : shot, start, end (could be 'start and ’'end)
;; out : char or nil (if no characters)
(defun main-char (shot start end)

(do ((

e S S R R R R R R

; procedures that deal with comparing shots
; for cutting potential

......................

.................. ..
'lIiDIIlIllllllOl’lll"’l.l'll"ll""llfl.

:: -> incomplete code - do not evaluate
.. determines a degree of jumpiness for the editing of two shots
.. either shot can be a (shot frame-number) pair
(defun jump-potential (shotl shot2 quiet-cut-p)
(do ((end) (start) (out-chars '()) (in-chars '()))
(nil)
;; extract the parameters
(if (listp shotl)
(progn
(setq shotl (frame (first shoti)))
(setq end (second shoti)))
(progn
(setq shotl (frame shotl))
(setq end ’end)))
(if (listp shot2)
(progn
(setq shot2 (frame (first shot2)))
(setq start (second shot2)))
(progn
(setq shot2 (frame shot2))
(setq start ’start)))
(if (equal end ’'end)
(setq end (ask shotl ’out-point)))
(if (equal start 'start)
(setq start (ask shot2 ’in-point)))
;: adjust in out points if camera
.. movements yield a bad cut point

199

(when (and quiet-cut-p
(camera-move-vector
(slot-at-time ((frame (ask shotl 'camera))
'movement
end))))
(setq end (adjust-cut ’out shotl end)))
(when (and quiet-cut-p
(camera-move-vector
(slot-at-time ((frame (ask shot2 'camera))
'movement
start))))
(setq start (adjust-cut ’'in shot2 start)))
.. find characters of each shot
(setq out-chars (ask shotl ‘characters))
(setq in-chars (ask shot2 *characters))
(setq out-main (main-char shotl ‘out end))
(setq in-main (main-char shot2 ’in start))))
.. evaluate image-match for each char
: to char pair (with particular emphasis on main to main)

200

Appendix F

Story Procedures

..

lI'll!l"'lIII.I'l'll’"'0"'!"""'l’lll'll'l'll'll'

;: the procedures in this file are used in finding :;
:: a shot by indexing for story elements. i
;; implementation proceeded to the ability for HH
;; generating a standardized syntax from a general ;.
;: english language descriptor. N
;+ >Carl Schroeder«< e

..
.'ll’lIltl'l!ll.l"l"'.l.""""llll!lllll'l.l..l"l

. this procedure takes an incomplete descriptor which might
:: have compound parts, denoted by & and or, and returns
;s a list of phrases
(defun expand-phrase (phrase)
(do* ((new-phrases '((})))
(nil)
(dolist (thing phrase)
(setq new-phrases
(cond ((symbolp thing)
(appendall new-phrases thing))
(t
(setq new-new '())
(dolist (part thing)
(cond ((or (equal part ’&)
(equal part 'and)))
(t
(setq new-new (append new-new
(appendall new-phrases part))))))
new-new))))
(return new-phrases)))

.+ those is ((--) ..) and that is symbol,
;; gives ((-- that) ..)
(defun appendall (those that)

(cond ((null those) nil)

201

(¢
(append (list (append (car those) (list that)))
(appendall (cdr those) that)))))

this frighteningly large procedure does all the work
.. to match a single incomplete sentence into its grammar
.; as defined in the english file
. in : noun, phrase, structure (highest is a sentence) ,
options (t/nil, norm t), expandeds (list, init. nil)
noun is the char of this desc, thus for filling
in defaults like a missing subject
- phrase is matched to structure,
HH which comes from a grammar definition
HH by making options nil, all optional
e parts of the phrase will be dropped
HH (helps to generalize in phrase to phrase matching)
expandeds is used in recursion, should be nil
at highest entry into procedure
.: out : ((new-phrase) (phrase leftover)
(require states) (default states))
require and default states must be returned for
- later analysis of implied char or object states
(defun fit-to-structure
(noun phrase structure options expandeds)
(do ((new-phrase ’())
(requires ’())
(defaults '())
(obj-guide 0)
(word) (form) (def1) (reqi)
(flasp) (cunk) (jilk) (shorp))
((null structure) (list new-phrase phrase
requires defaults))

(setq word (car phrase))
:: for now, just get rid of a suffix
(setq form (listed (car (desuffix structure))))
;; it’'s an option statement

(cond ((equal (car form) ’option)

(setq flasp (fit-to-structure noun phrase

(cdr form) options expandeds))
;; something worked for that word
(cond ((not (equal phrase (second flasp)))
(if options ;; make it official
(setq structure (append (cdr form)

202

(cdr structure)))
want to trash it and whatever matched
(progn

(setq structure (cdr structure))

(setq phrase (second flasp)))))
(¢ ;; forget it

(setq structure (cdr structure)))))

:; get the requires and defaults
(t
(setq flasp (sep-things form *default))
(setq defl (first flasp))
(setq form (second flasp))
(setq flasp (sep-things form 'require))
(setq reql (first flasp))
(setq form (second flasp))
(if (and (listp (car form))
(equal (list (car form)) form))
;; just checking it’s not ((thing))
(setq form (car form)))

(setq cunk ’lost) ;; is it (word) ?
(cond ((and (= (length form) 1)
(symbolp (car form)))
(setq form (car form))
(cond ((is-a word form) ;; this is it!
(setq cunk 'found)
;; but expandable
(cond ((and (expandable word)
(not
(or (equal word form)
.. hasn’t been expanded since the last match
:; vital for avoiding loops!
(inlist (expandable word) expandeds))))
(setq expandeds (append
expandeds (list
(expandable word))))
(setq structure (append
~ (get-a-structure word)
(cdr structure))))
(¢t :: go for it
.. a definite match, can expand anything again
(setq expandeds nil)
(setq new-phrase (append new-phrase

203

(list word)))
(setq phrase (cdr phrase))
(setq structure (cdr structure)))))
expandable and nonrepeating
((and (expandable form)
(not (inlist (expandable form)
expandeds)))
(setq cunk ’found)
(setq expandeds (append expandeds
(1ist (expandable form))))
(setq structure (append
(get-a-structure form)
(cdr structure))))
(¢ nil))) ;; blah

(¢t :: a list
(cond ((inlist ’or form) ;; ors
(do* ((index O (1+ index))
(flasp (nth index form)
(nth index form)))
((or (= index (length form))
(equal cunk ’found))
nil)
;s ignore those ors
(cond ((equal flasp 'or) nil)
(¢ ;. try each thing
(setq jilk
(fit-to-structure noun phrase (listed flasp)
options expandeds))
(when (not (equal
(second jilk) phrase)) ;: something matched
(setq cunk ’'found)
(when
(is-a flasp ’object) (setq obj-guide index))
(setq structure
(append (listed flasp) (cdr structure))))))))
(t ;; just some nested form
(setq jilk (fit-to-structure
noun phrase (listed flasp) options expandeds))
(when (not
(equal (second jilk) phrase)) :; and something works
(setq cunk ’found)
(setq structure
(append (listed flasp) (cdr structure))))))))

204

.. nothing worked, consider possibilities

(when (equal cunk 'lost)
:: case 1) an orlist of objects
whose choice comes from analogy to an earlier choice
(cond ((and (listp form)
(inlist ‘'or form)
(symbolp (car form))
(is-a (car form) 'object)
(<= obj-guide (length form)))
(setq cunk ’'found)
(setq word (nth obj-guide form))
(setq new-phrase (append new-phrase
(list word)))
(setq structure (cdr structure)))
(t
.. can we find a good default?
(setq shorp
(second (sep-symbol defl)))
(if (= (length shorp) 1)
;; error prevention
(setq shorp (car shorp)))
(when shorp ’
(setq cunk ’found)
(setq structure (append
(1isted shorp) (cdr structure)))))))
:; still nothing worked,
;; now just pick if we can
(when (equal cunk 'lost)
from a list, put on the structure
(cond ((listp form)
(setq structure (append
(1isted (car (listed form)))
(cdr structure))))

(t
:; only choice, put on the output
(setq new-phrase (append
new-phrase (list form)))
(setq structure
(cdr structure)))))

;; get rid of non-attributes in defaults or requires
(if (and defl (caar (sep-symbol def1)))
(setq defaults (append defaults
(list (list word

205

(caar (sep-symbol def1)))))))
(if (and reqi (caar (sep-symbol reql)))
(setq requires (append requires
(1ist (list word
(caar
(sep-symbol reqi)))))))))))

.. numerical suffixes are allowed in a grammar
:: definition to distinguish instances
:; this returns (thing suffix)
(defun sep-suffix (thing)
(l1ist (intern (string-right-trim "1234567890"
(string thing)))
(intern (string-left-trim
" ABCDEFGHIJKLMNOPQRSTUVWXYZ"

(string thing)))))

:; get rid of all suffixes in any hairy list of stuff
:; with exquisite recursion
(defun desuffix (thing)
(append (cond ((1listp (car thing))
(1ist (desuffix (car thing))))
(¢
(1ist (car (sep-suffix (car thing))))))
(cond ((cdr thing)
(desuffix (cdr thing)))
(t
nil))))

what is expandable and what is not
.. for now, includes synonyms, but would include antonyms
(defun expandable (thing)
(or (direct-expandable thing)
(direct-expandable (name (synonym thing)))))

:; what is explicitly available

(defun direct-expandable (thing)
(cond ((or (verb-p thing)

(pred-noun-p thing))

.; isn’t that stupid? it wouldn’t return a value
(car (1ist thing)))

((inlist thing ’(sentence noun pred-phrase

verb-phrase adjective mood-adjective))

(car (list (list 'a thing))))

206

(t
nil)))

:: what has a synonym (return the synonym frame)
(defun synonym (thing)
(solve (list '?x ’synonyms thing)
:returns ’'7?x))

:; this gets the relevant structure,
.. for now includes synonyms but not antonyms
(defun get-a-structure (thing)

(ask (frameable (expandable thing)) ?structure))

.. takes a list of lists and symbols
.. and returns ((lists) (symbols))
(defun sep-symbol (list)
(do* ((lists '(O))
(symbols ’())
(index O (1+ index)))
((= index (length list)) (list lists symbols))
(setq this (nth index list))
(if (listp this)
(setq lists (append lists (list this)))
(setq symbols (append symbols (list this))))))

.. this takes a list of form (... (key ...) ...)
.: and returns ((,,,) (...))
(defun sep-things (form key)
(do* ((thing form (cdr thing))
(this (car thing) (car thing))
(new-form '())
(key-form *()))
((null this) (1list key-form new-form))
(cond ((symbolp this)
(setq new-form (append new-form (list this))))
((equal (car this) key)
(setq key-form (append key-form (cdr this))))
(t
(setq new-form (append new-form
(1ist this)))))))

207

.. returns nil or index of this in the list those
(defun is-a-in (this those)
(do* ((index O (1+ index))
(that (nth index those) (nth index those)))
((= index (length those)) nil)
(if (is-a this that) (return index))))

(defun is-a (this that)
(or (is-a-dir this that)
(is-a-dir (name (synonym this)) that)))

(defun is-a-dir (this that)
(or (equal this that)
.. needed to avoid an error on ’'(one carl)
(and (frameable this)
(frameable that)
(class-frame-p (frameable that))
:; has = verb-phrase
(or (instance-p (frameable this) (frameable that))
(and (class-frame-p (frameable this))
(inlist (frameable that) (superclasses
(frameable this))))))))
;; carl is-a character

.. like frame, but safer, and more general than frame-p
(defun frameable (thing)
(and (or (symbolp thing)
(= (length thing) 1)
(equal (car thing) ’a))
(frame thing)))

(defun pred-noun-p (thing)
(and (frameable thing)
(not (equal thing ’pred-noun))
(is-a thing 'pred-noun)))

(defun verb-p (thing)
(and (frameable thing)
(not (equal thing ’'verb-phrase))
(is-a thing ’verb-phrase)))

(defun mood-p (thing)
(and (frameable thing)
(not (equal thing ’'mood-adjective))

208

(is-a thing 'mood-adjective)))

(defun char-p (thing)
(and (frameable thing)
(not (equal thing ’'character))
(is-a thing 'character)))

(defun object-p (thing)
(and (frameable thing)
(not (equal thing ’object))
(is-a thing ’'object)))

.. note that this will not work because hprl
:; syntax is not integrated into lisp
(defun names (frames)

(mapcar #’'name (listed frames)))

209

References

{Bloch 87| Bloch, G. R.
From Concepts to Film Sequences.
Research Report, Yale University, New Haven, CT, 1987.

[Casty 73] Casty, A.
Development of the Film.
Harcourt Brace Jovanovich, New York, NY, 1973.

[Davenport 87| Davenport, G., Levitt, D.
Generating Seamless Movies.
NSF Grant Proposal, M.I.T., Cambridge, MA, 1987.

[Fell 79| Fell, J. L.
A History of Films.
Holt Rinehart and Winston, New York, NY, 1979.

|HewlettPackard 86
Hewlett Packard.
HP-RL Reference Manual.
Technical Report, , Palo Alto, CA, 1986.

(Lehnart 84] Lehnart, W. G., Cook, M. E., McDonald, D. D.
Conveying Implicit Content in Narrative Summaries.
Research Report, University of Massachusettes, Ambherst, MA, 1984.

[Reisz 68| Reisz, K., Millar, G.
The Technique of Film Editing.
Hastings House, New York, NY, 1968.

[Scott 75) Scott, J. F.

Film the Medium and the Maker.

Holt Rinehart and Winston, New York, NY, 1975.
[Vogel 74] Vogel, A.

Film as a Subversive Art.

Random House, New York, NY, 1974.

210

Table of Contents

Computerized Film Directing
Computerized Film Directing
Chapter One: Prothesis

1.1 Manifesto
1.2 Film
1.2.1 What’s in a Film?
1.2.2 Story Summarization vs. Story Generation
1.3 My Approach
1.4 Confessions

Chapter Two: Synthesis

2.1 Story Understanding
2.1.1 Settings
2.1.1.1 What is a Setting?
2.1.1.2 What Does a Setting Look Like?
2.1.2 Plot and Characters
2.1.2.1 What is a Character?
2.1.2.2 Beliefs
2.1.2.3 Goals
2.1.2.4 Reasoning
2.1.2.5 Memory
2.1.2.6 The Relevance of it All
2.2 Film Understanding
2.2.1 Perspective
2.2.1.1 Establishing Perspective
2.2.1.2 Character Perspective
2.2.1.3 Omniscient Perspective
2.2.2 Synedoche
2.2.2.1 The Establishing Shot
2.2.2.2 Preserving the Whole
2.2.2.3 The Vignette
2.2.3 Continuity
2.2.3.1 Cut Points
2.2.3.2 Jump Cuts
2.2.3.3 Limits of Rotation
2.2.3.4 Thrust Matching for Momentum
2.2.3.5 Audio Flow
2.2.4 Story
2.2.4.1 Empbhasis

211

2.2.4.2 Time
2.2.4.3 Psychology

Chapter Three: Prosthesis

3.1 Library Production
3.1.1 The Making of the Shot Library
3.1.2 The Challenge of True Dinners
3.1.3 A Bittersweet Taste of the Implicit
3.2 Film Representation
3.2.1 The Application of HPRL
3.2.2 Representing True Dinners
3.2.2.1 The Character
3.2.2.2 The Camera
3.2.2.3 The Object
3.2.2.4 The Environment
3.2.2.5 The Context
3.2.2.6 The Shot
3.2.2.7 Texts
3.2.3 The Woes of Representation
3.2.3.1 Construction
3.2.3.2 Semantics
3.3 Story Representation
3.3.1 Class Knowledge
3.3.2 State Knowledge
3.3.3 The Relationship of Story to the Shots Available
3.4 Library Manipulation
3.4.1 Extraction of Spatial Parameters
3.4.1.1 The Character
3.4.1.2 The Camera
3.4.2 Shot Analysis for Editing Decisions
3.4.3 Story and Grammar
3.5 An Evaluation of HPRL

Acknowledgements

Appendix A: Film Representation
Appendix B: True Dinners
Appendix C: Representation Utility
Appendix D: English Representation
Appendix E: Editing Procedures
Appendix F: Story Procedures

212

50
53

59
60

61
62
65
65
67
69
72
73
74
75
75
76
7
7
78
79
79
82
83
84
84
84
85
85
87
90

92
93
98
173
176
187
201

