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ABSTRACT

There is a large volume of video which exists in the world today, stored in a multi-
tude of different forms. In order to make this information more easily accessible, we
need methods of organizing this data in an intelligible manner. This thesis suggests
a method of cataloging and browsing videos by extracting key frames from the indi-
vidual shots and scenes in the film. The algorithms presented herein were tested on
video containing a wide variety of images (interviews, sports, computer animation,
etc.) They provide a way to automatically segment an audio/video stream into shots
and scenes, which could then be used to generate a database for many applications,
from logging a broadcasting station's archives to browsing video in a digital library.
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Chapter 1

Introduction

There is a large volume of video which exists in the world today. This video is stored

in a multitude of forms, from magnetic tapes of varying sizes to laserdisc. In the

past, video was manually parsed and logged, and browsing through video clips was a

difficult and time consuming process. Video is now transitioning to a digital format.

This new medium provides the opportunity to segment video into different levels of

granularity by using parsing algorithms. These parsers can aid in the creation of a

video database where the user can browse through videos much more easily, searching

for a particular shot or scene.

1.1 Video Parsing

Videos can be divided into two broad categories, rushes and final programs. Rushes

are the unedited video clips as taken from the camera. An editor puts these rushes

together with audio and special effects to create the final program.

These videos can be viewed as linear stories or as granular elements. A shot con-

sists of a single contiguous group of frames and has the finest level of descriptive

granularity. In final programs we can identify a coarser level of granularity encom-

passing thoughts and actions within the story - the scene. For example, a video

such as Terminator has several fight scenes, a love scene, a chase scene, etc. In a



documentary, a scene is determined through changes in content, such as transitioning

from a talk about lions to a talk about zebras.

In the past, rushes were manually parsed to obtain shots; these shots were then

logged into a descriptive database. In creating a final program, an editor made an Edit

Decision List (EDL) which contained a listing of all the shots used in the program,

indexed by timecode. By using an EDL and the program script, one could browse

for shots and scenes within the edit master. However this was still a fairly difficult

task; browsing was done by using timecode indexed computer controlled tapes, which

required expensive equipment and long search time. Furthermore EDLs and program

scripts are not generally available for public use. Laserdiscs have increased "searching

ability" by allowing the user to "jump" to a location on the disc, but even this

requires some knowledge of the content of the disc (which someone must painstakingly

annotate by hand). Thus if one simply wishes to browse through video, there is

currently no publically accessible index or automatic indexing system to the contents

of videos.

Parsing algorithms can be used to analyze the audio/video stream and automat-

ically index it. There are two aspects of indexing, both of which can be achieved

by a parser: segmentation and descriptive content base. The parser can be used to

segment the video into different levels of granularity, namely shots and scenes. Af-

ter segmenting the video, the content of these segments can be described with text

and/or pictures. Traditionally, text has been used to describe content. However, the

old adage "a picture is worth a thousand words" seems to be true, as people are able

to recall a scene better through images than through words. Thus, we can obtain a

good overview of a video by taking representative samples from these shots/scenes,
which are called key frames. These key frames should be representative of the aspects

of each specific part of the video; the parsing algorithm can obtain good key frames

by extracting either the first, the middle, or the last frame of each shot/scene.

Once we have obtained sequences of key frames for both the shots and the scenes

in a video, we can create a video database. This database could be useful for video

editors, corporations, and the general public. No longer will a person have to fast

forward through video looking for a particular clip. Instead he can browse through

the "shots" or the "scenes" of a video. Furthermore, we could cross index these shots

with textual information and enhance the capabilities of the video database. Text



queries and possibly video queries (texture, color, etc.) will increase the user's ability
to search and browse video. The final result is a rich database system which allows
for more efficient browsing and intelligent searching for desired video clips.

1.2 Overview of this Document

The work described in this document spanned several groups at the MIT Media

Lab, namely the Interactive Cinema group, the Vision and Modeling group, and the

Personal Information Architecture group and Library Channel. Furthermore, the

research was done in collaboration with WBGH Public Broadcasting.

Chapter two describes some background information about the current state of affairs

at WGBH and the research being conducted on Digital Libraries.

Chapter three describes some background of cut detection, and the development of a

video shot parser.

Chapter four describes the development of a video scene parser.

Chapter five describes considerations for designing an interface for using the shot/scene

parsers described in chapters three and four.

Chapter six describes further research which might be conducted in this area, and

some of the open issues of this project.

Chapter seven gives concluding remarks and observations.





Chapter 2

Background

The work described in this document was done in collaboration with WGBH Public

Broadcasting. WGBH wished to automate the input phase of their video logging, and

to create a richer database of information than presently exists. They are currently

using an older system for logging and cataloging their videos. Furthermore, auto-

mated video logging and the shot/scene browsing mechanisms will be very useful in

the ongoing digital library research being conducted at the MIT Media Lab. Having

a video database and a fast method of searching and browsing is both desirable and

necessary for public use of the Library Channel.

Below we will look at the current state of affairs at WBGH, as well as the digital

library research which is being conducted today.

2.1 WGBH Video Logging

Currently, WGBH video logging is performed mostly on raw footage, that is the

field tape prior to being edited and compiled into a final program. Although Avid

software is used to make the logging process somewhat easier, the process is still

highly dependent on human input. Below is the process which Alexis Massie, an

employee of WGBH, uses in logging rushes [Massie].



First, she takes the beta videos that she receives and watches them carefully,

taking copious notes on the content of these videos. These notes focus primarily on

who the people are in the video, and most importantly where they are. The location

is one of the most important comments to be input into the log; this same item is

also very difficult to discover in an automated system.

Then the video is placed into a Sony BetacamSP Videocassette Recorder UVW-

1800, which is connected to a Sony Trinitron monitor, and a Macintosh LCIII com-

puter running Avid Medialog software. Using the Medialog controls, Massie can

rewind and fast-forward through the videotape linearly in time. That is, the speed of

the tape is variable, but it does not allow "jumping" through the tape. Scanning the

videotape, she looks for scene breaks, which are usually identified by a "snap into a

new image." However, since these are rushes, there may be many takes of the same

scene on the videotape; all of these takes are logged as one scene.

Medialog stores the beginning and ending timecodes for each scene, as deter-

mined by Massie. By consulting the notes taken during her previous viewing of the

videotape, she types in a "name" for the scene, e.g. "Priest walking toward statues."

Furthermore, she records the subject, which in our example is "Religion." Then she

records whether the scene is sync or silent, meaning whether there is audio for the

scenic views, or whether it is a silent scene. The "Roll #" is the identification num-

ber placed on the videotape when it is stored in the WGBH archives. The "Event

Location" is taken from the viewing notes - in this case, "Palos, Spain." Finally,
the "Creation Date" is taken automatically from the computer's internal clock. In

the logging process, Massie often watches only the beginning of each scene to get

an impression of what the scene is about. Since speed is an essential concern when

logging (and even more important when meeting a program deadline), sometimes

specific details about the videos are not that important in the process. A sample of

the Medialog user interface is shown in Figure 2.1.

Each videotape is logged in a single bin within Medialog. This bin is then exported

as a text document which is imported into Claris Filemaker Pro. Filemaker takes the

imported text document and puts each description "name" into its own record; each

scene is indexed separately within the flat-file database. A simple search verifies that

the data has indeed be imported into the database. These records are then copied

over Appleshare to the main server, where it is accessible to anyone.



r File Edit Bin Special Tools Windows

S stained glass window sync CCA-007 00;01;05;08 00;03;35;08 religion Plos, Spain2 Priest walking towards statues sync CCA-007 00;00;39;00 00;01;00;09 religion Palos, Spain

*1..:.

Figure 2.1: Medialog interface
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By law, all stock footage must be logged. If the footage is original (and therefore

owned by WGBH), this original footage is logged, but not the final programs which

are made from this footage. Some final footage is logged, and this footage often

contains captioning information. This captioning process will be discussed later in

section 2.2.

As shown above, human input is essential for video logging at WGBH. Further-

more, the data is being stored in a simple flat-file database, with searches being

conducted on the inputted data. The desired videotape must then be retrieved from

the archives and viewed to determine if it indeed contained a desired scene. By stor-

ing key frames of each scene, we can create a richer database which would be very

helpful in locating desired scenes.

2.2 WGBH Captioning

The captioning center at WGBH handles both on-line captioning (real-time) as well as

off-line captioning. In dealing with on-line captioning, a stenokeyboard is used which

is linked to a PC computer running Captivator software from Cheetah Systems. The

captions are then translated real-time and are transmitted directly into the videofeed

(whether it is from ABC, CBS, etc.)

Off-line, PC computers are used which run CC Writer, a software package devel-

oped at WGBH specially for writing captioning information. Basically, it is a word

processor package which prepares and transmits the the data with the proper codes.

The computer is connected to a Sony VCR system and monitor, as well as a character

generator/decoder and a Videomedia controller.

These off-line videos can be received weeks or months in advance of the actual

air-date, and include everything from new production videos to rerun programs to

industrial presentations. A person sits at the computer console and listens to the

audio track of the master video, and writes the appropriate dialogue and sound effects

into CC Writer. The software synchronizes the caption text to the audio/video being

shown by using the timecode of the program. The caption writer keeps the reading to

approximately 150 words per minute, and is very careful about both the placement



of the words on the screen (displayed in 3 lines at the bottom of the screen), as well

as the synchronization times of the caption with the audio/video. After the entire

caption information has been written for the video, another person will go through

the video with the sound on and off and "fine-tune" the product.

When the final product is ready, the CC writer file is "crowded" into encoding

form. That is, the caption file data is put through a video caption encoder while the

videotape is being played. This video caption encoder takes the caption file, encodes

it, and inserts it into data line 21 (NTSC standard). The output is recorded onto a

new videotape, which is the CC Master. This tape is then sent to the appropriate

agency for final use.

WGBH also has specialized software which reads the captioning information off

any broadcast (by converting line 21), and then storing this caption data as a text

file.

2.3 Digital Libraries

The digital library research being conducted at the MIT Media Lab is about under-

standing the bits which represent sound, picture, and video. The goal of this research

is to build a "Library Channel," where the vast quantity of information which is cur-

rently stored in conventional libraries will be made accessible to the public's living

rooms. The library channel will include material such as:

* photographs, text, and video from the National Geographic Society

* audio and image material from the Library of Congress

* scientific and educational documentaries of WGBH

* selected audio from ABC Radio

The digital library is not limited to these information sources; it is a "rich mix of

forms and interactions." Each of these forms of information will require different



methods of processing in the back-end, yet each should present a similar interface to

the user, so that people can access the information easily.

The principal areas of research at MIT are: 1) converting and refining the "old"

forms of information into digital forms, 2) resolving intellectual property and eco-

nomic issues, 3) developing content-oriented storage and transaction mechanisms, 4)

developing new interfaces, delivery channels, and useful applications. This is a fairly

comprehensive list of research topics, ranging from low-level bit analysis and image

indexing systems to copyright and socioeconomic issues [MIT]. Furthermore, digi-

tal library research is being conducted in other schools, and similar issues are being

addressed. These research teams are all developing a widely accessible information

source.

The current research in picture processing at MIT revolves around building tools

for content-based searching of videos and image databases, within the context of the

already existing Photobook image database system. The Photobook system makes

direct use of the image content, instead of relying on annotations. Since images con-

tain vast quantities of information, annotating every item in the image and their

interrelationships would be very difficult. Photobook solves this problem by using a

semantics-preserving image compression, which is a compact representation to pre-

serve the essential image similarities. Thus the user can browse image databases

quickly and efficiently by using both the direct image content and the annotation

information stored in an AI database. The interactive browsing uses an X-windows

interface, thus allowing the user to pose flexible queries such as "show me images that

look like this." Three applications discussed in [PPS] are the "Face Photobook", the

"Shape Photobook", and the "Texture Photobook". To relate this to video process-

ing, we must make use of a combination of all these three applications.

A system which parallels the Photobook research is the Query By Image Con-

tent (QBIC) system developed at the IBM Almaden Research Center. This system

creates a database automatically by finding color, texture, and 2D shape features,

and drawing a "global sketch" of the image. These indices are used to create a

multidimensional feature vector for each image. The queries take the form of an n-

dimensional feature vector, and the search/retrieval is done by finding close matches

to this vector by using a matrix calculation. For example, if V and W are feature

vectors, and G is the identity matrix, the calculation (V - W)TG(V - W) would give



us the Euclidean distance between the images. The user could then give more spe-

cific queries based upon the images returned. To make this a more effective process,

the feature vectors should be made to include very rich descriptions, thus providing

more specific characterization of the local image region or object. They should be

invariant under irrelevant variation, so that only the pertinent details are considered.

Also, the metric being used should be analogous to what the user subjectively uses

to determine "what is similar" [Berkeley].

At MIT, one approach to image indexing and retrieval is to collect low-level fea-

tures such as orientation information and combine them with contextual information.

This integration is a complex problem, and a final goal might be to correlate the

features discovered with a "descriptive thesaurus." This link would allow the content

of a picture to be automatically described and catalogued, and also enhance retrieval

mechanisms.

The image processing techniques described above can also be applied to video

processing by reducing the video to a set of still images (e.g. a 2-hour feature film

can be reduced to 1200 still images). However, it is more interesting (and useful)

to extend the dimensionality of the analysis to include time, and use X, Y, and T

coordinates. XYT analysis has already been used to identify the presence of a walking

person. XYT analysis can also be used to study camera motion. By using motion

analysis based on affine transforms, we can annotate video sequences with regard to

their changing camera parameters [MIT].

Another line of research being conducted is that of wavelet decomposition. Wavelet

decomposition allows an image to be decomposed into a number of subimages of pro-

gressively lower resolutions. By selectively combining these subimages, we can be

reconstruct images of higher resolution. This procedure has two advantages: 1) it is

memory efficient (since storing all the subimages requires the same amount of mem-

ory as the original image), and 2) it enhances speed (by storing the lower resolution

images in high-speed memory). This reduced resolution data could be used for quick

graphical browsing in a user interface [UCSB].

For browsing video, it is necessary to be able to "fast forward" through the video

clip in an intelligent manner. That is, we could fast forward through the entire video
stream, or we could fast forward by shots and scenes. This type of "smart browsing"

can be done by using annotations in the video clip. However, this annotation process



requires a person watching the videoclip and then typing in the appropriate segments.

Automating this process by using scene parsing and automatic annotation would make

the input phase of the browsing much more efficient. These parsers would select a key

frame from the shot/scene. Good key frames often occur at the beginning, middle,

and end of clips or scenes, and selection of good key frames will make it possible to

browse through video quickly by reducing the search area to the processing of a few

individual images [PPS].

By integrating shot/scene parsing with the above digital library research and

WGBH's systems, we can develop a very useful system for many people to use and

appreciate.



Chapter 3

Shot Parsing

As mentioned in the previous sections, a shot is a single continuous group of frames.

In raw unedited video, these shots are the result of turning one camera on, shooting

the scene, and turning it off again. In edited video, these different shots can be put

together with several different types of transitions: cuts, dissolves, fade ins and fade

outs, and wipes.

A cut is a transition whereby the camera stops recording one scene and starts

shooting another. In unedited video, cuts are the only transitions between shots.

Cuts are also the most common transition in edited video. In a dissolve, the intensity

of one frame increases from zero to normal, while the intensity of the other frame

decreases from normal to zero. Fade ins and outs are similar to dissolves, except that

one of the frames is a blank one. Wipes occur when the one frame "slides" into the

other frame at a particular angle, taking its place. The algorithms presented here

are specifically designed to detect cuts (being the most common transition), and will

sometimes also detect the other transitions.

3.1 Algorithms

A general cut detection system consists of three stages: preprocessing, statistics, and

hypothesis testing, as shown in Figure 3.1 [Szummer]. The raw video is introduced



Video Video SimilarityMeasure> Hypothesis Cut
Preprocessing Statistics Testing

No cut

Figure 3.1: Cut detection modules

into the preprocessing module, which applies spatial filtering or spatial subsampling

to each frame in the video to obtain a new video. This new video is inputted into

the statistics module which then outputs a single number for each pair of successive

frames that describes their similarity. Finally, this number is used in a hypothesis

test to determine whether a cut has occurred.

3.1.1 Preprocessing

Several different types of preprocessing can be used. Low-pass filtering or smoothing

of the image may make the cut detector less sensitive to noise and camera motion

or object motion. However, smoothing and filtering of an entire image is a computa-

tionally expensive operation. Unless a hardware implementation is developed which

can quickly perform these operations, filtering may not be feasible for real-time shot

detection. Another possibility is the use of subsampling, which reduces the number

of pixels to be processed in the statistics module.

3.1.2 Statistics

The statistics module calculates a difference measure di for every pair of successive

frames. Successive frames within a shot are usually very similar to each other, and

cuts introduce discontinuities which will result in a large difference measure. A cut

is reported when the difference is large. Listed below is a summary of the statistics

used to calculate di, as described by Hampapapur et al, Nagasaka et al, Otsuji, and

Elliot [HJW1, HJW2, NT, OT, Elliot].



* Difference in gray-level averages over the whole frame

* Number of pixels that change in gray-level by more than A

* Sum of the absolute difference of gray-level or color values corresponding pixels.

* Histograms: Histogram buckets group pixels of similar gray-levels or similar
colors. Let Hi(b) denote the number of pixels in histogram bucket b at frame i.

1. Difference of gray-level or color histograms.

64

di= E IH2(b) - Hg,_(b)l
b=1

2. Chi-squared test of gray-level or color histograms.

64 (H,(b)- Hi-_(b))2

b=l Hi(b)

Since the performance of the cut detector depends of the combination of all mod-

ules, it is not possible to analyze the statistics in isolation. However, the statistics

above have been listed roughly from worst to best performance according to Nagasaka

and Tanaka. Clearly the histogram techniques are superior, but the differences be-

tween the chi-square and the simple difference methods are small. The statistics

described above are first order, since these are the simplest techniques to use. Robust

estimation techniques can be added to any of the above techniques, and help elimi-

nate errors due to noise in the image (such as object motion or local light sources)

[Szummer].

3.1.3 Hypothesis Testing

Below are listed three methods used in determining whether a cut has occurred. In

all methods, a cut is reported when the values ai, bi, ci exceed a threshold T.

* ai = di

* bi = di - di-1

* ci = ST1(di) - maxT2minT2STl(di) where ST1 = minTlmaxT1 (d)



The first method [Elliot] detects a scene change whenever the two compared frames

are sufficiently different. However, camera pans or zooms can cause the value of ai to

be high for several frames, thus causing false reports of scene changes. This problem

is addressed in the second method, which is commonly used. In this method bi takes

the difference of successive di's (a time derivative of d). Thus di can be large without

reporting scene changes, as long as it does not change rapidly. Furthermore, this

method produces sharper peaks than the first method, thus making it easier to find

a good threshold.

Problems with the second method are realized when the video contains slow mo-

tion, animation, or when the video has been frame-rate converted from film [OT]. In

these cases, frames may be repeated causing di = 0, and thus resulting in a very large

difference and false reports of scene changes. Otsuji and Tonomura thus introduce

the third method to overcome these problems. The parameters T1 and T2 measure

the number of frames to be used in the min and max operations, and are typically

set to T1 = 4 and T2 = 2. Using a simple statistic, namely the number of pixels

which have changed in gray level by more than A, and this hypothesis test, Otsuji

and Tonomura report cut detection rates of 98% for nearly three hours of video (taken

from a sports show, a news cast, and a movie.) It appears that the different hypothe-

sis testing techniques may be important; however, these different techniques have not

been compared here.

3.2 Comparison

Szummer implemented four different statistics and used a hypothesis test based on

the thresholding bi = di - di- 1. The statistics are:

Algorithm 0: Color histogram
Algorithm 1: Chi-squared color histogram
Algorithm 2: Chi-squared color histogram with robust statistics
Algorithm 3: Gray-level histogram

The histograms all had 64 bins. Preprocessing was applied only before the gray-

level histogram, where a 3 x 3 Gaussian smoothing filter was applied twice. The robust



Table 3.1: Cut detection on "Scenes of Boston"

Statistic Resolution % False positives % Misses
Color histogram (RGB) 160xl 18% 14%
Color histogram (RGB) 160x 120 7% 9%
Gray-level histogram + preproc. 160x 120 5% 5%

chi-squared histogram divided the image into 4 x 4 subblocks and discarded half of the

most dissimilar blocks. Currently, the algorithms require that the digitized video be

in raw non-interlaced RGB format. I modified the algorithms to allow for different

searching patterns, which will be discussed further in section 3.2.2.

3.2.1 Scenes of Boston

The data for the test performed by Szummer consisted of 10 minutes of video from

and unedited documentary with predominately outdoor scenes, which we have called

"Scenes of Boston." It was grabbed at a resolution of 160 x 120 pixels and a frame rate

of 3.5 frames per second. There were a total of 2144 frames and 106 scene changes

(as labeled by Szummer).

His results are summarized in Table 3.1. They showed that gray-level histogram

with preprocessing achieved the best results, better than both the chi-squared his-

togram and the robust chi-squared histogram. Furthermore, Szummer observed that

few pixels are needed to perform a scene cut detection. As shown in the above table,
using only 160 pixels from the second scan horizontal scan line resulted in about 18

false positives and 14 misses when using the color histogram.

3.2.2 NOVA Science Documentary

To further test the effectiveness of the statistics in detecting cuts, I digitized the

first 28 minutes of a 54 minute NOVA episode entitled "Can Science Build a Better
Athlete" which was provided by WGBH. The hardware setup was as follows: a VHS
video cassette recorder was plugged directly into the SunVideo digitizing card on a
Sun Sparcstation 20. By digitizing onto a local drive, I was able to grab data at a



Table 3.2: Cut detection on NOVA documentary

Statistic % False positives % Misses

Color histogram (RGB) 15.1% 23.4%
Chi-square color histogram 22.0% 33.7%
Robust Chi-square color histogram 15.5% 19.2%
Gray-level histogram + preproc. 20.3% 18.6%

resolution of 160x 120 pixels and a frame rate of 30 frames per second. There were a

total of 50,400 frames with 291 shots. Furthermore, this proved to be a full test of

the capabilities of the shot parser to detect all types of shot transitions. Of the 291

shots, the transitions break down as follows: 248 pure cuts, 27 fades, 3 wipes, and 12

graphic overlays. A graphic overlay is when the principal image intensity is reduced

by half, and a computer generated graphic (such as a chart or graph) is placed over

the principal image. Sometimes this graphic overlay was steady and sometimes it

changed, and the principal image was always in constant motion.

This footage contained shots which were in color as well as black-and-white. There

were several slow motion scenes in both color and gray-scale. The footage contained

personal interviews with stationary people, action footage of various sports (basket-

ball, swimming, track and field events, gymnastics, etc.) and computer generated

images. Combined with the different types of transitions and special effects described

above, this NOVA documentary provided a wide range of tests for the shot detection

statistics.

The full 160x120 resolution was used in the algorithms, and several trial runs

were used to determine an appropriate threshold for each statistic. The thresholds

used were: algorithm 0, th = 1.2; algorithm 1: th = 2.5; algorithm 2: th = 1.4;

algorithm 3: th = 0.75. Due to disk-space considerations, the 28 minutes of footage

was divided into segments of about 8500 frames (about 4 minutes, 40 sec), and the

data was compiled together. The results of these tests are summarized in Table 3.2.

We can see that the gray-level histogram with preprocessing has the lowest miss

rate; however, the robust chi-square has a lower false positive rate. The simple color

histogram also performed fairly well.

A unique feature of this film was that between pure cuts, there was an extra

frame which was a juxtaposition of the frames before and after the cut. This is likely

caused by the video editing system which was used; it is hypothesized that the edit



Table 3.3: Modified cut detection on NOVA documentary

Statistic % False positives % Misses
Color histogram (RGB) 8.6% 23.4%
Chi-square color histogram 14.7% 33.7%
Robust Chi-square color histogram 6.9% 19.2%
Gray-level histogram + preproc. 12.3% 18.6%

system cut on field 2, thus creating the juxtaposed frame. This interlacing caused

problems with the shot parser when it used the full image in the statistic (160x120),
since it would sometimes detect both the interlaced frame and the next frame as a

scene cut. I attempted to eliminate this by modifying the algorithms so that they

would only use either the odd horizontal scroll lines or the even horizontal scroll lines

for the pixel detection. The threshold was half of what was used before, since the

difference measure is using half the number of pixels as before. Also, the algorithms

were changed so that they could check for a vertical interlacing and checkerboard

interlacing (with appropriately modified thresholds). It appears that the interlacing

does not follow a simple pattern, since these modified algorithms did not completely

eliminate the problem. They reduced the false-positive rate slightly, but they also

increased the miss rate slightly - both of which were not statistically significant

changes.

Although it appears that these algorithms could not automatically filter out the

interlaced frames, it is interesting to see what the results would be if these frames

were removed manually. These results are summarized in Table 3.3. An average of

about 22 false positives (7.6%) due to interlaced frames was removed. From this data,
it appears that the only truly poor statistic was the chi-square color histogram. For

general video, the color histogram, the robust chi-square histogram, and the gray-level
histogram with preprocessing all performed on approximately the same level.

It is interesting to note that most of the misses were the result of the different
types of transitions. That is, the fades, wipes, and graphic overlays often presented
difficulty for the shot parsing algorithms. If we subtract out all non-cut transitions
from the miss rate and re-calculate the miss-rate, we obtain much lower numbers, as
shown in Table 3.4. These results are similar to those obtained by Szummer in his
tests on the "Scenes of Boston" data. Please note that Table 3.4 is an estimate of
the miss rate by simply subtracting out the non-cut transitions. Actually, some of



Table 3.4: Modified cut detection on NOVA documentary - cuts only

Statistic % False positives j% Misses

Color histogram (RGB) 8.6% 9.0%
Chi-square color histogram 14.7% 19.3%
Robust Chi-square color histogram 6.9% 4.8%
Gray-level histogram + preproc. 12.3% 4.2%

the statistics had slightly better success in detecting these effects, as will be discussed

in the next section. These algorithms may work better with raw unedited footage;

production footage (with the different transitions and "special effects" seems to pose

more problems.

3.3 Factors Affecting Shot Detection

The different types of transitions will clearly affect the performance of the algorithms.

Furthermore, the frame rate, the resolution, the use of color, and the content of the

video will also affect the performance. These factors are considered next.

3.3.1 Transition Types

Any transitions which take place over several frames are much more difficult to detect.

In the NOVA footage, there were 27 fades, of which 3 were four-frame fades. The other

24 fades averaged between twenty and thirty frames. The four different statistics were

able to detect the four-frame fades fairly well, either reporting either two or all three of

the changes. However, all of these statistics missed the long fades. This was expected,
since the gradual fade does not create a large difference value between frames, and

thus the shot is not easily detected by the algorithms. Furthermore, fifteen of the

above fades were part of a horizontal scrolling scene in the footage. That is, there were

several images which were scrolling through the screen, and simultaneously fading into

new images. Since the scrolling image was fairly similar from frame to frame and since

the fades were 30-frame fades, this scene was not detected by any of the algorithms.

There were 3 wipes which occurred in the footage. All the wipes moved from a



black-and-white image to a color image (or vice versa), and took place over about 30
frames. This lengthy period made these wipes very difficult to detect. Surprisingly,
the gray scale histogram with preprocessing managed to detect two of the three wipes
which occurred in this footage. The other three statistics missed all the wipes. I am

uncertain of whether the gray-level rendering of the color image may have allowed

for the detector to work where a color rendering of a gray-scale image had problems.

Although further tests need to be conducted, the detection of the wipes by this

algorithm makes it very attractive to use.

There were 12 graphic overlays in the footage. The worst performing algorithm

(chi-square color histogram) detected only 4 of these transitions. The remaining three

algorithms (the gray-level histogram with preprocessing, the robust chi-square color

histogram, and the color histogram) detected about half of the shot changes which

occurred during the graphic overlays.

Clearly, these algorithms are designed specifically for detecting cuts. However,
the "better" algorithms managed to detect some of the other transitions and effects,
with the gray-level histogram performing the best overall.

3.3.2 Frame Rate

Having a low frame rate makes it difficult to detect shot changes, since there are
more differences between successive frames as the time gap between them increases.
Thus, a higher frame rate may reduce the number of false positives. However, since
misses are the result of a similar successive frames (as determined by the algorithm),
a higher frame rate is not likely to change the miss rate. Szummer's footage used
a frame rate of 3.5 frames per second, while my footage used the full 30 frames per
second. I believe that having a higher frame rate is useful in reducing false positives,
and that the higher number of false positives in my footage is the result of other
factors (as discussed below).



3.3.3 Resolution

Szummer performed a shot-detection using only 160 pixels from the second horizontal

scan line, resulting in a higher percentage of false positives and misses, yet still per-

forming fairly well. By using less than one percent of the image, the algorithm can run

more quickly. This can be very beneficial in real-time applications of shot-detection.

On the other hand, using the whole 160 x 120 pixels has much better performance but

is much slower. One must determine which is more important, accuracy or speed.

3.3.4 Color

Some of the statistics use RGB color in their processing. For example, the implemen-

tation of the color histogram statistic discretizes RGB space into 64 bins, and counts

how many pixels of a given bin-color there are by using the two-most significant pix-

els for R, G, and B. According to Nagasaka and Tanaka, color histograms perform

better than gray-level histograms. However, Szummer's test suite showed that the

gray-level histogram outperformed the color histograms. My tests showed that the

gray-level histogram performed at a similar level to the robust chi-square color his-

togram and color histograms. It is possible that better results may be obtained by

using a different color space than RGB.

In the NOVA footage, there were sequences of gray-level shots, color-shots, and

transitions from gray-level to color. The statistics were able to detect almost all

the transitions between gray-level and color. However, the color algorithms often had

difficulty in detecting the shots in a black-and-white sequence. This may be explained

by the fact that RGB algorithms are attempting to place pixels in the appropriate

bin based on RGB information, and the RGB images of a successive black-and-white

frames may appear very similar.

The NOVA footage also contained many sequences of computer graphics anima-

tion. These graphics had a limited number of colors (when compared with a real-world

image). This limited color palette sometimes resulted in problems with the detectors,

since there was not enough color contrast changes in the image.



3.3.5 Video Content

Certain types of video can present difficulties for a shot-detector. Szummer reported

that uneven lighting conditions (such as large shadows), reflections on water, and flash

can increase false positives. Furthermore, sports footage contains fast pans and rapid

object motion can also cause false positives. In my tests using the NOVA footage
(which contain all of the above) this was proven to be true. The NOVA footage also

contained computer animation sequences and old video clips which were sometimes
"choppy." These non-smooth frame transitions fooled the algorithm into detecting a

scene change when in fact none occurred, thus increasing the false positive rate.

Elliot found that music videos shown on MTV present a very challenging prob-
lem, and that color histograms are not adequate for determining a shot. Also, soap

operas and other similar television shows containing many indoor scenes with similar

backgrounds may increase misses.

In all these cases, it is often necessary to develop a more precise definition of a

shot, since quick motion and computer animation changes the traditional "camera

on-off" definition of a shot.

3.4 Other Systems

A system was built by Sasnett in 1985 which coded changes in image content (such as
luminance and chrominance) for nine points spread through the screen. An algorithm
was devised where the different regions of the screen (as determined by the points)
voted on whether a scene change had occurred, based upon component differences
and average luminance differences. Zooms, pans, and other such transitions were
usually not able to be detected. Sasnett's "Scene Detector" (which was actually a
shot detector) captured 90% of valid changes. However, it also had between 15% and
35% false positives, depending on the scene content [Sasnett].

Pincever developed a system in 1991 which detected shots in raw footage by using
audio parsing (which will be discussed further in Chapter 4). Pincever's shot detec-
tor has two levels. In the first level, the soundfile was divided into chunks equivalent



to a frame of video, and the root-mean-squared (RMS) amplitude was obtained for

each block. The first-level parser then looked for changes in the average RMS value

which were larger than a set tolerance level, and reported the three frames preceding

and boundary and the three frames after the boundary to the user as a possible shot

boundary (and the user then made the final determination). The second-level parser

was performed only if the first level seemed ambiguous. In this case, a Short Time

Fourier Transform was performed on the soundfile and the average spectrum and av-

erage amplitude (RMS spectrum) were calculated. These were used with heuristics

based on observations of raw footage to report a shot boundary. Pincever concluded

that sound can be used to determine shot boundaries in raw video [Pincever]. How-

ever, it is uncertain if his algorithms can be used in edited production grade video.

One hardware cut detector which is sold in the market today is Scene Stealer,

developed by Dubner International, Inc. It preprocesses video using a low-pass filter,
and then subsampling the image by a factor of 7 in the horizontal direction only. It

uses the full 30 frames per second of the video, and about 1500 points per field in the

gray-level histogram statistic.



Chapter 4

Scene Parsing

As mentioned in the introduction, a scene is a unit of action or substance within

the video. In feature films, there are often many scenes which are characterized by

plot changes. As mentioned previously, a video such as Terminator has several fight

scenes, a love scene, a chase scene, etc. Within a documentary such as the NOVA

science documentary discussed in Chapter 3, there are swimming scenes, basketball

scenes, etc.

Since scenes are determined by the substance of the video, it is possible that the

beginning of a scene is not the beginning of a shot. However, it is often convenient

to associate the beginning of a scene with the first shot of the scene. Another conse-

quence of scenes being determined by content is that we cannot simply apply video

processing algorithms to determine scene transitions.

4.1 Captioning

To parse a video into scenes, it seems at first glance that we must understand the
substance of the video. The NOVA video obtained from WGBH is close-captioned,
and it was thought that this could be useful. WGBH provided me with a caption
decoder with a serial port which could be used to obtain the caption information off
the video and dump it directly into the workstation. As with the specialized software



used by WGBH, the captioning information can then be stored as a text file. This

text can then be used as part of the indexing scheme for a database containing both

video and text indices.

The principal problem with using captioning to determine scene transitions is

that we must interpret the text outputted by the decoder. That is, the scene tran-

sition detection problem becomes one of artificial intelligence and natural language

processing.

4.1.1 Artificial Intelligence

Two artificial intelligence systems often used are rule-based and knowledge-based sys-

tems. A rule-based system uses a set of predefined rules which are programmed into

the system to make decisions. A knowledge-based system has pertinent knowledge

already stored, and the computer can use this knowledge to generalize or to perform

some set of functions. This knowledge can take the form of rules (making knowledge

based systems a superset of rule-based systems) or common knowledge. A common

representation of such knowledge is a "heuristic" which can be thought of as "infor-

mation dependent on a particular task"; these heuristics are guesses which are used

to make inferences as to what is actually happening.

We can apply these concepts to observations of raw footage as well as the caption

information. Heuristics can be formulated that define what a shot, sequence, and

scene are in terms of the video image and the textual language. These heuristics can

then be programmed into a rule-based module to examine data and make decisions.

This is a very difficult task, and I shall not discuss any more of it here. However,

natural language processing may reach the point where generalized substance infor-

mation can be recognized; this breakthrough would be beneficial to many areas of

research, including scene parsing.



4.2 Audio

Since understanding the substance of a video is very difficult to do using machine

cognition, the task remains of finding an alternate method of segmenting video into

scenes. The audio track of movies and programs may be useful in determining these

scene transitions.

4.2.1 Background

When shots are first recorded, a passage of sound is often recorded along with it.

This sound is called synchronous sound. Synchronous sound is made up of dialog and

ambient sound. With most films used today, this synchronous soundtrack is physically

bound to the picture. However, the digital world presents us with the possibility of

having separate video and audio servers; in this case, an identifying tag must be used

to guarantee that a synchronous relationship will be maintained between the audio

and video files.

A different category of sound is wild sound. As explained by the name, these

sounds are not specifically synchronized to the action of the video. For example,
in the past when theaters were first being outfitted for projection, presenters would

accompany these movies with live music. This music was often performed live and

free form, selected to enhance particular reactions of the audience [DPAS].

Currently, the sound is locked to the moving image. Most of the audio tracks for

films today (both documentaries and feature films) are created in dubbing studios and

foley pits during the post-production process. Sound is often used to blur distinctions

at the edges of shots, sequences, and scenes. Also, explanatory commentary or music

may be added to make the information conveyed by the image more explicit, to

heighten the perception of an action, or to set a mood [Pincever]. The result is a

synchronous soundtrack which accompanies and enhances the video experience.

The importance of the soundtrack in a movie is evident if one watches almost

any movie with the sound turned off. A person can often identify scene transitions

by listening to the audio track and turning off the video. For example, an action

scene is often accompanied by music which has a fast-beat, along with the transient



noises of gunshots or police sirens. A love scene often has romantic music in the

soundtrack accompanying the image. A person's ability to determine a scene change

by the audio track is based both on the transitions between levels of audio (e.g.

dialogue --- loud music) as well as a conceptual understanding of the emotions evoked

by different soundtrack contents. This conceptual understanding is once again an

artificial intelligence problem. However, there are many properties of an audio signal

which we can exploit.

4.2.2 Audio Processing Tools

There are many analytical tools in signal processing which can be used to transform

the audio data into a more useful form. Furthermore, statistical properties of the

audio signal, such as average power of a block of samples, can be computed. This

time-domain analysis of the audio signal can tell us where changes in the power of

the signal occurs. This change in the audio signal may be useful in marking a scene

change.

Another tool which may be useful is the Fast Fourier Transform, or FFT. The

FFT allows for a spectral (frequency-domain) analysis of an audio signal. Although

FFT's are very accurate (since the frequency domain provides a lot of information)

they are also computationally expensive. Thus, the FFT can sometimes be replaced

by simpler transforms.

Once the spectrum of the audio signal has been obtained, the average spectrum

and the average amplitude (RMS spectrum) can be calculated. These techniques

allow for analysis of the changes in the spectral content of a signal, as well as changes

in the power distribution. If there are considerable changes in the power distribution

of two successive audio samples, is can be assumed that the spectral content of these

samples is different.

As mentioned in Chapter 3, Pincever uses these tools to find shot boundaries.

However, his methodology may be extended to find scene boundaries in final produc-

tion video.



4.3 Algorithms

I implemented three different algorithms to detect scenes using digitized audio, using a

similar format as the shot parser discussed in the previous chapter. No preprocessing

was used. The statistic used for the first two algorithms was the average power

(RMS power) of the time-domain signal. Two different methods of hypothesis testing

were used, as shown below. The third algorithm used the average amplitude (RMS

spectrum) as the statistic. Since the work was done on a Sun Sparc 20, the program

reads in audio files in any format which the Sun's internal audio programs can read.

The algorithms were as follows:

* Algorithm 0
Given two bins Ai and Ai-1 of constant size.
Compute RMSPower(Ai) and RMSPower(Ai_l).
Thresholding value t = RMSPower(Ai)/RMSPower(Ai_1).
That is, t is the percentage change in average power from one bin to the next.
A scene transition is reported when t > T (given threshold).

* Algorithm 1
Given three bins Ai, Ai- 1, and Ai- 2 of constant size.
Compute di = IRMSPower(Ai) - RMSPower(Ai_1)
and di1_ = IRMSPower(A_i1) - RMSPower(Ai- 2)J.
Thresholding value t = JId - di-1l.
A scene transition is reported when t > T (given threshold).

* Algorithm 2
Given three bins Ai, Ai- 1, and Ai- 2 of constant size.
Compute FFT of each bin
Compute di = IRMSSpectrum(FFT,) - RMSSpectrum(FFTi_,)I
and di-1 = IRMSSpectrum(FFT,_j) - RMSSpectrum(FFT_2) |.
Thresholding value t = Idi - di- 1 .
A scene transition is reported when t > T (given threshold).

In the first method, it was initially considered to use the thresholding

t = IRMSPower(Ai) - RMSPower(Ai_) I

However, this was considered to be impractical since these fluctuations may be rapid
and cause a high false positive rate. By using a percentage thresholding value, it was



hoped to reduce this problem. The second and third methods use the same hypothesis

testing as the shot parsing algorithms. This time derivative allows for high values of

di without reporting scene transitions, as long as it does not change rapidly. Also, as

mentioned in the previous chapter, this method produces sharp peaks, thus making

it easier to find a good threshold.

4.4 Results

The audio being analyzed was that of the NOVA Science Documentary, "Can Science

Build a Better Athlete." The 54 minutes of audio was digitized at a rate of 8 kHz.

The audio track of the documentary was composed of a narrator speaking, a music

soundtrack, interviews, sports scenes and activities, etc. Choosing where the scene

transitions took place was a difficult task. Different people will likely pick scene

transitions at different times, as well as a different total number of scene transitions.

In viewing the video, I determined that it was possible to perceive a minimum of 20

transitions and a maximum of over 50 transitions. I chose a middle ground at a slightly

"higher level", consisting of 28 scenes. These scenes were defined as "introduction",
"swimming scene", "rifle shooting scene" etc., each of which had subscenes. For

example, the rifle shooting scene contained subscenes of a man shooting a rifle, a

computer image, etc. Although it is possible to choose these as individual scenes, I

believe that it is better to view them as components of a larger scene.

Currently the program outputs a timecode corresponding to the scene change,
which I then compared to my annotated list. I counted a "hit" if the algorithm chose

a key frame within each scene. As mentioned in the introduction, a key frame should

be representative of each scene, and therefore need not come at the beginning of the

scene.

Since Pincever showed that the audio track can be used to perform shot parsing,
this was not repeated. The size of the bins used was much larger than a frame. I

tested bin sizes of one and two seconds (corresponding to 8000 and 16000 samples),
which is the equivalent of 30 and 60 frames of the video. It is conceivable that if

the bin size were set to one frame, Pincever's results could be duplicated. Test trials

resulted in setting an appropriate thresholding value for each algorithm. The results



Table 4.1: Scene detection on NOVA documentary

Algorithm Bin size T % False positives I% Misses
0 8000 0.17 57% 29%
0 16000 0.13 46% 29%
1 8000 25 36% 36%
1 16000 19 29% 25%
2 8000 2.15 35% 25%
2 16000 1.44 25% 14%

of these algorithms are summarized in Table 4.1.

Algorithm 0 reported many false positives, although the larger bin size did reduce

this rate somewhat. Algorithm 1 performed much better, especially when the bin

size was increased to 16000. Algorithm 2 clearly had the best performance. The

spectral data did indeed provide the most information about the audio track, and

this algorithm found the "beginning" of the scenes better than the other two algo-

rithms. However it was also the slowest algorithm. Although the results above may

seem disheartening (since the miss rates and false positive rates are still fairly high),
they fell within my expectations. The audio track of a film need not have a corre-

sponding relationship with the scenes, especially in a documentary. In a feature film,
this may be a much closer analog, since "action scenes" and "love scenes" are often

accompanied by a particular audio track.

4.5 Factors Affecting Scene Detection

There are many factors which affect the detection of scenes using audio. These include
the audio/video relationship, the audio content, the audio rate, and the size of the
buckets being used. These factors are considered next.

4.5.1 Audio/Video Relationship

The relationship between the audio and the video of a film is probably the most
important factor affecting the above scene detection algorithms. Since we are using



audio to find scenes, it stands to reason that if the audio has a clear link to the scenes,

then the algorithms will be more effective. As described above, the soundtracks of

many feature films are used to enhance the mood of the film; in these cases, it is

likely that each scene will have a different mood, and thus a different background

soundtrack.

In documentaries (such as the NOVA documentary being studied), the audio track

is more often used to provide information. Also, a narrator is often speaking through

scenes. This provides some continuity between the shots of a scene and helps with

scene detection. In scenes where there is no "added" soundtrack, a constant ambient

background sound level may give clues as to the boundaries of a scene. That is, a

scene often contains multiple shots in the same location, and thus have the same

background noise levels.

However, it is not always certain that the audio and video of a film's scenes will

be completely interconnected. Although "good film making" often relates these two,

there is no guarantee that this will be the case.

4.5.2 Audio Content

Even if the audio track is a 100% match with the video track, it is still possible that

loud bangs and large variances in sound or spectrum could confuse the parser. The

algorithms would produce higher false positive rate due to these volatile transitions.

One might be able to compensate by increasing the bin size, but this can create other

problems (as discussed below).

4.5.3 Audio Rate

The rate at which the audio is sampled may make a difference in the detection al-

gorithms. A faster sampling rate will result in greater smoothness of transitions and

sound levels within a scene. Thus scene transitions may be more prominent and more

easily detected. The NOVA clip was grabbed at 8 kHz, which is fairly low. Higher

rates should be tried, up to the compact disc rate of 44.1 kHz.



4.5.4 Bin Size

Bin sizes of one and two seconds were chosen for the interval. These values were
based on a personal inspection of the audio track of the NOVA documentary. Using
a larger bin size would have a similar effect to increasing the sample rate; it would
smooth out the sound levels within a scene. However, one must be careful not to use
too large a bin; this could result in too much smoothing across scene transitions and

potentially increase the miss rate.

Using too small a bin has the opposite effect; the algorithm will pick up more of
the fluctuations in the audio track. This could potentially increase the false positive
rate.





Chapter 5

Interface

People perceive products on two levels: functionality and features, and ease of use. For

this reason, the user interface is one of the most important aspects of a product. Much

time is spent in designing a good interface for commercial products, and extensive

pilot testing and customer feedback is used to improve the design.

I am not a graphic designer and I do not expect that the interfaces that I propose

are exceptional. Here I will give an overview of some design considerations relating

to the use of the shot and scene parsers discussed in Chapter 3 and Chapter 4.

5.1 Users

The first consideration is who will be using this interface. The shot and scene parsers

can be used in many situations, and thus may have many different users. As men-

tioned in the background, shot/scene parsing could be incorporated into a digital

library for use in browsing video. In this case, the users would be the general public.

As mentioned by Pincever, shot/scene parsing could also be used to aid in home video

creation from raw footage. Thus we would be considering a subset of the public -
those people who want to create their own "home movies." On the other end of this

spectrum, we have professional movie editors. These people have specialized software

which they use for editing; however, it is possible that they would benefit from an



automatic parser of film. Another specialized use of these parsers is for cataloging

video, which is what WGBH mainly needs.

5.1.1 Digital Library

For use in digital libraries, there are two aspects to consider: the final user side, and

the input side. For the final user (which is the general public) the interface for the

video browser should be simple to use. Ideally, the video would be stored completely

in digital form where it could be recalled and played immediately. However since

digital video takes up enormous amounts of memory, this is not always practical.

Thus we could browse using the key frames pulled from the shots and scenes of the

video. If the entire video (or sections of it) were stored digitally, an interface could

be designed so that each key frame would be indexed directly into the video, thus

allowing for more complex browsing. For example, after searching through the key

frames for scenes, one could "choose" a video frame and get an short videoclip of that

scene. Thus, there are several levels of browsing: shot, scene, and the entire video.

Inputting video and their respective key frames is an important task, but one

which can be mostly automated. Thus, I am not really concerned with the input

interface into the digital library. We could conceivably use the commands which are

presently being used to create the video key frames. However, a suitable interface

must be considered for taking this video and inputting it into the digital library as

well as creating the cross indices within the database.

5.1.2 WGBH

In WGBH's case, digitizing their entire video archives is not really feasible at this

point in time. Thus the interface would be used to browse through a multimedia

database. A database of these key frames which was also annotated with text would

prove very useful to film producers, since they could search for a specific topic and

see a sample of the video immediately.

On the input side of this database, the parsers could be used to generate the



key frames automatically. However, one still needs to annotate the text part of
the database manually. Currently, object recognition in these images is a difficult

task, and much research is being done in this field. For example, the Vision and
Modeling Group at the MIT Media Lab has done texture mapping work, whereby

the texture of an image can be used to determine identity with a fairly good rate of

success. For example, a person could manually annotate a scene describing "grass"

and "sky"; the computer would then use these textures as a standard and map all

other frames which have similar textures with the same key words [Szummer2]. Using

these techniques and a video database system such as Photobook could eventually

make this input/annotation process more automated.

Currently, video logging at WGBH uses Avid Medialog (as discussed in Chap-

ter 2), and the user interface for this product is shown in Figure 2.1. It is conceivable

that a similar user interface could be developed which utilizes these algorithms, but

still allows the user to annotate the text part of the database manually, as well has

having the final decision as to whether a shot or scene really took place. If this "over-

seer" technique is used, the threshold for the algorithms would be tailored toward

fewer misses.

5.1.3 Film Making

For film makers (both professional and home), the interface for the browser must

be useful for locating clips and putting them together, as well as logging them in
the first place. Home users (who usually have little experience with video editing

equipment) will likely desire an interface which is easy to use and understand in their
editing process. Professional users have much experience with editing equipment

and software, and thus any new browser should have similar features. For example,
the most common "browsing mechanism" in a video editing room is the jog/shuttle
button. In one mode, this allows the user to fast forward/play/rewind a videoclip
by rotating the knob. In another mode, it allows the user to move through the film
slowly and with precision by rotating the knob. This jog/shuttle interface has been
seen recently on videocassette recorders.

It is possible that a "virtual jog/shuttle" might be used as a user interface on
the screen. However, a problem with this is that it will not have the "feel" of a



jog/shuttle. Currently, WGBH (and most New England area filmmakers) use Avid

Media Composer in their editing process. In the western U.S., software packages

such as Videocube, Lightbox, and a Sony editing system, are used more often. These

systems all have a visual interface which allows the user to see all the different

tracks of video and audio, and how they overlay with each other. The standard

play/stop/forward/rewind buttons are push buttons on the screen. The shot/scene

browsing and logging mechanism could be a subsystem of this large video-editing

system, and the interface would allow for the video (if in completely digital format)

to be dumped directly into the editing software. Currently, the Avid software stores

1 hour 15 minutes of video on 2 gigabytes of diskspace, and the audio is sampled

at 44-48 kHz. They are stored separately and indexed together for editing, and the

software dumps it all out to create the final production tape.

5.2 Browser

A proposed browsing interface is suggested in Figure 5.1. Although this interface is

specific to the proposed concepts for WGBH, it can apply to other situations. This

browser has the standard play, stop, fast forward, and rewind buttons. However, the

step search in both directions is determined by whether the "shot" or the "scene"

box is highlighted. If the video box is highlighted, the step button will show one

frame at a time in the actual video (providing the entire video is digitized). Even

if the algorithms discussed in this paper are not used, and the shot and scene key

frames are manually extracted, this interface could still be used. Also, clicking on the

key frame could bring up the full videoclip of the shot or scene chosen. The frame

number could be used to "jump" to a particular frame in the video. The FPS value

(frames per second) tells the rate at which the browser will show frames when the

"play" button is pressed.

The "database search" key creates and interface between the video browser and

database query mechanisms. These database query fields would be determined by the

user. For example, suppose that the only query fields were the title of the video, the

record date, and the keyword describing the shot/scene. Then pressing the "database

search" key could bring up a window such as in Figure 3.2. This search could return

a list of files in the "Select Files" window, which the user would click or type in, and
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the selected files would be copied from the left column to the right column. All the

selected files would then be streamed to the video browser for viewing.

This suggested interface can be customized and improved upon for each of the

specific user areas above. Here I am simply developing ideas regarding a good interface

for video browsing.





Chapter 6

Further Research

There are many directions for further research in shot/scene parsing. The following

are ideas which will provide greater flexibility and functionality to the systems, as

well as improving the effectiveness of the current algorithms. As computing power

increases, other methods may be developed using advanced parsing algorithms.

6.1 Shot Parsing

The NOVA science documentary provided a very rich footage against which to test

the shot parser. The slow-motion sequences, animation, and numerous different in-

terviews and sporting events was very useful to test the parser. However, it would

be beneficial to test the shot detector against other sets of data, namely soap operas,
news broadcasts, sporting events, and feature films. Although fairly good conclusions

can be drawn from the NOVA footage, more data would give a better picture of what

factors affect these detection algorithms.

The algorithms developed use a single hypothesis testing technique, and it was
deemed more important to find a good statistic of image similarity. Further research
would involve using the various different hypothesis testing techniques, such as the
one discussed by Otsuji and Tonomura [OT].



Other statistics should be tested. For example, it might be possible to use pre-

processing with a motion compensation algorithm, followed by a statistic comparing

pixel differences to analyze spatial location. An understanding of optical flow would

be useful in this analysis of spatial location and movement. Perhaps the texture of

the video can be used to determine similarity. Also, second order statistics (or higher

order statistics) should be tested as to their effectiveness in shot parsing. In doing

this research, one must always weight the computation power required versus the

benefits of the "improved algorithm."

Currently, the algorithms use raw video in a non-interlaced RGB format. Since

most movies and videos would be stored in some compressed format, it is necessary

to run the algorithms directly on an MPEG, JPEG, or other compression format film

without prior decompression. It has been shown that taking the I-frames of a MPEG

movie is similar to grabbing video at about 2-3 frames per second, which is similar

to Szummer's test footage. A modified algorithm may be able to analyze and parse

the compressed format and generate the appropriate key frames.

6.2 Scene Parsing

The scene parsing algorithm should be integrated with the video stream, so that

the actual frame of each scene would be outputted as a key frame. This is easily

accomplished by synchronizing the frame rate of the video with the sampling rate

of the audio. Whenever the audio parser finds a cut, the corresponding video frame

could be outputted and stored. There are many digitizing packages (such as the

SunVideo package which I used) which can digitize video and audio simultaneously.

Another possibility is mentioned by Pincever: the audio is analyzed and when a cut is

detected, the system will spot digitize and store the necessary frame. This innovation

would save us the trouble of digitizing all the footage for the scene parser, and thus

speed up the input process.

The algorithms should be tested on more audio/video data (feature films, news

broadcasts, etc.) and this data should be digitized at a higher rate. This will give

a better picture as to what factors affect scene detection by audio processing. Fur-

thermore, other algorithms should be tested; perhaps an integration of the video



algorithms and the audio algorithms would result in a better scene parser.

6.3 General

Real-time parsing would increase the functionality of both the shot parser and the

scene parser tremendously. In the case of the shot parser, we would need a way to

digitize video quickly and run it through the parser. This could have the advantage of

not needing large amounts of disk space to store the digitized video, since we would

only need to store the key frames. In the case of the audio parser, the real-time

parsing could be implemented by running the audio output directly into a digitizer

board. Furthermore, specialized hardware and software could be utilized which would

perform time-domain and frequency-domain analysis of the signal while the tape is

being played.

Spectral signatures of the sounds could be taken and stored as a template for future

reference. The audio could then be digitized and checked against this template. By

using pattern matching techniques (such as those used in speech recognition), we

could identify various sounds on the audio track. This would allow for the user to

not only recognize the different sounds encountered, but some of the content as well.

The system could automatically create a text log of the footage which could be used

to implement a search function through the database (or through the raw video in

real-time) to find a specific item [Pincever].

Similarly, video templates could be created. As mentioned previously, research

into texture mapping has shown considerable success in recognizing such things as
"grass" and "water." [Szummer2]. These video templates could be used in much

the same manner as the audio templates, and provide for an improved searching and

indexing system.

A good user interface needs to be developed for browsing through the shots and

the scenes. Since the algorithms can also output the frame number of the key frames,
these can be used to synchronize the shot frames and the scene frames with the
original video. Thus a browser can be developed with a simple interface and high
functionality. A graphic designer should be consulted when developing this interface.



A more general issue which should be considered is that of integrating the shot/scene

parsing algorithms into larger projects, namely the digital library and the develop-

ment of a multimedia database for WGBH. Although it seems fairly obvious that the

shot/scene parser could provide greater functionality in browsing videos in the library

channel and in organizing WGBH's videos, the specific methods of doing this should

be examined. For example, how would we design the browsing interface for shots

and scenes? What type of storage and access mechanisms are required? These and

other technology oriented questions must be answered. But we must also examine

the social issues. Will users find it beneficial to search through shots and scenes?

If yes, what is the best method of using shot/scene parsing for browsing? It must

be determined how to use the shot/scene technology to improve the user's accessing

abilities, whether that user is a particular corporation or a teenager playing on the

Internet.



Chapter 7

Conclusions

In a future dominated by many different sources and types of information, we need

to find ways to organize this information and shape it into useful material. Without

efficient cataloging mechanisms and an effective browser, all this information will

simply exist as groups of bits floating in a digital sea.

Shot and scene parsing provide a way to store and organize video data into forms

which can be used by many people. Although the original focus of this project was to

develop a cataloging system for WGBH, the algorithms developed can be generally

applied. Parsing can be used to create video cross references in a digital library. For

digital video programs, it can aid in creating virtual links across existing shots and

scenes in a digital library. Perhaps parsing can be used to aid in video swapping

across the Internet by identifying common video clips and increasing the accessibility

of these clips.

Through the development of new media - digital libraries, interactive television,
etc. - there are many opportunities for understanding how the human mind recog-

nizes shots and scenes. Parsing can help further our understanding of how ideas and

concepts evolve into storylines, and how we can organize these ideas and concepts

for people to use and appreciate. Used in reverse, a parsing algorithm combined

with artificial intelligence systems could be used to generate shots and scenes. Such
a system could give an editor advice on possible shots to use and different ways to
organize scenes and programs.



By integrating speech recognition, object recognition, and other such advanced

technologies into the shot/scene parsing system, we can create very advanced "intel-

ligent systems." It may be possible to have a computer do full transcriptions of any

audio/video program, with shot and scene changes. The program could be logged,
and the system could automatically create cross references with related programs.

The system may be able to provide a text, video, and audio analysis of the program.

There is a wealth of information encoded into the audio track, and even more

information encoded in the video itself. New ideas, new analytical techniques, and

new computation systems are necessary to use this information fully. I sincerely hope

that the ideas and concepts contained herein will be continue to be researched. Some

people may believe that research for research's sake is good enough, but I hope that

these ideas will have real benefit in the world, and that someday the general public

will see the benefits of audio/video parsing in their daily lives.



Appendix A - Shot Parsing Code
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Appendix B - Scene Parsing Code
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