Metafilters for the Digital Micromovle Qrchestrator
by
John F. Shiple

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfilment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering
at the Massachusetts Institute of Technology
May 1993
Copyright John F. Shipte 1993. All rights reserved.

The author hereby grants to M.L.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part,
and to grant others the right to do so.

Author,

Department of Electrical Engineering and Computer Science
May 17, 1993

Certified by

Professor Glorianna Davenport
Thesis Supervisor

Accepted by

Leonard A. Gould
Chairman, Department Committee on Undergraduate Theses

Metafilters for the Digital Micromovie Orchestrator

by
John F. Shiple

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 1993

In Partial Fulfilment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

Abstract

Metafilters bring the Digital Micromovie Orchestrator (DMO)
into the next stage of its development. The DMO defines a method by
which a director can bring together targeted material based on some
story model which can be computationally defined and orchestrated
using sketchy descriptions and filters. The DMO uses two modules, a
logging module and a shot selection module, to create a personalized
movie from a database of digital video clips. The logging module
describes the content of the video clips using sketchy descriptions.
The shot selection module determines on the fly which clip will be
played next in the personalized movie. Templates provide the basic
structure of a movie while filters determine which clips can be
played next. The Metafilters concept offers a high level abstraction
which defines a standard method to the creation and operation of
filters in the DMO. In addition, Metafiltérs were conceived as the
controlling structure of the DMQ responsible for managing filters
and templates and are the result of making the filter methods and
processes more robust and functional. Extending the DMO through
Metafilters makes it more powerful and independent by allowing the
director more freedom and flexibility in creating stories at various
levels of granularity. In implementing Metafilters, the director is
given a powerful tool to script his own personalizeable movies. This
paper defines the current Metafilters abstraction and describes and
evaluates the issues surrounding the Metafilters abstraction.

Thesis Supervisor: Glorianna Davenport
Title: Assistant Professor of Media Technology

Introduction

The Digital Micromovie Orchestrator (DMQ) creates a
personalized movie from a database of clips with descriptions
attached, a defined template structure, and a set of filters and
filtering processes. Templates give stories their basic structure.
Clips represent the basic contents of the pieces in a template.
Filters define how the DMO processes the clips and templates and
also determine which clip will be played next.

The Endless Conversation was the first instance of a DMO. The
movie had two characters, Dave and Tom. Basically, the story
concept was one character would ask a question, the other character
would answer it, and the character who asked the question would
issue a rebuttal. The Endless Conversation used this simple
template structure and fairly simple filters to structure the story
that was presented. The filters gave the viewer control over such
parameters as the pacing of the clips (whether they were long or
shart in length) and the rating of the clips (PG or R).

In the Endless Conversation, the director establishes a
discrete pattern of content for the viewer in the form of question,
answer, and response. The DMO is intended to be generalizable to
any story where the director can establish this sort of discrete
pattern of content. In addition, the Endless Conversation is an
example of a movie that does not follow a single predetermined
linear ordering. The DMO becomes useful when a single linear
ordering of predetermined selections is not desirable. Examples of a

predetermined single linear ordering are today’s motion pictures and

most television shows. An example of movies that do not have to be
linear include training videos, which could react to the individual
and vary the instructional training accordingly. Another example is
reviewable movies, which could be displayed differently (in a
shorter time period for example) each time they are viewed so the
viewer could either get more information out of' them or quickly
review old material. It is therefore useful to develop a
personalizable story concept to deal with situations where a single
linear ordering of predetermined selections is not advisable.

The basic structure of the DMO involves two modules, the

logger module and the shot selection module:

Shot
selector

Basic structure of the DMO

The two modules work together to bring about a personalizable
movie that falls within the limits of the director’s parameters. The
director determines the parameters during the creation of the

movie, and this is how the movie is made personalizable.

The logging module allows the director to describe the content
of the video clips. By giving each video clip a “sketchy” description
(described later), the director gives the DMO the ability to make the
right decisions as to which clip should be played next. A major step
in the construction of a movie is the annotation of the video clips.
The importance of the logger to the DMO can not be underestimated.

Through filters and templates that the director creates, the
shot selection module controls the flow of the story and determines
what clip will be played next. Shot selection is determined at run
time, and this is how the system is continuously able to incorporate
to the viewer’s choice of parameters. The director creates
templates to give the story it’s basic structure. Filters are created
by the director specifically for the templates and to parameterize
the clips in order to make the story more personalizable.

Aside from templates, a filter is the basic means for
determining which clip will be played next. A filter provides
constraints to the shot selection module for the overall clip list.

The shot selection module uses these constraints to filter through
the list of alf the video clips. A smaller list of video clips that can
then be passed through another filter is the result. For example, the
pacing filter lets only clips that are short in length pass through if
the pacing filter is set to filter short clips. The director uses

filters to give the viewer control over the parameters of a movie.

Metafilters were conceived as the controlling structure of the
DMO responsible for managing filters and templétes and as providing
a common framework in which filters may be created and then used.

Before Metafilters, the DMO could not update its filters or

templates, add new filters or templates, or do any other such tasks
that would modify the filters, templates or filtering process to suit
the DMO’s needs. Metafilters solve this problem by providing
methods for adding and removing filters, updating the filtering
process, and modifying the filters and templates.
Previously, filters and classes were not standardized and
could not be shared among different DMO’s. The continuity filter
used in the Endless Conversation does not have the same form as the
continuity filter designed for the Map Guides (these two instances of
the DMO are described later) even though Map Guides uses the same
concept of a continuity filter. Furthermore, templates were defined
differently between different instances df DMQ’s. The Endless
Conversations defines templates using macros:
(defmac\ro. create-dialogue-template (actor1 actor2)
(et '({character ,actor 1} (clip-type question)})
'{{character ,actor2) (clip-type statement))
'"{{character ,actor1) (clip-type response})}
"{{character ,actor2) (clip-type question))

'((character ,actor1) (clip-type statement))
"({character ,actor2) (clip-type response})))

According to CyberCritics, templates are defined by functions:

{defun create-critic-template ()
'{{(critic-name woody) (clip-type movie-intra) (movie princess))
{(clip-type movie-clip) (movie princess})
((critic-name woody) (clip-type opinion-query)}
((critic-name cyrus) (clip-type opinion))
((critic-name woody) (clip-type opinion-rebuttal))})}

To solve this problem, Metafilters provide class systems to solidify
filters and templates as a classes, enable inheritance in designing

filters, and simplify the design of filters.

A to B is a new instance of the DMO that exhibits the power
and functionality that Metafilters bring to the DMO. The basic story
line of A to Bis as follows. A main character travels from one place
to another, and at each place he encounters another character that he
knows (a friend, significant other, etc.) and has a conversation with
the other character. There are two templates necessary for this
story line, a motion template and an encounter template.

Metafilters must swap in the appropriate template when necessary.
The motion template handles the main character’s motion from place
to place while the encounter template handles the interaction
between the main character and the other characters. The details of
~ the motion and encounter templates are described in appendix B.

To make A to B personalizable, several filters are necessary.
An emotional filter controls the emotional state of the characters in
the story. The viewer can change the emotional atmosphere of the
movie by changing the emotional state of the characters. A “more”
filter lets the viewer stay in the motion template longer, allowing
the viewer to possibly watch the'scenery or just increase the time
it takes the main character in getting from one place to another.
However, not all filters are designed just to make the experience
personalized. Continuity filters are included to make sure the
characters are talking about the same thing in the encounter
template and to keep the means of transportation consistent in the
motion template. With these filters and templates, A to B
demonstrates the functional capabilities of Metafilters and the

power Metafilters give to the director.

History

The DMO was created to study the ways in which a director can
make a personalized movie by giving the viewer a certain degree of
interactivity. Each instance of the DMO creates a personalized
movie through the viewer's decisions as to what the parameters
should be. By giving the viewer a certain degree of interactivity, the
DMO is able to make a personalized movie for the viewer.

As stated previously, the Endless Conversation was the first
instance of the DMO. The Endless Conversation was fairly limited
because it had an immutable set of filters. The director had to know
beforehand all the filters he was going to use and could not easily
add new filters to the instance of the DMO. In addition, the template
structure was fairly simple, however it was the first instance of
the DMO ever created.

After the Endless Conversation, subsequent DMO’s attempted to
increase the complexity of the template structure and introduce
more complex filter structures. CyberCritics was an instance of a |
DMO that had two critics discussing various films, much in the same
way that Siskel and Ebert critique films. CyberCritics was more
complex because the template structure was more complicated--it
was not just a simple question, answer, response template. In
addition, not only did CyberCritics have to keep track of what the
critics were talking about, it had to keep track of where the critics
were looking (so they could look at each other and at the clips that
were playing), and which film previews had already been shown.

However, there was no standard among respective DMO’s, 50 one

coulkdn’t easily take code from one DMO and use it in another. For
example, the director of CyberCritics could not take the continuity
filter that the director of the Endless Conversation because each
DMO used different representations for the filter structures.

In August 1992, the template system was overhauled for the
Map Guides DMO and made object oriented. Map Guides gives the
viewer a tour of the South End/Back Bay of Boston. In Map Guides,
the viewer has several possible tour guides from which to choose,
and each tour guide offers a different perspective of the South
End/Back Bay. For example, one guide gives a historical view of the
area while another guide gives a tour of the various galleries along
Newbury Street. At certain points in the tour, the viewer and guide
meet other guides, and the viewer has the option of either staying
with his original guide or going along with the other guide. Map
Guides was made using two templates: a tour guide template and an
intersecting guides template. The tour guide template takes care of
the tour aspect of the DMO while the intersecting guides template
handles the interaction between two guides when they met. Because
Map Guides has two templates, the DMO must be able to swap in the
appropriate template at the right time. An ad template was created
to inject advertisements into the tour at random intervals.

The process of making Map Guides brought the DMO together
somewhat, yet there was not a standard for the filtering system--
which was a major part of the DMO. There grew a perceived need for
some sort of device or system that would manage the filters,
filtering processes, and templates. Metafilters arose from this need

for such a system.

Metafilters

Metafilters are the controlling structure of the DMO
responsible for managing filters. Metafilters deal with, on the basic
level, filtering in the DMO, but also do much more. Metafilters are
responsible for swapping filters in and out, adding or removing
filters, filtering filters, and more, thus making the control
structure of the DMO more fluid and flexible. In addition,

Metafilters provide a layered filter structure with which the shot
selection module may work.

Metafilters come from a redesigning of the filter processes of
the original DMO to incorporate the swapping, adding, and removal of
filter modules. Metafilters are designed with an object oriented
approach in mind. The actual filter modules have a class structure
with inheritance and mixin capabilities--much like the template
structure now has. As an example of inheritance, one could create a
pacing filter and a rating filter, and then simply create a pacing-
rating filter by making a filter class with the pacing and ratings
filters as parents. Here's a diagram of a possible Metafilters

structure:

Metafilter
class

Mai Character/
ain actor Time

As before, filters can be created for specific templates, such as the

pacing-rating filter in the Endless Conversation or for generic
cases, such as the continuity fiIt_er of the Endless Conversation and
the A to B DMO. Metafilters are flexible, simple and easy to work
with in the DMO.

Implementation

Implementation of Metafilters actually began with the
overhaul of the template system back in August, 1992. The DMO is
written in Macintosh Common Lisp™ and makes use of Apple’s digital
video technology Quicktime™ to present the clips. Because the DMO
is written in Common Lisp, the template structure was redesigned
around a class system to make it object-orientéd. Each template

has a slot, template-skeleton, that describes its basic structure:

(defclass template ()
{(template-skeleton :initform nil :initarg nil)))

A templates can also define other slots that may be important to
itself. The dialogue-template used in the Endless Conversation
defines actor1 and actor2 slots to keep track of the actors when it
creates the template-skeleton for an instance of the dialogue-
template. In addition, each template has an update-template method
to specify how the template should update itself when either the
template runs out or something else tells it to update itself (usually
a filter). Examples of template classes are provided in appendix A.
This design change suggested that the existing filters could be
improved upon as well by making them a class t0o. So, the first step
towards implementing Metafilters was to make the filters object-
oriented.

Making the filters object-oriented involved the creation of a

metafilter class:

{defclass metafilter (}
({constraints-function :initform nil :initarg nit)))
The constraints-function slot contains the function that returns the
constraints specific to the filter. The filtering process of the DMO
then uses the constraints that are returned by the constraints-
function to filter the clip list. The pacing filter used by the Endless
Conversation represents an example of how to code a simple

metafilter:

(defclass pacing-filter (metafilter)
$)

(defmethod initialize-instance :after ({pf pacing-filter) &key)
{with-slots (constraints-function) pf
(setf constraints-function
#'(lambda (&key dialogue-transcript)
{declare {ignore dialogue-transcript))
(if (eg *pacing™* ‘slow)

10

(list (list ‘not ‘pacing ‘fast))

(list (list ‘not 'pacing *slot}}}))})
Creating an instance of a pacing-filter defines the constraints-
function for the pacing-filter and gives the viewer control of this
filter through the parameter *pacing*. The parameter *pacing*
tells the DMO to filter out clips according to how long they are.

The next step to defining the Metafilters class was to define a
method to get the constraints from the filter:

{defmethod constraints ((m metafiiter))

(apply (slot-value m ‘constraints-function}
(list :dialogue-transcript *story-transcript*)))
The constraints method applies the constraints-function to a
transcript of the story that has already played out. Most filters
don’t do this, but some filters, such as the continuity filter, make
use of the transcript to filter clips based on the clip that just
played.

After filters were made into a class, the filtering processes
had to be rewritten to incorporate the changes that were made. The
DMO has to be able to filter the clip list in two ways, according to
the current point in the template and the current filters that are
being used. Three functions were written to handle this.

The first function takes the list of all the clips and produces a
final clip list of all the possible clips that can play according to the
template and the filters. Of these remaining clips, it randomly
chooses one of them and returns that clip. The first function is the
most general of the three functions and so is simply called filter.
Filter controls the other two functions and uses them to produce the

final clip list. The second function filters the clip list according to

11

the template and is therefore called filter-template. Filter-
template takes a clip list and filters it according to the template’s
constraints, which is basically the current point in the template.
The third function takes the constraints from the filter objects and
filters the clip list according to the current filters. The DMO stores
the filters in a list through which the function iterates and so the
third function is called filter-fitters-list.

The basic filtering process that both ﬁlter—temp!ate and
filter-filters-iist use is called filter-clip-list-by-constraint-list.
Here’s a module dependency diagram that illustrates the hierarchy of

the filtering functions:

Filter-
filters-list

Filter-

template
Filter-clip-list-
by-constraint-list

Filter-clip-list-by-constraint-fist takes a constraints list, iterates

through all the clips, and gets rid of clips that don’t fit the
constraints. If no clips fit the constraints, then no clips are
removed and the original clip list is returned. Filter-template uses
the current point in the template as the constraints list and only

calls filter-clip-list-by-constraint-list once. Filter-filters-list

12

uses the constraints returned by a filter’s constraints-function and
calls filter-clip-list-by-constraint-list repeatedly because it is an
iterative process. The filtering work is actually done by filter-clip-
fist-by-constraint-list.

After the filtering functions were designed, the next step was
to overhaul the updating of the templates in order for Metafilters to
be able to manipulate them. Functions to advance the template and
refresh the current template were written to give Metafilters the
desired control. Advance-template is called each time a clip
finishes to make sure that the DMO is always at the correct point in
the template. Whenever a template is finished, some filter calls for
a new template to replace a template, or some other event that calls
for updating a template occurs, refresh-current—temp!ate. uses the
template’s update-template method to make sure the template is up
to date.

When all the templates and filters had been {evritten to
incorporate the concepts of Metafilters, the story driver was
updated to use the new functions. When this was done, the DMO was
finally made object-oriented by creating a DMO class to finalize the
implementation of Metafilters. Methods to start a story, kill a
story, and place clips in their correct position on the screen were
written to make playing a personalizable movie clear and easy to
use. Other methods to add, remove, and swap filters were created to
enable the DMO to do just that--add, remove, and swap filters.

At this point the DMO implements the ideas that Metafilters
embodies. The DMO now has functions and methods that give it

control over the filters and templates that it uses. The DMO can

13

update its filters and templates, add new filters or templates, or do
any other such tasks that modify the filters, templates or filtering
processes. The DMO is standardized. Different instances of a DMO
can swap filters and templates with no problems (as long as the
clips are logged correctly for each DMO).

As an exercise, Map Guides was reimplemented using
Metafilters. This was done to show that by replacing the story
driver and filtering functions and rewriting the templates and
filters, DMQ’s without Metafilters could be easily changed to use
Metafilters. The filters were rewritten to use the metafilter class
and appropriate methods for each filter were written. In addition,
methods for updating the existing template class were written to
bring templates in line with the Metafifters concept. The story
driver was removed and the new driver was installed. Finally, a Map
Guides DMO class was created and methods for it were written to
bring Map Guides up to date. The conversion was successful and
showed how easy it was to reimplement older DMO’s to incorporate
Metafilters.

Creating a Personalized Movie

To create a personalized movie, the director has to go through
a process that involves several steps--filtering, scripting, shooting,
and logging. This section describes each step in detail and shows

how the process applies to the A to 8 DMO.
Filtering

14

The first step in creating a personalizable movie is to create a
basic template and filter structure for the movie. The director
designs templates to give a rough outline as to what the story will
be. As an example, in the Endless Conversation, the template is
question, answer, and response. In Map Guides, the template
structure is a little more complex with two templates, the
intersecting-guides template and the tour-guide template, that are
swapped in and out by the DMO as needed. In creating A to 8, two
templates were created: a motion template to handle when the main
actor is traveling from person to person and an encounter template
to handle the interaction of the main actor with the other characters
he meets. The DMO manages the two templates to give the effect of
the main actor moving from place to place meeting the other
characters in the story.

After the director has created a basic template structure, he
creates the filters that will be needed by the movie. With
Metafilters, the director can use old filters, generate new filters, or
easily mix and match new and old filters to come up with the
desired mix of filters. Metafilters are what will make the DMO
personalizable by enabling the director to give the viewer some
control over the parameters of the movie. The Endless Conversation
provides specific pacing and rating filters to give the viewer some
control over the speed.at which the clips are played and the content
of the material presented (there are PG and R ratings for clips).
CyberCritics makes use of a continuity filter to make sure the
critics are talking about the same movie. The continuity filter that

CyberCritics uses exemplifies the Metafilters concept of reusing

15

filters because it is the same continuity filter that the Endless
Conversation uses. It is interesting to note that if the director has
a good idea of what he wants to do, he can generate the templates
and filters in less than an hour. A to B also uses this same
continuity filter to keep track of the topic of conversation in the
encounter template as well as the means of transportation in the
motion filter. In addition, A to B has other filters--an emotional
filter that can be thrown into the DMO to give the actors feelings
and a “more” filter that lengthens the amount of time spent in the

motion template.

Scripting

When the director has come up with the basic structure for the
new movie, he must come up with a shot list that describes all the
shots he will need for the DMO. It is important for the director to
script several possibilities for each shot so that the personalized
movie can be more personalizable. The director uses the templates
and filters he designed in the previous steps to come up with the
several possibilities for each shot and to write each shot’s
“sketchy” description. The director need only provide the relevant
descriptions to the DMO as dictated by the templates and filters
because this is the only information the shot selection module needs
to personalize the movie. The story concept and the director’s
vision for the filters determine the overall parameters of the
sketchy descriptions. Sketchy descriptions are also easier for the
director to use because they use less information than “thick”

descriptions that attempt to log all the semantic content of a clip.

16

Therefore, sketchy descriptions easier to enter into the computer.
These sketchy shot descriptions are important later in the process
when they are actually attached to their respected clips. The shot
list for A to B (appendix C) lists all the shots that are needed by the
DMO to orchestrate the movie and has the sketchy descriptions for
each shot. Also, A to B's shot list is organized in such a manner that
it is easy for the director to add shots on the spot or to change any

shot if shooting conditions necessitate changes.

Shooting

After the shot list has been developed, the director films the
required material. Just as in the filming of a traditional film, the
director must shoot the same shot multiple times to allow the
editor the opportunity to choose the best clip to be used, unless he
has taken this into account in his shot list. Thus, the more
variations on a given shot the director has, the more personalized
the movie will be because the DMQ will have more clips from which
to choose. The variations in a given shpt must take into account the
interaction filter settings (the parameters of the personalized
movie). For example, if the director wants to make use of a pacing
filter, he needs to shoot clips that have a slow pacing and a fast
pacing. In addition, some shots must be as generic as possible so
that they may be used in multiple places, thus cutting down on the
number of specific clips that have to be shot. The greeting clips,
such as “Hit” or “How are you today?”, in the Map Guides are generic
enough that only a few are needed to handle all the possible

sequences in the movie. The shot list for A to Bincludes a large

17

number of generic shots that simplified the filming of each shot. In
the motion template, generic shots of the main character entering a
car or putting on in-line skates eliminate the need for the director
to shoot the character doing these activities at each location
through which the character travels. This greatly reduces the
nurmber of clips that need to be shot as the DMO can use these
generic clips multiple times and still convey a sense of what is

going on. The shots that had more descriptions attached to them
required greater care in shooting because the constraints were
tighter than in shooting the generic clips. Shooting is a very time
consuming process, especially when compared to the time it takes to

create the templates and filters for the DMO.

Logging

After the footage is digitized, the director must break it up
into clips using the logger module to attach the sketchy descriptions
from the shot list to the digitized clips so that the DMO can choose
the correct clips to play. Again, like the shooting stage, the
director’s actions are remarkably similar to what a traditional film
director does. The logging module places the clips into a large
database that the shot selection module can use to play the movie.
Logging is an extremely important step, for if the clips have no
descriptions, the DMO will not be able to figure out the content of
the clips, and the DMO will not function properly. Logging A to B was
made easier because of the organization of the shot list and by the
specialization of the logger to facilitate logging. Ryan Evans, a

graduate student in the Interactive Cinema at the Media Lab, and

18

James Seo, a UROPer in the same lab, designed the logger that was
used. James was particularly helpful in specializing the logger to
make logging A to B easier.

As soon as the director is done logging, the movie is ready to
be orchestrated by the shot selection module. The templates
designed in the first step provide a basic structure for the story
while the filters created personalize the story according to the
viewer’s decisions. The sketchy descriptions enable the shot
selection module to correctly choose the next clip to be played

according to the constraints given it by the templates and filters.

Future Directions

Metafilters bring the DMO into what is possibly the last stage
of the development of the DMO as it is defined in “Orchestrating
Digital Micromovies”, a paper by Professor Glorianna Davenport,
Ryan Evans, and Mark Halliday. From this point, there are several
paths that DMO “technology” may take. The first path involves
utilizing the DMO in new and innovative ways to explore cinematic
realms, multi-threaded narratives, and stories told from different
points of view. It would be very easy for someone to design a
narrative with multiple points of view. Changing points of view
would be as simple as having Metafilters swap in one character’s
filters for another character's filters. Multi-threaded narratives
could be explored in a similar manner.

A secand path for the DMO involves using the DMO as a tool for
other applications. Making the DMO part of a larger whole instead of

19

being an application by itself has tremendous potential. Using the
DMO as part of some program that gathers news and then presents it
according to a viewer's parameters is an excellent example of a
practical application for the DMQ. The viewer could create filters

for the kind of stories he wants to view. The DMO would use these
filters to sort through the news for the day and present a sampling
of the possible news stories. The DMO also lends itself to use in the
home. After creating a bunch of home movies, a person could log the
movies and then create filters so that he could present them to
others. Filters to keep the movies in chronological order or to only
use movies with children in them could be designed.

Finally, the interface between the director and the filters he
creates is a little weak--the director has to know how to program in
Macintosh Common Lisp. Any system that would improve upon this
interface would be a step in the right direction. There is a system
that is being worked on right now that uses DMO “technology” as one
of it’s tools. Ryan Evans’ project in the Interactive Cinema
Laboratory at the Media Lab has tools for designing filters and
templates, logging clips, and uses the DMO as a playback mechanism.
The future possibilities for the DMO as part of a larger project are
very bright.

For the immediate future, there is a very clear goal--
implement a new instance of the DMO using Metafilters. Metafilters
were tested using the Map Guides DMO, however, Map Guides was not
designed with Metafilters entirely in mind. To fully exploit the
potential of Metafilters, a new DMO was designed--A to B. As stated

and described previously in this paper, A to B is the new instance of

20

the DMO, however it has not yet been completed. The immediate goal

for the future is to finish the implementation of A to B.

Conclusion

The DMO was designed to make a personalized movie.
Metafilters are the next step in making the DMO personalizable,
easily expandable, independent, portable, and truly flexible. As a
result, Metafilters facilitate the director’s ability to design
personalized movies and increase the level of creativity the director
can put into his work. It is hopeful that the new DMO, A to B, is
representative of the new power and capabilities that Metafilters

have given the DMO.

21

Appendix A.

Sample Template Classes

(defelass ad-template (template)
0)

(defmethod initialize-instance :after {(at ad-template) &key)
(with-slots (template-skeleton) at
(setf template-skeleton (list (list ‘clip-type ‘ad))))}

(defmethod update-template ({at ad-template))
(let ((next-template {choose-rand-item (list *previous-template* *ad-template*))))
(if (equal *rejected-guide* ‘noone)
{progn
{(setf *rejected-guide” nil)
{getf *current-template* *previous-template*))
(progn
(if (equal next-template *ad-template*)
(progn
(unless (equal *eurrent-template* *ad-template*)
(setf *temp-skip-intro-talks* *skip-intro-talks*))
(setf *skip-intro-talks* nil))
(setf *skip-intro-talks* *temp-skip-intro-talks*))
(setf *current-template* next-template)))))

(defclass dialogue-template (template)
({(actorl :initform nil :initarg actorl)
(actor?2 :initform nil :initarg actor2)))

{defmethod initialize-instance :after ((dt dialogue-template) &key actor-1 actor-2)
(with-slots {template-skeleton actorl actor2) dt

(setf actor] actor-1)

(setf actor2 actor-2)

(setf template-skeleton

(list

(list (list ‘character actorl) (list ‘clip-type ‘question))
(list (list ‘character actor2) (list ‘clip-type ‘statement))
(list (list ‘character actorl) (list ‘clip-type ‘response))
(list (Jist ‘character actor2) {list ‘clip-type ‘question))
(list (list ‘character actorl) (list “clip-type ‘statement))
(list (list ‘character actor2) (list ‘clip-type ‘response)))))

(defmethod update-template ((dt dialogue-template))
(with-slots (template-skeleton) dt
(setf template-skeleton
(list

(list (list ‘character actorl) (list ‘clip-fype “question))
(list (list ‘character actor2) (list ‘clip-type ‘statement))
(list (list ‘character actorl) (list ‘clip-type ‘response))
(list (list ‘character actor2) (list ‘clip-type ‘question))
(list (list ‘character actorl) (list ‘clip-type ‘statement))
(list (list ‘character actor2) (list ‘clip-type ‘response))))))

(defclass intersecting-guides-template (template}
{(guidel :initform nil dnitarg guide1)
{(guide2 :initform nil :initarg guide2)))

(defmethod initialize-instance :after ((igt intersecting-guides-template) &key guide-1 guide-2)
(with-slots (template-skeleton guidel guide2) igt

{setf pnidel guide-1)

(setf guide2 guide-2)

{setf template-skeleton
(list '

(list (list ‘character guidel) (list ‘clip-type ‘greeting))

(list (Jist ‘character guide2) {list ‘clip-type ‘greeting))

(list (list ‘character guidel) (list "clip-type ‘activity-query))

(list (list ‘character guide2) (list ‘clip-type ‘activity-response))

(list (Jist ‘character guide2) (list ‘clip-type ‘invitation))

(list (list ‘character guidel) {list ‘clip-type ‘goodbye))

(list (list ‘character guidel) (list ‘clip-type ‘goodbye))))))

{defmethod update-template ((igt intersecting-guides-template))
(with-slots (template-skeleton guidel guide2) igt
(setf template-skeleton
(list
(List (list ‘character guidel) (list ‘clip-type ‘greeting))
(list (list ‘character guide2} (dist ‘clip-type ‘greeting))
(list (list ‘character guidel) (list “clip-type ‘activity-query))
(list (list ‘character guide2) {list ‘clip-type ‘activity-response))
(list (list ‘character guide2) (list ‘clip-type ‘invitation))
(list (list ‘character guidel) (list ‘clip-type ‘goodbye))
{list (list ‘character guidel) {list “clip-type ‘goodbye)))))

(defclass time-template (template)
((beginning-length :initform nil :initarg nil)
(middle-length :initform nil :initarg nil)
(end-length :initform nil :initarg nil)
(beginning-scale :initform (list 0 3) :initarg nil)
(middle-scale :initform (list 3 8) :initarg nil)
(end-scale :initform (list 8 10) :initarg nil)))

(defmethod initialize-instance after ((1-1 time-template) &key allotted-time)
(setf (slot-value t-t ‘beginning-length)
(list (* allotted-time (/ (start (slot-value t-t beginning-scale)) 10))
(* allotted-time (/ (end (slot-value t-t ‘beginning-scale)) 10))))
(setf (slot-value t-t ‘middle-length)
(list (* allotted-time (/ (start (slot-value t-t ‘middle-scale)) 10))
(* allotted-time {/ (end {slot-value i-t ‘middle-scale)) 10))))
(setf (slot-value t-t ‘end-length)
(list (* allotted-time (/ (start (slot-value t-t ‘end-scale)) 10))
(* allotted-time {/ (end (slot-value t-t ‘end-scale)) 10)))))

(defmethod update-template {((t-t time-template))
(setf (slot-value t-t ‘beginning-length)
(list (* allotted-time (/ (start (slot-value t-t ‘beginning-seale}) 10))
(* gllotted-time (/ (end (slot-value t-t ‘beginning-seale}) 10))))
{setf (slot-value t-t ‘middle-length)
{(list (* allotted-time (/ (start (slot-value t-t ‘middle-scale)) 10))
(* allotted-time (/ (end (slot-value t-t ‘middle-scale)) 10))))
(setf (slot-value i-t ‘end-length)
(list (* allotted-time (/ (start (slot-value t-t ‘end-scale)) 10})
(* allotted-time (/ (end (slot-value t-t ‘end-scale)) 10)))))

(defclass tour-guide-template (template)
((guide-name :initform nil :initarg nil)})

(defmethod initialize-instance :after ({igt tour-guide-template &key guide)
{with-slots (template-skeleton guide-name)
(setf guide-name guide)
(setf template-skeleton
(list

(list (l1st ‘character gnide) (list ‘clip-type ‘intro-talk))
(list (list ‘character guide) (list ‘clip-type ‘place-talk))
(list (list ‘character guide) (list ‘clip-type ‘moveon-talk)}))))

(defmethod update-template ((tgt tour-guide-template))
(let {(next-template (choose-rand-item (list *previous-template* *ad-template*))})
(if (equal *rejected-guide* ‘noone)
(progn
(setf *rejected-guide* nil)
(setf *current-template* *previous-template*®))
(progn
(if (equal next-template *ad-template*)
(progn
{unless {equal *current-template* *ad-template™)
(setf *temp-skip-intro-talks* *skip-intro-talks*))
(setf *skip-intro-talks* nil))
(setf *skip-intro-talks* *emp-skip-intro-talks*))
{setf *eurrent-template* next-template)))))

Appendix B:

A fo B Motion and Encounter Templates

A to B Motion template:

-Approach means of transportation
-Start means of transportation

(get in car, get on skateboard, put on skates...)
-Motion

(may go through this part multiple times)
-Stop means of transportation
-Leave means of transportation

Location Means
Esplanade bike, walk
Med Center pavilion walk, rollerblades
Newbury street bike, car, skateboard
Harvard bridge rollerblades, skateboard, car
sShots #/means _ #means ___ total
Showing means 2 5 10
Start means 2 5 10
Go 5-6 5*2 50-60
Stopping means 2 5 10
Exit means 2 5 10
Total: 90-100

Basic filters:

Transportation consistent filter

“More” filter

Notes: The motion clips will be site specific shots. The means clips
will be generic shot. ' '

A to B Encounter template:

-Intros
-QAR (Question/Answer/Rebuttal)
-Byes
Characters: Topics:
Angry Youth #
Technoboy #2
Girlfriend #3
Grad Student #4
Shots: characters #/character _ #characters _ total
Intros 4 4 16
QAR's 9 4 36
Byes 4 4 16
Total 68
Shots: mainchar, #
Intros)
QAR’s 16
Byes 6
Total 28

Total shots: 96

Topics:
Evening plans--What are you doing tonight?
borrowing money--Can | borrow some money?
school--How’s school going?
Boston—Are there any cool places to see in Boston?

Eilters:
Emotional filter
Topic filter

Notes: The intros, QAR’s, and byes will try to be dynamic in the
sense that it will randomly choose which person goes first.

Appendix C:
A to B Shot List

d 181UBD) pay {001 sx¥ou3) uoyiaed punole BUpNENS SJOUS G sape|qlajol
15 AingmaN SuON0asIalL| SNOolEA YBnoiy Jed 40 Sjoys §
ig preareH| ebpuq o sued jueleyip Duisiases) Jed Jo Sjoys § 1es
"d 181U PR uoipaed Jo sped Jusiayip 18 Sjoys §
apeuelds3 sped snouea ybBnosy Gunjem jo sjoys ¢ Wem T N
1S Aingmay " 'sdoys snouea)sed Bupeys jo sjoys G
apeueids3 sued snouea ybnosyl Bupexs 1o sioys § aNiq
SUeSW /M UCHOW
ouauab ajeys o} Buluels sjoys ousuab z| pieogajexs
~ oneuab Bujpuels woi; alews o1 Buiels
oueuel Bunus woyy eyeys o} bulels S3pRIQI9Y0;
ousuab aAup ol Jed Buyys puey dn-asojd
olauab uo uomuby vy Bujuwiny A9y dn-asod Jeo
onoush Buipuels woy yem 01 builels
Jueush Bunlis woij yEem o1 buers Hem
2119uab a1q a|ppad ol Bulels sjoys ouauab z ajIq
e STER U BULEIS
o118uab preogaleys dn-as0[0
2iaue si@aym Bujuuids puey dn-asop0 pieogajeys
ouaualb serexs buioe) dn-es50i0
Jusush saleys uo Bund dn-asojo Sape|q.a]|ol
ouausb 1ed bupsyua|
ousuab| ST T (peiq o) eo Buiyoeoidde 18D
Jouab seoys bulfy dn-esoi
oueusb seoys uo bumnd dn-asojo WEem
ol1auab ajiq uo Buiyab) N
olaush (¢Wybusyal) axq Buiyoeoidde aiiq
sueow Bumoys
uo1ed07 1o04s sueap asa1d Qedwal

ajejdwa) g-o1-y

1817 104S UOHOW g Ol ¥

o|auseb

pieoqaje)s Jo buniab

ollauab pieogaleys dn Bunjoid puey dn-asop - pieogaieys
ousuab © saexs bufiun dn-esop
opauab {¢seous uo Ind) sereys buiaowes dn-esod $9pL|G19]|0)
onsueb 180 Woyy Aeme Bunjem -
SIEEL] 1e0 Buiaeay JBo
allauab saoys Buifiun dn-asopo
ouauabijoy 1 exy--sieylo uo Ind) seoys Buiaowsl dn-asoD yem
SENE) oyq o Bumab jo s10us ousualb z g T
e TN e
oueusb Buiieys buiddols sioys ouauab 2 pJeoqgaleys
oususlh " Bupueys dois
ousuab) bunus dojs $6pB|QIe|[0!
ouousb wee1q bupped uo Bumind puey dn-asop
ousuab yo uomubl Suiuin Aay dn-asojp 1BD
olaualb Buipueys dojs
olauab) Bums dojs N BM
oleusb ay1q buiddois sjoys oueuselb g aq
sueaw buiddolg
"1g PIEAIEH “abpug Buisianes soys G
18 Aingmen| sdoys snoliea 1sed sjoys G pIeoqaleys
"ig pieAIeH ebpig j0 sued snolLeA 18 SI0US §

1817 104G uofioy g Ol v

AiDuy

‘Ll WON PEMOLIOT NOA Jeyl HIeq A3uoW JBY) luem |

ASUON

¢ubluoy BuiyiAue Buiop nok ey

sueid Butuaag

AddeH

¢ybuoy uo Buob s 1BYM

sur|d Buiuaag

KiBuy

Jybiuoy Buiop nok are 1BYM

sue|d Buiuaa3

IBYO uley

suopseny

¢dn seym

jAPMO}

I4 4o Yy

‘ajlum B 10} QB) Ul NoA 8os J,uaaey ‘|H

uspnis peicy

i40|1es of|leH

“nok qum awn swos puads 01 186 | Areuld “oj1eH

islium B 10} nok uaas Juaaey | ‘a1ay) AsH

jAauoy aseul IH

puelijiiD

jespedwod siayl ABH

jek 3s 0} aolu ‘apnp AaH

jaoedsiaqhn apisino nok aas o} edu ‘AsH

+Buob u smoy ‘AsH

AoqueAeY

"BUOJE Ol OABS]

‘98s ou swi) Buo| ‘uew AaH

inos Aibuy

BAEM

jown Buol & 10} nok usas Jusaey | ‘IH

awS

dn sjeym ‘AsH

‘alay] Aay

IH

" Ieyo uiep

SOIU|

uofiowy

anbojeig;o1do]

aido}

1319eiBY?)

asand ajejdwal

ajedwa) J9junoaul

1817 10US 181UNCILT g O

pes "RepO} 158} & paquioq |--pooDb 00] 10N JOOUOS
Adden 05 ssonb | ‘8in8 ‘YN Kauop

Kddeq *aiay ybu 1 106 | owajgoid oN Kauopy ’
Adden "uew aing Aeuopy
KiBuy ~ ‘Buiggnio ob usy; pue paysem 1ab euuob w,|| sueid Guueag
KiBuy ‘GUOIE 9W 9AB8| pUB 8w wol} Aeme 18g)| sueyd Buiusag

fibuy ok 191 | pinoys Ayma| sueid Bulusag|yinop Kibuy
61564 gt B .

"$3JB}S [BUOIIOWS pUE [ooyog
[oido} awes ay} ypm (sialoeseyd Jouio auy) Reuop

10J} siemsue Buimoijo) ay) 0] reuis siemsue ¢ 10 g| sugid Buiuaa3| "J1eyo uley
SIamMsuy
[AibBuy| Layuo} uoysog o Buiob nok sly uo)sog
pes LG 1SNC ASYONQ § MOLIOG | URD ABUOW
AddeH JBuoy 10y sued inok aie 1eypa| sued Buluaazjuepnis pein|
kddeH ciaye) uoisog ojul 0b o) juep uolsog
 fMibuy £159) INOA Uo (18m 0p NCA PIQ |OOU0S
peg Jybiuol 8as | uen| supid Buiueag| puauypIn
pes juolsog ul 9as 0] sade|d |00 awWos a1iBYM uoisog|
Addey - ¢Buiob jooyos smoH |0oyog
Aibuy £ PemoLIoq ok 063 18y} yoeq sw sailB nok pino) fsuop]| Aogqieaey
pes £58558[2 In0A U Buiop nok aie mop jooyag |
Addey T juew ySED 8| B MOLIO] | uB) Reuop
T TRibuy ybBiuol op ruuob nok exe 1eypn| sued buiueazyinos Aibuy
pes £u01sog ul uo buioh 100 Buiiuy uoisog
Addenq JWBluoy uojsog ol o8 o1 uepm uoisog
AiBuy Jybluoy uoisog ui BuipAue Bulog| uoisog
PES) £$9s5E|2 Jnok yum dn sjeum [o0yds
AddeH ¢ Buiob jooyos 1IN0k sMoH 100yog
Kibuy 001 NOA 1S3] 1Bl SEM MOH Icoyog
s ~-Aguow olwos poau Afeas || Asuop
AddeH &NoA op aw amo noA Aauow Jeyy aAey LUPINOM NOA fouopw

187 Joug Jsjunoou3 g ol ¥

2140} BWEeS 8yl yum (Sialoeleyd Jayjo ay) ABUOW
J0}) sesuodsas Bumo||o; Byl 0] Jelwis siemsue ¢ Jo z| sueid Bulusaz| "Jeyd urew
sasuodsay
KiBuy “*pinom | agfew ‘1es AW ua|o)s J,upey auoswos || uojsog
KiBuy ‘PPMOID OS SI--U0iSOg aley | (oW uoysog
Aibuy "JYDIUC] 8]B] MIOM O] 8ABY | 'ON uoysog
pes ~J51e| buiddoys £1990.6 of enob | ‘oN Kauopy
pes “Aue pey | | Aauop - S
pes - fepiaisek jajem Aw 8j0)s suoawos ‘A10g Kouopw
AddenH lijumol Jo 1no Buioh w,i| sueid Buluea3z
KddeH "18I1ES 1NOGE PONE] oM oIA0W 1B} 985 0] Buoh w,|| sueid Buiuaag
Adden "auUIll JO SpUaLY P|0 swos 18atu euuob w,|! sued Bujuaag juapnis peir) T
et AL eai e e
AddeH “Wybiuol 1no ob o) peydAsd eq p,| ‘eing uojsog
AddeH *uny JO 10| B)| SPUNOS 1Yl ‘Yeai uojsog
KiBuy "1S3] 1yl Buijre; 1oy J|asAw 1B PEW 0S W] jooyog T
- AbBuy| 7 Taw isurebe paseiq askoyl--ssejo jey aey | jo0UOS
fibuy 18Ul 10} WBiu |18 peipms | 8reyeq Lued | OO0
peg ,.ueo | Ing ‘Kuos ul)| sueid Buiuaag
pes “mou By w15 Anaad jee} | sueld Buwea]
peg| Apmis enol | ‘mouowa] 188] & 10D 8A--nok ees Lued (| sueid Buusag| pusuuin
pes| "mou sxsam a)dnod B 104 IN0 auoB 10U aA[--MOUY LUOP | uoisog
Pes "a;ay 105S Ajjeal are agjjod ay--yonw JoN uoisog
"~ peg|z 10 | 1e @soio (e Aeul--al1ay sqnjo poob Aue juale 818yl uolsog
Adden {ii40A0 1SOW(R SWIe) Syl 100Y2S
Adden j1eaib Guioh are sBuiy] |ooU2S
Adden j1auau| ayl ojul yoel 0] Moy paules| aA|--|jooo Alald 10042 -
AiBuy| ;¢ 1nok 1o0) sawy 210w moy B aw yse aseaid nok pino) Rauopy
) Kibuy iinubue ‘yeom 1xau AQ It eABy P, PIES | Keuopw
Aibuy [NOA WiON) AGUOW AUE PEMOLIOQ JOABU | jIiTBUM Aauop Aoglaney
pes 'Aepol 1591 AW pajie} | Juiyl | Jooyos
peg| -awn 931 ou sARy | HJom um umop pebfoq Ajjelor w) 100UDS

117 1oyg Jsunodug g 01

peg 'SABMAUR SHUBYL Aauow
AddeH jun} spunog| sueid Buiuaag
Addey "sueaq |00))| sueid Buiuaag
KddeH ‘Jealb spunos jey}| sueid Buiuaa3 juspnis pein
Aader] s Gy oS54
Addey Il Jnoge 1aje| el ||,6m--00) uoisog
N Addey jueid & &y spunog uojsog
Aibuy ‘Awwnn Ajaid siel 100Y2S
Kibuy [PEW 9L Sayew UaAa Jey) | |ooyog
KiBuy 0 1$30NS Jeyy looyog
[peg| esowdue sayioyoed 98S 0] 18D J6ABU 6m BY| SWEeS S| SuEd DUIUSA]
pesg WBiuc) 1n0 06 pINoo am YSim A)[eal || sueid Buluaag
e ‘nok aas pinoo | ysm | ‘'yQ| sued Buiweag| pusupn
pes “g1ay punose dn yoid sBuiyy adoy | uoisog
B - peg "SyoNS 18y ;AesH ucisog
pes ECRS uojsog]
Kddey ‘poob Ajjeas spunos jey) jO0YOS
Adden] iybuly [00ydg
AddeH jue||80x3 |0ouos
Ribuy Jlennq Inok dn steyp Kouopy|
KiBuy “yoeq aw Aed Juop nok)i Aos aq Ji,noA Kouowy
Ribuy ‘uoos Aeuow Aw aw oAb 1aN9q pey noA ASUOW Aoquaaey
peg '1no oM ||.sBuilfi “Aliom Luog jooyos
pes i "Uew peq 0o} sjeyl 100U2g
pes ‘AJIOS W, 100428
7 Addey 1YSEeD 84} 10} SHUBY] Kauop
Addey {loos Anasd syeyy Aauop -
Ko oyeull Feuop
KiBuy) 1einb 8q ‘my| susid Buluea]
KiBuy ’ 1000 sjeyl ‘ean)| sued Buiuaag
Ribuy 1payse | Auog| sueid Buluaagiyino Abuy|
e e
"SOJElS [BUONOWS puUe 10005

1517 10US J8unoouy g ol

LT

"(qe| Ul NOA 935

"BABM

"18je| ek aag

WepPMS peID

sIuS

ELEELS:

{INOLIE LOW HOABI Ny

PUBLIIL)

“apis diy ay} uo ek yoren

“*UO BAB] ‘U0 BAO| ‘UO BAI

juo sAey

jmou a4g

‘oAg

wunig

"181e} BA Yo1en

- -iasoy ek 99g

uinoA KiBuy

“Jaye| Nok aag

"BABM

‘BA 908

-ig)e| NOA yodesn

*aAg

A 9g BUUBM Jup|nom ‘ek 9ag

*JBYD uley

SoAg

isinu 8Byl

uo1sog

‘NOA B 0] SXONS]|

uoysog

"syons Jey) Bueg

uoysog

‘uay) wybiuo} Jes Juom | ssenb | ‘Leq

ABUOW

*@3|8 8UOBUIOS YSE (] YO

Kauop

1817 104S 191UNCoUT] g O}

