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Abstract
This thesis presents a mathematical framework for real-time sensor-driven stochastic
modeling of story and user-story interaction, which I call sto(ry)chastics. Almost all
sensor-driven interactive entertainment, art, and architecture installations today rely on
one-to-one mappings between content and participant’s actions to tell a story. These
mappings chain small subsets of scripted content, and do not attempt to understand the
public’s intention or desires during interaction, and therefore are rigid, ad hoc, prone to
error, and lack depth in communication of meaning and expressive power. Sto(ry)chastics
uses graphical probabilistic modeling of story fragments and participant input, gathered
from sensors, to tell a story to the user, as a function of people’s estimated intentions and
desires during interaction. Using a Bayesian network approach for combined modeling of
users, sensors, and story, sto(ry)chastics, as opposed to traditional systems based on one-
to-one mappings, is flexible, reconfigurable, adaptive, context-sensitive, robust,
accessible, and able to explain its choices.

To illustrate sto(ry)chastics, this thesis describes the museum wearable, which
orchestrates an audiovisual narration as a function of the visitor’s interests and physical
path in the museum. The museum wearable is a lightweight and small computer that
people carry inside a shoulder pack. It offers an audiovisual augmentation of the
surrounding environment using a small eye-piece display attached to conventional
headphones. The wearable prototype described in this document relies on a custom-
designed long-range infrared location-identification sensor to gather information on
where and how long the visitor stops in the museum galleries. It uses this information as
input to, or observations of, a (dynamic) Bayesian network, selected from a variety of
possible models designed for this research. It then delivers an audiovisual narration to the
visitor as a function of the estimated visitor type, and interactively in time and space.
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The network has been tested and validated on observed visitor tracking data by parameter
learning using the Expectation Maximization (EM) algorithm, and by performance
analysis of the model with the learned parameters. Estimation of the visitor’s preferences,
in addition to the type, using additional sensors, and examples of sensor fusion, are
provided in a simulated environment.

The main contribution of this research is to show that (dynamic) Bayesian networks are a
powerful modeling technique to couple inputs to outputs for real-time sensor-driven
multimedia audiovisual stories, such as those that are triggered by the body in motion in a
sensor-instrumented interactive narrative space. The coarse and noisy sensor inputs are
coupled to digital media outputs via a user model, and estimated probabilistically by a
Bayesian network. Other contributions are: the design of the museum wearable
application, the assembly and fashioning of a wearable computer, specifically conceived
for museum use; the design and realization of a new long-range infrared location-
identification sensor; the construction and testing of a variety of Bayesian networks for
user-type and profile estimation; the extension of the previous Bayesian network for real-
time story-segment selection and editing; model selection; model validation and
parameter learning via the EM algorithm; and simulation of processing multiple sensor
inputs with a Bayesian network for more robust estimation and more accurate user
profiling.

Other possible applications of sto(ry)chastics extend to digital storytelling for a variety of
interactive architectural spaces, art installations, or the theater stage.

Thesis Supervisor: Kent Larson Thesis Supervisor: Glorianna Davenport
Title: Principal Research Scientist Title: Principal Research Scientist
School of Architecture and Planning Media Laboratory
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Chapter 1

Introduction

1.1. Interactive spaces and new forms of
communication

Our society’s modalities of communication are rapidly changing. Large panel displays
and screens are being installed in many public spaces, ranging from open plazas, to
shopping malls, to private houses, to theater stages, and museums. In parallel, wearable
computers are transforming our technological landscape by reshaping the heavy, bulky
desktop computer into a lightweight, portable device that is accessible to people at any
time. This combination of large public and miniature personal digital displays offer
unprecedented opportunities to merge the virtual and the real, the information landscape
of the Internet with the urban landscape of the city, to transform digital animated media
in storytellers, in public installations and through personal wearable technology.
Computation and sensing is moving from computers and devices into the environment
itself. The space around us is instrumented with sensors and displays, and it tends to
reflect a diffused need to combine together the information space with our physical space.

In this new communication age, interactive space design involves three elements:
human authors (space designers) who conceive strategies and methods to deliver
appropriate information to the public interactively; computers and sensors that gather and
process in real time information about the public’s behavior in the instrumented space;
and the audience, with its own needs to receive personalized content only when and
where it is appropriate.

Technological progress and miniaturization has produced off the shelf processors
(computers) which are fast, small, lightweight and reliable, resulting in the creation of
new needs for personalized, reconfigurable, and flexible information for the public at one
end, and new authoring tools for the space designer on the other end. These tools need to
be able to take input from the audience and deliver a personalized story articulated not
only over time but also over space. Specifically, the digital architect who wishes to
reshape our surrounding space and body, and transform them into technology-augmented
devices for information exchange and artistic expression needs: sensors that are reliable
and robust, and (mathematical) modeling tools which allow the system to understand the
public’s intentions and coordinate a narration.

This thesis focuses on the museum as an example of interactive narrative space. It
introduces Bayesian networks for real time sensor-driven storytelling, and demonstrates
that they are a powerful tool to model the uncertainty in the sensor measurements, make
informed guesses about people’s intentions during interaction, encapsulate the
storyteller’s message, and orchestrate a complex audiovisual narration as a function of
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these. I call such stochastic modeling of story and user-story interaction: sto(ry)chastics.
Sto(ry)chastics has implications both for the human author (designer/curator) who is
given a flexible modeling tool to organize, select, and deliver the story material, as well
as for the audience, who receives personalized content only when and where it is
appropriate.

1.2. Telling stories in interactive spaces

Before I explain how sto(ry)chastics provides a flexible, reconfigurable and robust
authoring tool for the space designer as it tailor a personalized story for the audience, I
outline in this paragraph my approach and definition of story.

I borrow my definition of story for this research from the work for Jerome Bruner.
Bruner is an American psychologist and educator whose work on perception, learning,
memory, and other aspects of cognition in young children has, along with the related
work of Jean Piaget, influenced the American educational system. In his book “Acts of
Meaning”, Bruner [Bruner, 1990] defines story as a process by which meanings are
created and negotiated within a community (p. 11). For Bruner, narrative is used to
construct meaning by relating the individual or constituent aspects of human behavior to
the context or situation in which a behavior occurs. He opposes construction of meaning
through narrative, which he calls “narrative thought”, to objective information
communication through “paradigmatic”, scientific-like reasoning [also in: Bruner, 1986].
My view of story and interaction is based on this distinction and privileges
communication as narrative rather than communication as transmission of a message or
information. For Bruner, paradigmatic reasoning shares with scientific explanation the
mode of inductivism. Through it one sees a world of objects which interact in regular
patterns. Narrative thought by contrast, attempts to maintain a subjective perspective on
the world it represents, incorporating aims and fears into the picture. It incorporates at the
same time a knowledge of the world and the point of view which beholds it. While
Bruner defines story as a social and situated construction of meaning, his definition of
story is an open-minded one, which shows a willingness to construe knowledge and
values from multiple perspectives without loss of commitment to one’s own values. It
asks that we be accountable for how and what we know, but it does not insist that there is
only one way of constructing meaning, or one right way (p.30). For Bruner, narrative is
used by individuals to create meaning through its dramatic quality. Using Burke’s
analysis of story [Burke, 1969] with its five characteristics of actor, action, a goal, a
scene, and an instrument, plus trouble (p. 50), Bruner argues that narrative involves both
a cultural convention and a deviation from it that is explicable in terms of an individual’s
intentional state. People use narrative to schematize their experience and this is a process
that is situated socially and depends upon language. In this respect he recalls his earlier
work Essays for the Left Hand [Bruner, 1962], where he proposed the existence of a
“library of scripts” which are available to members of our culture as repertoires of
understanding. It is exactly by considering our commonsense understanding of a situation
(an item in Bruner’s library of scripts) that we can model a set of expectations and
possible responses to a story fragment. This modeling is flexible and not rigid, as the
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terms of the people-story interaction are governed in my approach by the improvisational
nature of human communication as described below.

Improvisation, in music or theater, or even dance, is an interaction process in which
individuals have some creative freedom, but at the same time are influenced by the
situation and by each other’s actions. In most informal and formal situations alike,
individuals’ actions are not scripted, yet a coherent, meaningful interaction results. This
type of interaction model is similar to the improvised dialogue of children’s social play as
described by Vygotsky [Vygotsky, 1990]. When children imagine riding a horse while
riding a broom, or when they imagine playing the role of a captain by wearing their
parent’s clothes, they exercise their creativity as they reinterpret situations they have
observed or learned. They construct a new reality which responds to their needs and
curiosities.

Sawyer has conducted a series of studies on the structure of improvisational
interaction in children’s pretend play and in theater [Sawyer, 1997a, 1997b], as well as
music. He has developed a semiotic theory of improvisational interaction and has
extended his study to social encounters, as examples of improvisational interaction. My
definition of interaction in grounded on Sawyer’s investigation on improv theater and
children’s pretend play. It is a process, in which the participants construct an emergent
narrative having some creative and imaginative freedom. At the same time they are
influenced by the situation and their knowledge of typical situations, as well as each
other’s actions.

When the computer is the storyteller, the notion of story described above, needs to be
simplified and parametrized to a few elements that the computer can manipulate. A story
narrated by a computer may come in the form of an audio-visual narrative. In the specific
case of this research, this narrative is experienced through a mobile headphones/eye-glass
display system that the user carries with them. For the purpose of this research, a story
can be simply viewed as an ordered sequence of small audio-visual segments. Each of
these segments is a closed mini-story with full meaning (sequence), and is to the whole
story, what a sentence is to a paragraph of a written text. What this definition borrows
from the previous discussion, in a simplified way is: 1. From Bruner: a story always
needs to be situated in context, therefore to narrate a situated story, the computational
storyteller needs to have a model of its audience. 2. From Sawyer: story is an emergent
process which is not given all at start, but it is the result of interaction between the
museum visitor and the system: it evolves with the user’s path in the museum galleries.

1.3.  Sto(ry)chastics and the museum wearable

Sto(ry)chastics is grounded on the hypothesis that in order to build engaging
interactive entertainment systems, able to be expressive and convey meaning and depth
of content, we cannot have complex centralized programs which simply read sensor
inputs and map them to actions on the screen. Interactive storytelling with such one-to-
one mappings leads to complicated control programs which have to do an accounting of
all the available content, where it is located on the display, and what needs to happen
when/if/unless. These systems rigidly define the interaction modality with the public, as a
consequence of their internal architecture. They need to carefully list all the
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combinatorics of all possible interactions and then introduce temporal or content-based
constraints for the presentation. Having to plan an interactive storytelling piece according
to this methodology can be a daunting task, and the technology in place seems to
somehow complicate and slow down the creative process rather than enhance or expand
it. Rather than directly mapping inputs to outputs, we need to endow digital content itself
with the ability to “understand the user” and to produce an output based on the
interpretation of the user’s intention in the narrative context.

Sto(ry)chastics uses a dynamic Bayesian network to model the sensors and allows the
system to interpret the sensor data by taking into account the context and domain of
interaction, represented by other nodes of the network. The interpretation of sensor data
is robust in the sense that it is probabilistically weighted by the history of interaction of
the participant as well as the nodes which represent context. Therefore noisy sensor data,
triggered for example by external or unpredictable sources, is not likely to cause the
system to produce a response which does not “make sense” to the user. For content
selection and delivery, sto(ry)chastics allows the system to build a profile of the
participant through time, and therefore can tailor content according to the participant’s
estimated desires and interests. These features: robustness with respect to
“misunderstandings” because of knowledge of context, and the ability to learn more
about the user through time, produce a system which with further development can
potentially, in the future, simulates an elementary conversation with a human participant.

Another advantage of the Bayesian network approach is that the designer or
programmer of the interactive experience only needs to set a general and not detailed
structure of the story and user-story interaction. Bayesian networks can be trained from
data and learn the right parameters for sequencing and interaction. This matches the
improvisational nature of the interaction the designer needs to model: the designer only
gives the system the general structure which describes its functioning. Then the
parameters of the system are trained through a learning procedure and can be fine tuned
in the course of interaction. This is new in the field of multimedia authoring: rather than
giving the program all interaction and sequencing parameters at start, the designer infuses
in the system only a general structure of what it should do. Then he/she trains the system
to the task, basically by saying: “observe what I do and learn”. What happens then during
interaction is similar to what happens during a musical jam session, in which the
musicians follow a general well known set of rules, and yet they create a new piece
which applies and modulates those rules according to the creative input of their
imagination right there and then. This general structure, given to the program at start and
mathematically described by the Bayesian network, models the library of scripts of our
commonsense understanding of typical situations. Therefore using sto(ry)chastics
designers will possibly be able to not only to create interactive environments which are
compelling and robust but which can also interpret the user’s actions in context. The
same action of the user can cause a different outcome according to the time slice in which
that action is registered in the Bayesian network model.

Rather than describing sto(ry)chastics in general, it is easier to focus on a specific
application, and use it as an example of modeling story and user-story interaction with
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Bayesian networks. As an example of application of sto(ry)chastics, and to illustrate its
features, I have designed and developed a real time storytelling device: a museum guide
which in real time evaluates the visitor’s preferences by observing his/her path and length
of stops along the museum’s exhibit space, and selects content from a set of available
movie clips, audio, and animations. This device, which I call the Museum Wearable,
illustrates the advantages of sto(ry)chastics in designing and authoring real-time sensor-
driven digital media presentation systems. In this document I ground further discussion
on modeling first the user’s interest profile, and subsequently the selection of content, on
this specific application.

1.3.1.  Contribution

The main contribution of this thesis is to show that (dynamic) Bayesian networks are a
powerful modeling technique to couple inputs to outputs for real time sensor-driven
multimedia narratives, such those that are triggered by the body in motion in a sensor-
instrumented interactive narrative space. The coupling is done by interpreting sensor data
as evidence which identifies the user’s preferences, with probabilistic weights given by
the context domain, modeled by appropriate nodes in the network, or by learning the
parameters of the model. This approach can be considered robust, context-sensitive,
flexible, reconfigurable, and extensible. Other contributions are: the project and design of
the museum wearable application, the assembly and fashioning of a wearable computer,
specifically conceived for museum use; the design and realization of a new long range
infrared location identification sensor; the construction and test of a variety of Bayesian
networks for user type and profile estimation; the extension of the previous Bayesian
network for real time story segment selection and sequencing; model selection; model
validation and parameter learning via the EM algorithm; and simulation of processing
multiple sensor inputs with a Bayesian network for robust estimation and more accurate
user profiling.

1.3.2.  Document Layout

This document is organized as follows:

• Chapter 2 describes a variety of techniques used to model interactive
multimedia and highlights their advantages/disadvantages. It introduces the
necessity for probabilistic modeling of sensors and content selection.

• Chapter 3 presents the museum wearable which is the application chosen and
developed to demonstrate the advantages of sto(ry)chastics.

• Chapter 4 offers a short tutorial on Bayesian networks, and describes a variety
of networks which estimate the visitor’s type using only a location sensor.

• Chapter 5 illustrates sto(ry)chastics, and explains how it is applied to deliver a
personalized story to the visitor with the museum wearable.
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• Chapter 6 describes the hardware and software assembled and created for this
research. It includes designs for the infrared location sensor custom made for
the museum wearable.

• Chapter 7 shows how the Bayesian network developed for sto(ry)chastics was
validated from real data and describes parameter learning from visitor tracking
data gathered at the museum. It also offers an evaluation of the
accomplishments of this research by comparison with other authoring
techniques.

• Chapter 8 illustrates the potential impact of the museum wearable on exhibit
and space design.

• Chapter 9 summarizes accomplishments and future directions of this research.

• The appendix outlines how to author other applications with sto(ry)chastics.
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Chapter 2

Motivation and Related Work

2.1. A Taxonomy of Interactive System
Architectures

Most of the existing interactive media applications can be categorized to be either
scripted, or responsive, or occasionally, behavior-based [Sparacino, 2000b]. All of these
systems imply a fixed modality of user-story interaction and story authoring. In this
chapter I briefly describe advantages and disadvantages of traditional interactive story
authoring system and illustrate the features that new authoring systems need to have to
overcome most of the limitations of these previous authoring tools. In the following
section I also describe in more detail examples of applications I developed as part of my
PhD research, each from a different category of the previous taxonomy, which have all
led to developing sto(ry)chastics as a solution for the limitations and problems
encountered for each of them.

Scripted systems are those in which a central program coordinates the presentation of
visual or audio material to the audience. The interaction modality is often restricted to
clicking on a static interface which triggers new material to be shown. These systems
need careful planning of the sequence of interactions with the public and acquire high
complexity when drawing content from a large database. This authoring complexity often
limits the experience to a shallow depth of content and a rigid interaction modality.
Examples of scripted authoring technique can be found in [Sawhney, 1997].

Responsive systems are those in which control is distributed over the component
modules of the system. As opposed to the previous architectures, these systems are
defined by a series of couplings between user input and system responses. The
architecture keeps no memory of past interactions, at least explicitly, and is event-driven.
Many sensor-based real-time interactive art applications are modeled according to this
approach. One-to-one mappings define a geography of responses whose collection shapes
the system architecture as well as the public’s experience. Although somewhat easier to
author, responsive experiences are sometimes repetitive: the same action of the
participant always produces the same response by the system. The public still tends to
adopt an exploratory strategy when interacting with responsive systems, and after having
tried all the interface options provided, is often not attracted to continue exploring the
interactive experience.  Sometimes simple responsive experiences are successful because
they provide the participant with a clear understanding of how their input – gestures,
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posture, motion, voice – determines the response of the system. The prompt timing of the
response is a critical factor to be able to engage the public in the experience. Examples of
responsive systems are described in [Davenport, 2000] and [Paradiso, 1999].

Behavioral systems or environments are those in which the response of the system is a
function of the sensory input as well as its own internal state. The internal state is
essentially a set of weights on the goals and motivations of the behavioral agent. The
values of these weights determines the actual behavior of the agent.  Behavioral systems
provide a one-to-many type of mapping between the public’s input and the system’s
response. The response to a particular sensor measurement or input is not always the
same: it varies according to the context of the interaction which affects the agent’s
internal state. Successful behavioral systems are those which allow the public to develop
an understanding of the causal relationships between their input and the agent’s behavior.
Theoretically, the public should be able to describe the dynamics of the encounter with a
synthetic behavioral agent as they would tell a story about a short interaction with a
living entity, human or animal. This is one of the reasons why behavioral agents are often
called life-like creatures [Perlin, 1996], [Blumberg, 1995].

The behavior-based approach has proven to be successful when applied to mobile
robots and to real-time animation of articulated synthetic creatures. In this context,
“behavior” is given a narrow interpretation derived from behavioral psychology
(Skinner). For animats, behavior is a stimulus-response association, and the action-
selection mechanism which assigns weights to the layered behaviors can be seen as a
result of operant conditioning [Catania, 1988] on the creature. Behavior-based AI has
often been criticized for being “reflex-based”, as it controls navigation and task execution
through short control loops between perception and action. In my view, Skinner’s
reductive notion of behavior is insufficient to model many real life human interactions or
simulated interactions through the computer. Multimedia, entertainment, and interactive
art applications, all deal with an articulated transmission of a message, emotions, and
encounters, rather than navigation and task execution. As we model human interaction
through computer-based media we need to be able to interpret people’s gestures,
movements, and voice, not simply as commands to virtual creatures but as cues which
regulate the dynamics of an encounter, or the elements of a conversation.

The previous taxonomy does not pretend to be exhaustive. It provides however a focus
in defining a set of basic requirements, features, and architectures of current interactive
media applications. A compelling interactive computer-based storyteller needs to have
the depth of content of a scripted system, the flexibility of a responsive system, and the
autonomous decentralized architecture of a behavioral system. It also needs to go beyond
the behavioral scheme and respond not just by weighing stimuli and internal goals of its
characters, but also by understanding the user’s intentions in context, and by learning
from the user.
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2.2.  Motivation

Most of my previous work uses an IVE (Interactive Virtual Environment) setup
[Wren, 1997a]. IVE is an interactive space developed at the MIT Media Lab, in which the
public interacts with visual material presented on a large projection screen which
occupies one side of the room [figures 1,2]. A downward pointing wide-angle video
camera mounted on top of the screen allows the IVE system to track a member of the
public. By use of real-time computer vision techniques [Wren, 1997b][Darrell,
1996][Oliver, 1997] we are able to interpret the user’s posture, gestures, identity, and
movement. A phased array microphone is mounted above the display screen for audio
pickup and speech processing. A narrow-angle camera housed on a pan-tilt head is also
available for fine visual sensing. The only constraints are a constant lighting and an
unmoving background.
IVE was built to enable people to participate in immersive interactive experiences
without wearing suits, head-mounted displays, gloves, or other gear. Remote sensing via
cameras and microphones allows people to interact naturally and spontaneously with the
material shown on the large projection screen. IVE currently supports one active person
in the space and many observers on the side. The IVE environment was originally
developed for the ALIVE project [Darrell, 1995] and has since become a main
development platform for interactive experiences.

 
Figures 1 and 2. The IVE space

Scripted Applications
My first project in the IVE space was an interactive story/museum-exhibit called

Encounters. A member of the public would meet a 3D humanoid character at a crossroad
of a 3D virtual museum-city. S/he would be handed a message and become involved in
solving a mystery regarding three contemporary artists. Solving the mystery, brought the
participant through a series of chambers, and made him/her become familiar with the
work of the artists. The person would interact with the characters, sounds, and images
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projected on a large screen through simple gestural and voice commands. This project
was entirely scripted and – although I managed to author some interesting segments – its
authoring complexity soon grew to a size which was very hard to handle for the designers
or the participant and nonetheless it was too simple for the public to be able to enjoy and
appreciate.

By attempting to author a real time sensor-driven application as a scripted system I
learned:

• the interaction with the public is too rigid: it obliges participants to perform a pre-
determined action in order to move on to the follow-on presentation segment.

• it is hard to reconfigure: whenever I needed to change the plot I had to re-author
the whole system.

• the authoring complexity of the system grew exponentially, and as a consequence
the final interactive narrative ended up being so simple that its shallow depth of
content soon became uninteresting to the public.

Responsive Applications
In February 1996 I shifted my attention from storytelling to performance and, having
learned from my previous experience, I aimed for a system which would be
uncomplicated to understand and use. I created DanceSpace: an interactive stage for a
single performer [figures 3,4,5] in which music and graphics are generated on the fly by
the dancer’s movements. In DanceSpace [Sparacino, 2000b] a small set of musical
instruments is virtually attached to the dancer’s body and generates a melodic soundtrack
in tonal accordance with a soft background musical piece. The performer projects
graphics on a large back screen using the body as a paintbrush.  In DanceSpace both
common users and performers are usually able to quickly understand the interface and
choreograph improvisational pieces influenced by the technological opportunity.
DanceSpace is a typical example of a responsive experience with one-to-one mappings
between sensory input – the dancer’s hands/feet/head/center of body movements – and
system output –music and graphics.

Figure 3. Performers in DanceSpace
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Figures 4 an 5. Body tracking system used for DanceSpace and the body driven City of News

I also authored City of News with a responsive architecture. City of News is a
dynamically growing urban landscape of information. It is an immersive, interactive, web
browser that takes advantage of people's strength remembering the surrounding three-
dimensional spatial layout. Starting from a chosen “home page”, where home is finally
associated with a physical space, our browser fetches and displays URLs so as to form
skyscrapers and alleys of text and images through which the user can navigate. In the
responsive version of City of News the browser is driven by body gestures and by the
position of the user on the projected floor map, both identified by a computer vision
system running in real time. The system recognizes the following commands “scroll up”
�  both arms up, “ scroll down” � both arms down, “ next” � right arm stretched,
“previous” � left arm stretched, and “ follow link” given by the position of the body on
the map. The system uses these body gestures to trigger browsing actions with the one-to-
one mapping described.

 
Figures 6 and 7. Visitors using the body driven City of News at SIGGRAPH 99
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With DanceSpace and City of News I learned:
• Authoring interactive applications with one to one mapping between user input

and system output is much easier than authoring a scripted system: the authoring
complexity is reduced to generating a look up table which associates inputs with
outputs

• Using these systems can be very rewarding for the public, if the input-output
mapping is simple and easy enough that most people can guess it and apply it
within the first exploratory minutes with the system.

• While responsive systems are easy to author, they are nevertheless prone to error:
users perform gestures in different ways, and lacking a history of the interaction or
other contextual information, the system is prone to misclassify human gestures
and to produce the wrong response, no matter how good the gesture classification
system may be.

• There is no perfect sensor, nor a perfect gesture classifier, therefore the noise
intrinsic to the sensor measurements as well as the imperfection of the classifier, is
also a source of unreliability of the system. The result is that the public becomes
confused about which gestures causes which response, and soon becomes
disengaged from the interactive experience

• While authoring is easy, the authoring complexity is still limited. With this
authoring is it hard to articulate a narration which has some depth or development,
such as one which has a simple introduction-development-conclusion, as the
geography of the input-output mapping imposes only a stimulus-response coupling
of human gestures with system responses.

Behavioral Applications
Virtual Studio: Digital Circus was first constructed in March 1997. It is an immersive

behavioral experience in which all objects present in the 3d virtual circus are endowed
with behaviors. Advanced real-time computer vision techniques allow the system to
composite and blend a 2d image of the participant inside the 3d world, without the need
of blue screens. Individual distant participants can be remotely connected to and share the
same virtual world [figures 8,9,10]. Hence such setup can be used at home for
collaborative storytelling, visual communication from remote locations, or game playing.
In the circus a behavior-based butterfly pet follows the participant around, the cannon
fires a cannon woman when the participant virtually presses a virtual button, an umbrella
appears at need. Sitting on a chair causes a gramophone to appear and music to be played.
An arm gesture causes the participant to grow taller or become tiny-small, on request. All
of these actions/transformations are possible because each object in the virtual space is
endowed with an autonomous behavior and it takes care of doing the right thing at the
right time.
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Figures 8,9 and 10. Visitors using the participative City of News which extends Virtual Studio/Digital Circus  to
the 3D web as the virtual set

With Virtual Studio/Digital Circus I learned that:

• Behavioral applications overcome many of the limitations of both scripted and
responsive systems.

• They are limited as they do not adapt nor learn from the user: they are therefore
unable to tailor content to specific participants or types of  participants

• As with responsive systems, they are unable to understand the user’s gestures in
context and are prone to error in interpreting human actions.

By grouping some of my previous work according to the taxonomy described above
and by analyzing the interaction modality and experience of the public in each
application, I derived the following conclusions:

• Scripted experiences are difficult to author. They require a careful and detailed
planning of the material presented. Complexity burdens both the author and the
recipient of the piece. If the interactive experience requires this approach - such as
in the case of some storytelling projects - it is important to keep the project small
and simple.

• Responsive experiences can be successful, especially when the system responds in
a timely fashion. Also it is important that the input-output mapping can be made
clear to the public as early as possible in the course of the experience (City of
News) for the public to be engaged rather than confused by the interactive
application. However, due to the fact that the input-output mapping is invariant,
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responsive applications can become repetitive and obsolete after a few
experiences.

• Behavioral experiences allow the public to experience more complex forms of
interaction. The behavior architecture allows distribution of the authoring
complexity to the various characters/media in the piece. Once the behavior system
is constructed, such systems are much easier to build than the scripted pieces, as
they require only specifications about the behavior parameters for the specific
application considered.

However, if we want to build experiences which can articulate a digital audiovisual
narration as a function of the user’s body movements or path, as perceived by the sensors,
we need alternative architectures which can understand the visitor’s intentions in context,
and are robust with respect to the variability of user input and the noise intrinsic in the
sensors’ measurements.

2.3.  Requirements for new authoring tools

Developing the previously described projects I made a series of observations which
have become the motivation and ground for the research described in this document.
Based on the previous analysis, I summarize in this section the main requirements that
new authoring tools need to have to be used effectively in real time interactive spaces.

Robust sensing
Robust sensing is the premise for the correct interpretation of the user’s intention.
Without it, we would have a system which, like some old grandmothers, is slightly
deaf, and produces answers which sometimes do not make sense with the question
asked. This happens not because the system/grandmother is not smart and
knowledgeable and interesting, but because the sensorial percept (question asked)
was modified and perturbed by an imperfect sensor (the ear) and therefore the
system/grandmother misinterpreted the input and produced an answer to a different
question than the one asked. Mono-sensor applications which rely on one unique
sensor modality to acquire information about the participant are brittle and prone to
error. For how well that one sensor works individually, whether that be a camera, or
a radar, or an electric field sensor, it only provides the system with a single view of
what is going on. In order for a body driven interactive application to offer reliable
and robust response to a large number of people on a daily basis in a museum, or
meet the challenges of the variable and unpredictable factors of a real life situation,
we need to rely on a variety of sensors which cooperate to gather correct and reliable
measurements on and about the user. Cooperation of sensor modalities which have
various degrees of redundancy and complementarity can guarantee robust, accurate
perception. We can use the redundancy of the sensors to register the data they
provide with one another. We then use the complementarity of the sensors to resolve
ambiguity or reduce error when an environmental perturbation affects the system.
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Interpretation of data
To make good use of reliable measurements about the user, we need to be able to
interpret our measurements in the context of what the user is trying to do with the
digital media, or what we actually want people to do to get the most out of the
experiences we wish to offer. The same or similar gesture of the public can have
different meanings according to the context and history of interaction. For example
the same pointing gesture of the hand can be interpreted either as pushing a virtual
character, or more simply, as a selection gesture. In a similar way, the system needs
to develop expectations on the likelihood of the user’s responses based on the
specific content shown. These expectations influence in turn the interpretation of
sensory data. Following on the previous example, rather than teaching both the user
and the system to perform or recognize two slightly different gestures, one for
pushing and one for selecting, we can simply teach the system how to correctly
interpret slightly similar gestures, based on the context and history of interaction, by
developing expectations on the probability of the follow-on gesture. In summary, our
systems need to have a user model which characterizes the behavior and the
likelihood of responses of the public. This model also need to be flexible and should
be adaptively revised by learning the user’s interaction profile.

Compelling response
It is difficult to produce compelling applications simply by direct mapping of sensor
measurement inputs with digital media output. While this strategy may work for very
simple interactive environments, it is not effective for producing an engaging
application. I would like to use the term compelling multimedia application in
analogy to what in computer graphics researchers call a believable synthetic
character. A believable character is one whose response to the user’s input is
appropriate to its role and history of interaction. Appropriate responses are those that
make sense, or that the user can make sense of, such as for an interactive dog
fetching the ball when the user throws it, or sit and rest when sleepy. By analogy in
multimedia we want applications that are convincing and not repetitive or shallow.
To describe this feature I use the term compelling response. Many current interactive
systems are defined by a series of couplings between user input and system
responses. The problem with these systems is that they are often repetitive: the same
action of the participant always produces the same response by the system.
Alternatively, most existing CDROM titles are scripted: they sequence micro-stories
in multi-path narrative threads. Examples of such titles are the popular CD-ROM
based game MYST [http://sirrus.cyan.com/Online/Myst/MystHome] or Disney's
Hunchback of Notre Dame Storybook CD-ROM. While the content presentation in
these applications tends to be more engaging, they often impose a rigid interaction
modality and  become boring after a while. The participant’s role is confined to
clicking and choosing the sequencing of the narrative thread without real
engagement or participation in the narrative. In order to create compelling interactive
environments we need to be able to simulate encounters between the public and the
digital media acting as a character. To accomplish this goal we need to be able to
model the story we wish to narrate in such a way that it takes into account and
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encompasses the user’s intentions and the context of interaction. Consequently the
story should develop on the basis of the system’s constant evaluation of how the
user’s actions matches the system’s expectations about those actions, and the
system’s goals.

Sto(ry)chastics, described in the following chapters, offers a powerful tool to model a
real time sensor driven interactive storyteller according to the parameters mentioned
above. When modeling user-story interaction we need to preserve on the one hand the
causal effects of user over story or of story on the user. At the same time, we need to be
able to account for the variability in interaction, i.e. the improvisational nature of
interaction I described in section 1.2. As I will show in the following chapters of this
document, sto(ry)chastics allows the interactive experience designer to have flexible
story models, decomposed in atomic or elementary units, which can be recombined into
meaningful sequences at need in the course of interaction. Another reason to use
sto(ry)chastics to understand the user’s intention is that it allows us to model both the
noise intrinsic in interpreting one’s intentions in general as well as the noise intrinsic in
telling a story. We as humans do not tell the same story in the same way all the time, and
we naturally tend to adapt and modify our stories to the age/interest/role of the listener.
The Bayesian network approach is therefore the most apt to model noisy sensors, noisy
interpretation of intention, and noisy stories.

2.4.  Related Work

Oliver [http://www.media.mit.edu/~nuria/dypers/dypers.html; Schiele, 1999]
developed a wearable computer with a visual input as a visual memory aid for a variety
of tasks, including medical, training, or education. This system records small chunks of
video of a curator describing a work of art, and associates them with triggering objects.
When the objects are seen again at a later moment, the video is played back. The museum
wearable differs from the previous application in many ways. DYPERS is a personal
annotation device, and as opposed to the museum wearable, it does not attempt to
perform either user modeling or a more sophisticated form of content selection and
authoring. It does one-to-one associations between triggering objects and recording or
playout of clips. Besides general training, is used specifically in the museum context to
allow a visitor to record salient moments of the explanation by a human guide to later
replay them in the context of an independent visit to a museum, without a guide. The
museum wearable in contrast focuses on estimating the visitor’s type and interest profile
to deliver a flexible user-tailored narrative experience from audio/video clips that have
been prerecorded. These clips or animations would usually be part of the museum’s
digital media collection. As opposed to DYPERS, it does not have the ability to record
new content for it to be played out at a later time. Its purpose is to create for the visitor a
path-driven personalized and immersive cinematic experience, which takes into account
the overall trajectory of the visitor in the museum, the amount of time that visitors station
to look at, and explore the objects on display, to select a personalized story for the visitor,
out of several possible digital stories that can be narrated.
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Feiner [Feiner, 1997] has built a university campus information system, worn as a
wearable computer. This device is endowed with a variety of sensors for head tracking
and image registration. Both the size of the wearable, mounted on a large and heavy
backpack, as well as the size of the display, are inappropriate for it to be used for a
museum visit.

The author showed an early prototype of the museum wearable, based on the above
architecture, as a demonstration for the SIGGRAPH 99 Millennium Motel [figures 6,7],
and received outstanding feedback and encouraging comments from the audience
[Sparacino, 1999; Sparacino, 2000a].

In addition to the specific research on wearables, to carry out the research described in
this document, I have used knowledge from various disciplines: interactive computer
graphics, statistical modeling and Artificial Intelligence (probabilitic reasoning, Bayesian
networks), user modeling, wearable computing, and probabilistic knowledge
representation for content organization and delivery. The task of interpreting the visitor’s
intentions and desires during the museum visit is similar to traffic surveillance:
understanding driver behavior from external sensors (cameras, radars) placed along the
major streets and intersection, a field of research which has recently successfully been
addressed using probabilistic Bayesian networks (what is of interest in traffic surveilance
research, is the early identification of aggressive driver types before they cause major
street accidents). I describe in this section some of the work in the above mentioned fields
that has partially guided and inspired my research on sto(ry)chastics and the design of the
museum wearable. I give some weight on the interactive computer graphics background
section, as this is the field in which I have mostly developed my previous work.

Interactive Computer Graphics
Blumberg and Galyean [Blumberg and Galyean, 1995] use an ethological model to
build behavior-based graphical creatures capable of autonomous action, and who can
arbitrate response to external control and autonomy. They introduce the term
“directability” to describe this quality. Hayes-Roth [Hayes-Roth, 1996] uses the
notion of directed improvisation to achieve a compromise between “directability” and
life-like qualities. Her research aims at building individual characters that can take
directions from the user or the environment, and act according to these directions in
ways that are consistent with their unique emotions, moods, and personalities
(improvisation). Magnenat Thalmann and Thalmann [Magnenat Thalmann and
Thalmann, 1993] have built a variety of examples of virtual humans equipped with
virtual visual, tactile, and auditory sensors to interact with other virtual or real
(suited/tethered) humans [Emering, 1997]. In [Perlin, 1996] Perlin describes an
authoring system for movement and action of graphical characters. The system
consists of a behavior engine which uses a simple scripting language to control how
actors communicate and make decisions, and an animation engine which  translates
programmed canonical motions into natural noisy movement. Terzopoulos provided a
fascinating example of behavior based graphical fishes endowed with synthetic vision
and which can learn complex motor skills [Terzopoulos 1994, 1999]. Tosa has built
characters which can understand and respond to human emotion using a combination
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of speech and gesture recognition [Tosa, 1996]. Bates and the Oz group have
modeled a “woggles” world inhabited by woggles with internal needs and emotions
and capable of complex interactions with the user [Bates, 1992]. Their user’s
interface is though mainly limited to mouse and keyboard input.

Bayesian Networks
The work of Pearl [Pearl, 1988] is fundamental to the field of Bayesian neworks.
Jordan’s  book [Jordan, 1999] had the merit of grouping together some of the major
advancements since Pearl’s 1988 book. Cowell et al. [Cowell, 1999] provide a
comprehensive up-to-date introduction to Bayesian networks. Jensen [1996; 2001]
has written two thorough introductory books that provide a very good tutorial, or first
reading, in the field. Bayesian networks have gained popularity in the early nineties,
when they were successfully applied to medical diagnosis [Heckerman, 1990]. More
specific references to Bayesian networks will be given in Chapter 4, and are
embedded appropriatedly in the text as I present and describe Bayesian networks.

User Modeling for Computer Games
Albrechtet al [Albrecht, 1997], have been amongst the first to model the behavior of a
participant to a computer game using Bayesian networks. Jebara [Jebara, 1998], uses
CHMMS, which are a particular case of Dynamic Bayesian Network, to perform, first
analysis, and then synthesis, of a player’s behavior in a game. Brand, Oliver, and
Pentland [Bran, 1996; Brand, 1997], also use a Coupled Hidden Markov Models
approach to successfully recognize Tai-Chi gestures in the context of a Tai-Chi
training game.

Learner Modeling
[Henze, 1999] uses Bayesian networks to assess the stating knowledge of a learner
and builds an adaptive hypermedia system using a constructivist approach. Conati et
al. [Conati, 1997] have built an intelligent tutoring system able to perform knowledge
assessment, plan recognition and prediction of students’ actions during problem
solving using Bayesian networks. Jameson [Jameson, 1996], provides a useful
overview of student modeling techniques, and compares the Bayesian network
approach with other popular modeling techniques such as fuzzy logic.

Traffic Surveillance
Forbes et al. [Forbes, 1995] use an agent based belief network and agent centered
features to recognize  driving activity from simulated and real data. Kwon and
Murphy [Kwon and Murphy, 2000], use coupled hidden markov models to learn a
model of traffic velocities from data for fault diagnosis and to predict future traffic
patterns. Pynadath and Wellman [Pynadath and Wellman, 1995], use a Bayesian
network approach  to induce the plan of a driver from observation of vehicle
movements. Starting from a model of how the driver generates plans, they use
highway information as context that allows the system to correctly interpret the
driver’s behavior.



27

Wearable Computing
Starner et al [Starner, 1997], describe seminal work in wearable computing.
Behringer et al. [Behringer, 1999] group a variety of augmented reality techniques
spanning from real time computer vision registration to industrial and medical
applications. In: Sensing Techniques for Mobile Interaction, Hinckley et al [Hinckley,
2000] discuss tradeoffs between real time sensing and traditional user interface
approaches to ease execution of common tasks on handheld devices.

Probabilistic Knowledge Representation
Koller and Pfeffer [Koller and Pfeffer, 1998] have done innovative work in using
probabilistic inference techniques that allows most of the frame bases knowledge
representation systems available today to annotate their knowledge bases with
probabilistic information, and to use that information to answer probabilistic queries.
Their work is relevant to describe and organize content in any database system so that
it can later be selected either by a typed probabilistic query or by a sensor driven
query. Pasula and Russell [Pasula and Russell, 2001] describe efficient Markov Chain
Monte Carlo techniques to handle reference uncertainty and identity uncertainty for
relational probability models. Pfeffer, Koller, and al. [Pfeffer, 1999] have also
provided an example of application of probabilistic object-oriented knowledge
representation in: SPOOK: a system for military situation assessment for battleships.
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Chapter 3

Application:  the Museum Wearable

3.1. Scenario

When walking through a museum there is so many stories we could be told. Some of
these are biographical about the author of an artwork, some are historical and allow us to
comprehend the style or origin of the work, and some are specific about the artwork
itself, in relationship with other artistic movements. Museums usually have large web
sites with multiple links to text, photographs, and movie clips to describe their exhibits.
Yet it would take hours for a visitor to explore all the information in a kiosk, to view the
VHS cassette tape associated to the exhibit and read the accompanying catalogue. Most
people do not have the time or motivation to devote to assimilate this type of information,
and therefore the visit to a museum is often remembered as a collage of first impressions
produced by the prominent feature of the exhibits, and the learning opportunity is missed.
How can we tailor content to the visitor in a museum, during his/her visit, to enrich both
the learning and entertaining experience ? We want a system which can be personalized
to be able to dynamically create and update paths through a large database of content –
such as the one already developed for interactive kiosks – and deliver to the user during
the visit all the information he/she desires in real time. If the visitor spends a lot of time
looking at a Monet, the system needs to infer that the user likes Monet and will update
the paths though the content to take that into account. By doing so it will update the
user’s profile and the path through the content to be delivered. This thesis proposes
stochastic story modeling as an effective way to turn this scenario into reality.

3.2. The Museum Wearable

In the last decade museums have been drawn into the orbit of the leisure industry and
compete with other popular entertainment venues, such as cinemas or the theater, to
attract families, tourists, children, students, specialists, or passerbiers in search of
alternative and instructive entertaining experiences. Some people may go to the museum
for mere curiosity, whereas other may be driven by the desire of a cultural experience.
The museum visit can be an occasion for a social outing, or become an opportunity to
meet new friends. While it is not possible to design an exhibit for all possible categories
of visitors, it is desirable to offer the exhibit designers methods by which it becomes
possible to augment the visitors’ knowledge about the exhibit in a more personalized way
for the different people or visitor categories. This thesis focuses on the museum wearable,
and a more general purpose authoring technique, called sto(ry)chastics, as a technological
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aid which help the curator better communicate with the museum audience, and the visitor
to possibly have a more engaging, instructive, and entertaining experience. The research
described in this document illustrates the hardware, authoring techniques, and software
created for the construction of the museum wearable, and points to other possible
applications of the same authoring techniques. It postpones, as future work, the
assessment at the exhibit’s site, of the museum wearable’s contribution to the public’s
experience and its ability to facilitate new exhibit design.

Traditional storytelling aid for museums have been: signs and text labels, spread
across the exhibit space; exhibit catalogues, typically sold at the museum store; guided
tours, offered to groups or individuals; audio tours, and more recently video or
multimedia kiosks with background information on the displayed objects. Each of these
storytelling aids have advantages and disadvantages. Catalogues are usually attractive
and well done, yet they often too are cumbersome to carry around during the visit as a
means to offer guidance and explanations. Guided tours take away from visitors the
choice of what they wish to see and for how long. They can be highly disruptive for the
surrounding visitors, and their effectiveness strictly depends on the knowledge,
competence, and communicative skills of the guide. Audio tours are a first step to help
augment the visitor’s knowledge. Yet when they are button activated, as opposed to
having a location identification system, they can be distracting for the visitor. The
information conveyed is also limited by the medium: it’s only audio. It is not possible to
compare the artwork described with previous relevant production of the author, nor show
other relevant images. Interactive kiosk are more frequently found today in museum
galleries. Yet they are physically distant from the work they describe thus not supporting
the opportunity for the visitor to see, compare, and verify the information received
against the actual object. My personal experience suggests that when extensive web sites
are made available through interactive kiosks placed along the museum galleries, these
may absorb lengthy amount of time from the visitor’s museum time, thereby detracting
from, rather than attracting to, the objects on display. Finally panels and labels with text
placed along the visitors' path can interrupt the pace of the experience as they require a
shift of attention from observing and contemplating to reading and understanding [Klein,
1986].

Another challenge for museums is that of selecting the right subset of representative
objects among the many belonging to the collections available. Usually, a large portion of
interesting and relevant material never sees the light because of the physical limitations
of the available display surfaces.

Some science museums have been successfully entertaining their public, mainly
facilitated by the nature of the objects they show. They engage the visitor by
transforming him/her from a passive viewer into a participant by use of interactive
devices. They achieve their intent, amongst other things, by installing button-activated
demonstrations and touch-sensitive display panels which provide supplementary
information when requested. They make use of proximity sensors to increase light levels
on an object when a visitor is close-by and/or to activate a process. Other museums –
especially those which have large collections of artwork, like paintings, sculptures, and
manufactured objects -- use audiovisual material to give viewers some background and a
coherent narrative of the works they are about to see or that they have just seen. In some
cases, they provide audio-tours with headphones along the exhibit. In others, they
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dedicate sections of the exhibit to the projection of short audiovisual documentaries about
the displayed material. Often, these movies that show artwork together with a description
of their creation and other historical material about the author and his times, are even
more compelling than the exhibition itself. The reason is that the documentary has a well
edited story, and the visuals are nicely orchestrated and come with music and dialogues.
The viewer is then offered a more unified and coherent narration than in the fragmented
experience of the visit. A visit to a museum demands, as a matter of fact, a certain
amount of effort, knowledge, concentration, and guidance, for the public to leave with a
consistent and connected view of the material presented.

Technology can help the visitor reconstruct a connected story for the objects on
display at the museum, and offer curators way of addressing different visitor categories,
by creating experiences in which the objects themselves narrate their own story in
context. Wearable computers have recently raised to the attention of technological and
scientific investigation [Starner, 1997] and offer an opportunity to “augment” the visitor
and his perception/memory/experience of the exhibit in a personalized way. This thesis
presents a wearable computer which dynamically edits a documentary about the shown
objects according to the path of the visitor inside the physical space of the museum. The
museum wearable [figure 11] targets individual visitors with special learning needs or
curiosity, and offers a new type of entertaining and informative museum experience,
more similar to immersive cinema than to the traditional museum experience. It selects
and presents audiovisual sequences from a documentary database and adapts them to the
visitor’s type and profile it estimates during the visit. The user modeling process is
obtained with a Bayesian network using as input the information provided by the location
identification sensors on where and how long the visitor stops. The content selection
process is also influenced by the constraints on segment ordering provided by the curator
to ensure the assembly of a “good” story.

Figure 11. The Museum Wearable: explanation of concept and application
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3.3. Visitor Types

Museums are designed to offer people a curated experience. An understanding of
audience needs and expectations is a primary mission of today’s museums. This leads to
identifying first of all groups of individuals who share common traits such as culture,
leisure preferences, fields of studies, ethnic or social affiliations, disabilities, socio-
economic levels, and so forth. Any identifiable sub-group within a community is
potentially a museum target audience. Secondarily the exhibit curator and designer need
to assess the basic knowledge and expectations of any of these subgroups to be able to
reach, communicate, and stimulate curiosity in their visitors. Dean [Dean, 1994] cites the
Arnold’s Values and Lifestyles Segments (VALS) model as a useful tool to identify
target audiences [ibidem, p. 21]. This model classifies people along a psychological
maturity scale which includes need driven (survivors, sustainers), Outer driven
(belongers, emulators, achievers, integrated) and inner directed (experiential, I-am-me,
societally conscious) individuals.

Eileanor Hooper-Greenhil identifies target groups which include: families, school
parties, other organized educational groups, leisure learners, tourists, the elderly, and
people with visual, auditory, mobility or learning disabilities [Hooper-Greenhil, 1999, p.
86].  She then suggests a partition of museum resources, to target, attract and entertain
these different groups. This is of interest to our research, as it provides grounding for
partitioning the largely available digital content resources for the same exhibit, according
to the visitor types that we have chosen to identify with the museum wearable, as
described in the next chapter.

During a personal interview, Beryl Rosenthal, director of exhibitions at the MIT
Museum, described a more sophisticated visitor type classification. She identified:
stroller moms, accompanied by children three years old or younger, window shoppers:
families who cruise through the museum in search of an alternative leisure experience,
button pushers (when buttons available): typically adolescents, school groups, the date
crowd, the phds, who want to know (and criticize) everything in the museum. Young
visitors, children in the 5-14 also represent a separate group of visitors with different
learning needs and curiosities than the other groups. While this colorful classification
well depicts the variety of public that museums need to equally attract, entice and
educate, it is too sophisticated to model mathematically, at least initially.

More usefully for this research, Dean [Dean, 1994] generalizes museum visitors in
three broad and much simpler categories [ibidem, pp. 25-26]. The first category includes
what he calls the “casual visitors”: people who move through a gallery quickly and who
do not become heavily involved in what they see. Casual visitors use some of their leisure
time in museums but do have a strong stimulus or motivation to deepen their knowledge
about the objects on display. The second group, the “cursory visitors” show instead a
more genuine interest in the museum experience and their collections. According to Dean
these visitors respond strongly to specific objects that stimulate their curiosity and
wander through the gallery in search of further such stimulus for a closer exploration of
the targeted objects. They do not read every label nor absorb all available information,
but will occasionally read and spend time in selected areas or with selected objects of
interest they encounter in the galleries. The third group is a minority of visitors who
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thoroughly examine exhibitions with much more detail and attention. They are learners
who will spend an abundance of time in galleries, read the text and labels, and closely
examine the objects.

Dean attributes differences between “people who rush”, “people who stroll”, and
“people who study” to different prior experiences and educational level. Yet he states that
it is important that museums are equipped to communicate and interest all visitors, by
scaling and designing an exhibit so that it offers entertainment to the “stroller” as well as
an opportunity to deepen knowledge for the “learners”.

Serrell, B. [Serrell, 1996] also divides visitors into three types: the transient, the
sampler and the methodical approach to viewing. She notes that currently museum
evaluators are using terms like “streakers, studiers, browsers, grazers and discoverers” to
characterize museum visitors’ styles of looking at exhibits. But she concludes that this
type of categorization is not useful for summative evaluation, suggesting that it is a
subjective method of classification, and that it is not fruitful to try and create exhibitions
that serve these different styles of visiting. Instead she suggests that a more objective
means of classification be found, such as average time spent in the exhibition space. Her
studies suggest that visitors cover 500 square feet per minute in exhibition spaces, a
figure she finds somewhat frustrating—since it is too fast for visitors to actually be
reading and absorbing the material. Also disappointing is that the average visitor uses
about 30% of the exhibit. Given that visitors are going to view only a small percentage of
the exhibit, Serrell suggests that developers build redundancy into the framework of the
show, simplifying concepts and repeating them in different ways throughout the space.
Developers should ask themselves: Does this exhibit make sense and is it likely to be
meaningful for any self-selecting visitor who stops at it? They should also think about a
one-time, time-limited non sequential motivated but non expert person as their audience.

For more details on results, methods and approaches for visitor studies, the author
forwards the reader to the US’s Visitor Studies Association (VSA), which provides a
forum for the exchange of information in the field of visitor studies
[http://museum.cl.msu.edu/vsa/whoweare.htm]. The VSA conducts three types of
research: interviewing visitors, tracking (time spent in different areas of the exhibit), and
observing (scans or sweeps). Founded in 1992 it provides information on development of
methodology for visitor studies, visitor surveys and audience development and though its
annual conference is one of the major sources for understanding visitor behavior in the
changing mission and landscape of the contemporary museum.

In accordance with the simplified museum visitor typology suggested by Dean and
Serrell, I have chosen to identify three main visitor types using a Bayesian network. To
offer a more intuitive understanding of the types described by Dean and Serrell I have
renamed them: the busy, selective, and greedy visitor type. Should it be necessary or
desirable, the identification of other visitor types or subtypes has been postponed to
future improvements and developments of this research.
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3.4. Experimentation Platform: the Museum
Wearable at MIT Museum’s “Robots and
Beyond” exhibit

The ongoing robotics exhibit at the MIT Museum provided an excellent platform for
experimentation and testing with the museum wearable. This exhibit, called Robots and
Beyond, features landmarks of MIT’s contribution to the field of robotics and Artificial
Intelligence. The exhibit is organized in five sections: Introduction, Sensing, Moving,
Socializing, and Reasoning and Learning, each including a few robots, a video station,
and posters with text and photographs which narrate the history of robotics at MIT
[figures 13,14,15,16,17]. There is also a large general purpose video station with large
benches for people to have a seated stop and watch a PBS documentary featuring robotics
research from various academic institutions in the country.

The posters and labels occupy half of the available exhibit wall space, and while they
certainly provide useful information, they require long stops for reading, take useful
space away from other interesting objects which could be displayed in their stead, and are
not nearly as compelling and entertaining as a human narrator (a museum guide) or a
video documentary about the displayed artwork. On the other hand, the video stations,
located in each section of the exhibit, complete the narration about the artwork by
showing the robots in motion and by featuring interviews with their creators. While the
video stations provide compelling narrative segments, they are not always located next to
the object described, and therefore the visitor needs to spend some time locating the
described objects in the surrounding space in order to associate the object to the
corresponding narrative segment. The video stations detract attention from the actual
objects on display, and are so much the center of attention for the exhibit that the
displayed objects seem to be more of a decoration around the video stations than being
the actual exhibit.

 Figure 12. Visitor testing the Museum Wearable at MIT Museum’s Robots and Beyond Exhibit
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Figures 13 and 14. Images from MIT Museum’s Robots and Beyond Exhibit

By providing an audiovisual narration synchronized to the objects on display, and
tailored to the visitor’s interests, the museum wearable proposes a new device which will
hopefully transform and enhance the visitor’s experience. Some of the information and
narration originally provided by the posters and video stations is instead provided by the
wearable, and it is edited and choreographed along the visitor’s path, virtually placed
next to the objects it describes [figure 12]. The first immediate advantage of designing
the exhibit to be viewed with the wearable is a much larger availability of space to
display a larger and more complete variety of objects. The author’s expectation is that
with the wearable the visitor’s attention can be focused directly onto the objects, and their
path will not interrupted by long stops reading posters and watching the TV monitors
placed along the museum space. While further testing of the museum wearable’s effect
on the public will have to be carried out as future work, similar considerations could be
made for interactive kiosks which would be no longer needed allowing more room for
additional objects. Currently, at MIT’s Robots and Beyond exhibit, the kiosks interrupt
the flow and pace of the visitor’s path, and the information they offer could be more
effectively delivered in smaller chunks along the visitor’s path inside the museum, and
next to the objects they describe.

To better tailor the museum wearable to the public, and to preserve and possibly
enhance the original message of the exhibit, I interviewed Janis Sacco, one of the main
curators for Robots and Beyond. The curator said that one of the main goals of the exhibit
is to stimulate the public to think about what intelligence is and to show how scientists
can successfully emulate some aspects of human intelligence. This explains why the
exhibit is organized in sections that highlight the different facets of human intelligence,
such as perceptual intelligence (sensing), motor and emotional intelligence, and, finally,
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high level reasoning. Janis said that she expected visitors to leave with an understanding
the complexity of living organisms in general and she also noted that it is quite hard to
capture some of that complexity into machines capable of imitating simple human or
animal behavior. When asked if she would welcome the museum wearable as an aid and
guide to better understand and appreciate the exhibit she enthusiastically asserted: “It is
the interactivity that we lack.  What you are doing is testing a device that is made with AI
in an exhibit that is about AI and using it to let people experience AI.” I read this as an
encouragement to go on with the research described here below.

Figures 15,16 and 17. Images from MIT Museum’s Robots and Beyond Exhibit



3.5. Annotations and observations of visitors’
behavior

In order to have the museum wearable understand the visitors’ interests, I first
gathered experimental data on the visitors’ behavior in the museum. This was an
important preliminary step, as the starting point in building a Bayesian network is usually
to model the expert knowledge about the domain, and to assign prior probabilities to the
nodes of the network on the basis of this knowledge. I discuss in the next chapter the
steps undertaken to build the mathematical model for the visitor. In this paragraph I
present the methodology and results that led us to have a quantitative assessment of the
visitors’ behavior at the MIT museum’s Robots and Beyond exhibit. According to the
VSA (cfr. 4.2.), timing and tracking observations of visitors are often used to provide an
objective and quantitative account of how visitors behave and react to exhibition
components. This type of observational data suggests the range of visitor behaviors
occurring in an exhibition, and indicates which components attract, as well as hold,
visitors' attention. Usually in the case of a complete exhibit evaluation this data is
accompanied by interviews with visitors, before and after the visit.

For Robots and Beyond, the curator Janis Sacco, shared her findings resulting from
interviews with the visitors, and I could therefore focus uniquely in gathering tracking
data. I followed the classic approach: during the course of several days I had a team of
people at the MIT Museum individually track and make annotations about the visitors.
Each member of the tracking team had a map and a stop watch. Their task was to draw on
the map the path of individual visitors, and annotate the locations at which visitors
stopped, the object they were observing, and how long they would stop for. In addition to
the tracking information, the team of evaluators was asked to assign a label to the overall
behavior of the visitor, according to the three visitor categories identifies by Dean, that I
described earlier, and which I renamed “busy”, “greedy”, and “selective”. Together with
the curator, and in accordance to the literature, I have found that allowing the evaluators
to make a subjective judgment about the visitor’s behavior is as accurate as asking the
visitors themselves. Visitors who are not familiar with the description of the three
categories described by Dean would tend to misclassify themselves. In addition to that
the museum wearable acts as an external observer, who tailors a personalized story to the
visitor, on the basis of external observations, as opposed to asking the visitor what they
want to do at every step. Lastly, the assessment made by the team of evaluators is used to
initialize the Bayesian network, but the model can later be refined, that is the parameters
can be fine tuned, as more visitors experience the exhibit with the museum wearable, as
described in the next Chapter.

The visitor tracking information is shown in table 1. I tracked about 50 visitors, and
gathered 50 such tracking sheets from the team of evaluators [figures 18,19]. The data
they tracked is summarized in table 1. The table contains raw data, that is the number of
seconds that visitors stayed in front of the corresponding objects. All these objects were
visited in a linear sequence, that is one after the next, with no repetitions or change of
path. I will show in Chapter 7 how I use this data to train the parameters of the Bayesian
network which drives the museum wearable experience.
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For an example of a complete exhibit evaluation assessment see the report on the San
Jose Tech Museum of Innovation Galleries by Randi Korn & Associates, Inc.
[http://www.randikorn.com/dwdocs/Summaries.html].

Figures 18 and 19. Annotations of visitor’s path and duration of stay at MIT Museum’s
Robots and Beyond Exhibit
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Intro
1

Lisp
2

Minsky
Arm  3

Robo
Arm  4

Falcon
5

Phantom
6

Cogs
Head  7

Quad-
8

Uniroo
9

Dext Arm
10

Kismet
11

Baby Doll
12

TYPE

0 5 5 0 13 0 10 0 0 0 0 0 busy

0 0 20 0 30 40 0 0 30 5 24 0 slctv

0 0 0 0 10 0 75 0 0 0 0 10 slctv

0 0 20 0 20 130 10 55 82 25 0 5 slctv

0 0 15 10 10 5 0 0 0 0 0 0 busy

0 0 5 5 5 0 3 0 0 70 0 0 busy

0 0 33 0 60 17 0 0 0 16 0 13 slctv

0 38 10 13 38 10 21 0 0 18 0 43 slctv

0 0 30 0 0 10 10 0 0 5 0 0 busy

0 6 40 15 25 40 0 82 82 34 30 18 greedy

0 0 0 0 35 15 10 0 15 55 20 10 slctv

0 31 45 15 25 10 5 0 0 0 40 0 slctv

0 0 15 15 27 20 0 0 0 35 0 3 slctv

0 18 0 0 30 41 0 0 0 23 15 50 slctv

141 0 0 0 0 0 0 0 0 0 0 110 slctv

10 23 20 0 25 40 26 56 56 0 7 20 greedy

5 18 0 0 3 0 0 0 0 10 55 24 slctv

140 45 30 0 0 0 0 0 0 0 0 0 slctv

0 1 8 0 0 0 0 0 0 5 12 10 busy

3 0 0 0 20 19 0 0 51 0 0 0 slctv

30 15 0 5 0 0 3 0 0 0 0 0 busy

5 38 0 0 140 35 0 0 0 0 25 0 slctv

15 0 0 0 10 5 10 3 5 10 0 10 busy

3 20 10 22 0 0 0 25 15 60 0 30 slctv

3 20 10 22 0 0 10 0 0 0 0 0 slctv

180 2 0 0 20 15 25 0 0 0 0 40 slctv

2 0 0 0 0 0 0 0 39 0 10 0 busy

3 35 5 5 0 20 0 0 0 0 0 10 slctv

3 0 10 0 0 0 5 0 0 0 0 0 busy

3 35 5 5 0 0 0 15 10 3 5 15 busy

15 0 37 0 0 0 5 0 0 0 0 0 busy

15 7 0 0 33 15 0 0 0 0 55 0 slctv

15 0 0 0 3 0 0 0 0 0 55 0 busy

10 30 3 0 0 0 15 0 0 5 0 35 slctv

0 43 10 0 47 0 20 55 55 35 0 0 slctv

3 0 0 0 3 0 0 0 0 0 0 15 busy

3 0 0 0 74 17 96 0 0 0 0 0 slctv

6 0 0 0 4 0 17 0 0 0 0 0 busy

3 41 10 0 20 9 0 14 8 10 31 0 busy

3 23 5 0 20 3 20 5 10 5 5 0 busy

5 10 5 0 0 10 0 0 0 10 65 15 busy

5 0 35 0 6 0 7 0 5 35 40 6 busy

3 60 15 30 40 30 10 0 0 0 0 0 slctv

10 45 45 60 35 0 0 0 5 10 20 0 slctv

3 27 50 39 30 0 0 0 15 20 0 0 slctv

Table 1. Visitor Tracking data limited to 12 selected objects at MIT Museum’s Robots and Beyond Exhibit
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3.6. The Museum Wearable:
demonstration prototype

To monitor the visitor’s behavior in the museum, and deliver a story as a function of
the visitor’s evolving path, I have built a first physical implementation of the museum
wearable using uniquely a location sensor. The location sensor informs the wearable on
the wearer’s location in the exhibit, and proximity to an object on display. The location
system is made by a network of tiny infrared devices which transmit a location
identification code to the receiver worn by the user and attached to the display glasses.
The transmitters have the size of a 9V battery, and are placed inside the museum, next to
the regular museum lights. They are built around a PIC microcontroller and their signal
can be detected as far as about 30 feet away within a cone range of approximately ten to
thirty degrees (Chapter 6).

While using only one sensor, may seem like a limiting factor in constructing an
interactive experience such as the one described, having such long range infrared location
identification sensor can provide a great deal of useful information for the targeted
application. With the location identification receiver, connected to the wearable through
the serial port, the museum wearable can measure a sampled path of the visitor
throughout the exhibit, including how long the visitor stays in proximity of the tagged
object on display, and his/her overall strategy of exploration.

The sto(ry)chastics approach (Chapters 4 and 5), allows the author to model the
sensor, the visitor, and the content selection mechanism with a Bayesian network.

A simulation of how a more accurate estimation of the visitor’s interests could be
achieved using multiple sensors is provided in Section 5.3.

The following Chapter provides an introduction to Bayesian networks and explains
how they can be used to estimate the visitor’s type uniquely using the information
provided by the infrared location identification sensor.

Chapter 5 illustrates the content selection mechanism, which edits in real time for the
visitor a story about the object on display, from pre edited short segments, such that the
overall edited story best matches the visitor’s type and interests.
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Chapter 4

Estimating the visitor’s intentions with
Bayesian networks

4.1. Bayesian Networks

Over the last decade, a method of reasoning using probabilities, variously called belief
networks, Bayesian networks, probabilistic causal networks, influence diagrams,
knowledge maps, constraint networks, qualitative Markov networks, and so on, has
become popular within the AI probability and uncertainty community, and more recently,
the machine learning, and pattern recognition communities. In the remaining part of this
document I will use the term Bayesian networks, as it is the more widespread throughout
the above mentioned research communities. The term Bayesian networks unfortunately
suggests inappropriate comparison to neural networks. Bayesian networks should not be
confused with neural network: they are more closely related to expert systems than to
neural networks, and do not necessarily involve learning. The fundamental difference
between the two types of networks is that a neural network in the hidden layers does not
in itself have an interpretation in the domain of the system, whereas all the nodes of a
Bayesian network represent concepts that are well defined with respect to the domain.
The construction of a Bayesian network requires detailed knowledge of the domain in
question. It is true that to construct a Bayesian network one needs to know many
probabilities in advance. However, there is not a considerable difference between this
number and the number of weights and thresholds that are needed to specify a neural
network, and these can only be learned by training. In neural networks it is therefore
impossible to utilize domain knowledge that one may have in advance. Probabilities for
Bayesian networks, can instead be assessed using a combination of theoretical insight,
empiric studies independent of the constructed system, training, and subjective estimates.
Finally it should be mentioned that in the construction of a neural network the route of
inference is fixed. It is decided in advance, about which relations information is gathered,
and which relations the system is expected to calculate. Bayesian networks are much
more flexible in that respect.

A Bayesian network is a graphical model which encodes probabilistic relationships
amongst variables of interest. Such graphs not only provide an attractive means for
modeling and communicating complex structures, but also form the basis for efficient
algorithms, both for propagating evidence and for learning about parameters. Bayesian
networks encode qualitative influences between variables in addition to the numerical
parameters of the probability distribution. As such they provide an ideal form for
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combining prior knowledge  [Heckerman, 1999], which might be limited solely to
experience of the influences between some of the variables of interest, and data. When
used in conjunction with statistical techniques, Bayesian networks have several
advantages for data analysis. One, because the model encodes dependencies among all
variables, it readily handles situations where some data entries are missing. Two, a
Bayesian network can be used to learn causal relationships, and hence can be used to gain
understanding about a problem domain and to predict the consequences of intervention.
Three, because the model has both causal and probabilistic semantics, it provides a
representation for combining prior knowledge and data.

Bayesian networks are a specific type of graphical model. A Bayesian network is a
specific type of graphical model called a directed acyclic graph (DAG) (as opposed to a
UG: Undirected Graph) [Neapolitan, 1990]. That is, all of the edges in the graph are
directed and there are no cycles. The nodes represent random variables that are variables
of interest (i.e. the temperature of a device, a feature of an object, the occurrence of an
event), and the links represent causal influences among the variables. The strength of an
influence is represented by conditional probabilities that are attached to each cluster of
parent-child nodes in the network [figure 20].

Figure 20. Example of a Bayesian network which models a golf game.

With the structure of the graphical model, the Bayesian network expresses a set of
conditional independence relations amongst the variables of the network. Any
information or computation on any variable of the model, such as calculation of posterior
probabilities, requires knowledge of the joint probability distribution of all variables in
the network. The knowledge of independence relations amongst the variables of the
probabilistic model is important to be able to find a simpler factorization for the joint
distribution of the variables. The graphical structure of the Bayesian network encodes all
independence relations amongst the variables of the network in an easily readable and
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intuitive way. More specifically, if { }1 2, , ..., NX X XU =    is a set of N  random
variables, let ( )p U  represent the joint distribution for U . It is well known that for
moderately large N , specification and manipulation of ( )p U  directly is intractable
unless there exist considerable structure in the probability model. For example with N
binary variables, a model with no independence structure requires the specification of

( )2NO  probability values. Furthermore, calculations of particular posterior probabilities

given observed evidence will also tend to scale exponentially in N , rendering such
models useless in practice. This intractability has been well-known in different
disciplines for some time and there has been considerable, and often independent work in
different areas to exploit independence structure to achieve tractability [Smyth, 1998].
The conditional independence relations in a Bayesian network are represented by the
missing edges of the graphical model. If variable iX  does not depend directly on variable

jX , then there is no edge between them, as a node is connected only to those other nodes
on which it directly depends. The parameters of the network consist of the specification
of the joint probability distribution ( )p U . This specification is in a factored form, and the
factors are defined locally on the nodes of the graph.
The conditional independence relationships between the variables of a Bayesian network
is described by the property of d-separation, hence can be immediately read off the graph
[figures 21,22]. Two network variables A and B are d-separated if all paths between them
are blocked [Minka, 1999]. A path between A and B is blocked if there is a node C such
that:

1. the path has converging arrows at C and none of C or its descendants are
given

2. the path does not have converging arrows at C and C is given.

Figure 21. The path has converging arrows at C and none of C or its descendants are given
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Figure 22. The path does not have converging arrows at C and C is given

An example of how effectively the joint probability distribution can be easily factorized
by reading conditional independence relations amongst the variable of the network from
the property of d-separation of the network is given in figure 23 [from Minka, 1999]:

Figure 23. Example of simplification of joint distribution obtained by looking at the d-separation properties of the
graph

Mathematically this graph tells us that the joint distribution can be factored as:
(U) ( , , , , , , , , )

            ( ) ( ) ( | , ) ( | ) ( | ) ( | ) ( | , ) ( | ) ( | )

p p A B C D E F G H I

p A p B p C A B p D C p E D p F C p G E F p H G p I G

= =

Jensen [Jensen, 1996] describes two introductory examples that illustrate essential points
to consider when reasoning with uncertainty with Bayesian network. These examples
model respectively conditional independence and explaining away.

Example 1. Crowded Museum: conditional independence
  (modified from Jensen’s “Icy Roads” example)

Frank, an ambitious artist, is impatiently awaiting the arrival of Henry and Will, two well
known museum curators with whom he needs to discuss placement of his artwork in the
museum galleries they direct. Frank is quite agitated as they are late, and he has a third
appointment lined up in the afternoon. Wondering why they could be so late, he recalls
that they told him, that before the meeting, they were planning to visit the Impressionists
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exhibit that was being shown in town. Frank seems to recall that today is also the last day
of the exhibit, and therefore the museum they’re visiting might be very crowded. Both
Henry and Will are meticulous and diligent art critics, and therefore if the museum is
crowded, they may be there for a very long time. At that point, Liz, Frank’s friend, comes
into the room and tells him that Will called saying that he would be late as he was busy at
the Impressionists’ gallery. “Ah, I knew it” – Frank replies – “today is the last day of that
exhibit and it must be terribly crowded. Therefore Henry is probably stuck there as well.
I’d better head on to my next meeting”. “Last day ?” – Julie replies – “It’s far from being
the last day, the exhibit has been extended for another two weeks, and furthermore the
museum has special visiting hours for art critics”. Frank is relieved. “Too bad for Will, he
must have met one of his sponsors and has not been able to disengage to come here on
time. Let’s give Henry another half hour”.

This example can be formalized as follows. We have three variables: crowded galleries
(C), Henry is late (H), and Will is late (W). Let all events be represented by variables
with two states: “yes” and “no.” To each event is associated a certainty, which is a real
number. C has the effect of increasing certainty of both H and W. For quantitative
modeling we need initially p(C), p(H | I ), and p(W | I ). This reflects the fact that only
knowledge of Crowd is relevant for Will and Henry being late, in this model [figure 24].

Figure 24. Crowded museum Bayesian network example

The initial probability assignment for this model is given in table 2. Initially Frank
believes that the Impressionists’ museum is crowded, that is p(C=yes)=0.7. The other
conditional probability tables reflect the fact that if the museum is crowded, Henry and
Will are likely to be late: p(H=yes | C=yes )=0.8, otherwise they are usually on time:
p(H=yes | C=no)=0.1.

p( H | C ) C: yes C: no p( W | C ) C: yes C: no
C: yes 0.7 H: yes 0.8 0.1 W: yes 0.8 0.1
C: no 0.3 H: no 0.2 0.9 W: no 0.2 0.9

Table 2. Crowded museum Bayesian network: initial probabilities.

Therefore, numerically, the network initially is as shown in figure 25:
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Figure 25. Crowded museum Bayesian network initial probabilities

When Frank is told that Will is stuck at the museum and is going to be late, he is doing a
reasoning in the opposite direction to the causal arrows. He gets an increased certainty of
C [figure 26]. The increased certainty of C in turn creates a new expectation, namely an
increased certainty of H.

Figure 26. Crowded museum Bayesian network: updated probabilities after evidence about Will being late is
introduced.

Figure 27. Crowded museum Bayesian network: after evidence on Crowd is introduced, Will’s being late for the
meeting has no influence on Henry: the probability of H is the same, independently of the probability value of W.
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Next, when Liz tells him that the Impressionists’ museum cannot possibly be crowded,
the fact that Will is stuck at the museum cannot change his expectation about the museum
being crowded, and consequently, Will’s being late for the meeting has no influence on
Henry [figure 27].

This is an example of how dependence/independence changes with the information at
hand. When nothing is known about how crowded the Impressionists’ exhibit is, then H
and W are dependent: information on either event affects the certainty of the other.
However when the crowd information is known for certain, then they are independent:
information on W has no effect on the certainty of H and viceversa. This phenomenon is
called conditional independence.

Example 2. Interactive Museum: Explaining away
  (modified from Jensen’s “Wet Grass” example)

Henry is the director of the famous Come-See-Touch interactive science museum in Los
Angeles. One morning, as Henry is leaving the main gallery, he notices that the
“Highlights in the history of science” interactive demonstration is not working. It is a
complex interactive piece which requires a daily initialization procedure. Is it not
working because somebody forgot to run its daily initialization, or is it just due to the
intermittent power outages that they’ve had in Los Angeles all summer ? His belief in
both events increases. Next he notices that the neighbor interactive demonstration, the
“Wonders of Nature” interactive table, is also not working. Given that the table is simply
“plug-and-play” and does not require special assistance, he is now almost certain that the
galleries have been subject to yet another power outage.

Figure 28. Interactive museum Bayesian network

In this example we have four variables: power outage (P), forgot initialization (I),
“Wonders of Nature” demonstration down (W), and “Highlights in the history of science”
demonstration down (H) [figure 28]. They all have two states: “yes” and “no.” The initial
probabilities are given in table 3:
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I:yes I:no
p( W | P ) P: yes P: no p( H | P, I ) P: yes P: no P: yes P: no

P: yes 0.2 I: yes 0.1 W: yes 1 0.2 H: yes 1 0.9 1 0
P: no 0.8 I: no 0.9 W: no 0 0.8 H: no 0 0.1 0 1

Table 3. Interactive Museum Bayesian Network: initial probabilities.

When Henry notices that the “Highlights in the history of science” demonstration is not
working, his certainty of both P (power outage) and I (forgot initialization procedure)
increases. The increased certainty of P in turn, creates am increased certainty of W
[Figures 29, 30].

Figure 29. Interactive museum Bayesian network: initial probabilities.

Figure 30. Interactive museum Bayesian network: probabilities after H=yes is introduced as evidence.

Then  Henry checks the Wonders of Nature demonstration, and when he discovers that is
also down, he immediately increases certainty of P (power outage) [figure 31].
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Figure 31. Interactive museum Bayesian network: probabilities after H=yes and W=yes are introduced as
evidence.

This reasoning step is hard for machines but natural for humans, and it’s called
explaining away: the Highlights demonstration being down has been explained, and thus
there is no longer any reason to believe that the initialization procedure has been
forgotten. Hence the certainty of I is reduced. The reason why the probability of I (forgot
initialization procedure) does not drop to the prior probability of 0.1 is that the Wonders
of Nature demonstration may be down for other reasons (it could be broken). This is
reflected in the probability p(W=yes | P=no)=0.2.

The numeric values shown after introducing evidence, and reported in the figures
illustrating the above examples, are the result of inference, or probability update for the
network. This is the operation of obtaining revised belief for some or all the nodes in the
domain, after evidence has been introduced. One can think of a propagation as the
computation of certain marginals of the full joint probability distribution over all
variables. As is well-known, the distribution of an individual variable can be found by
summing/integrating out all other variables of this joint probability distribution. More
efficiently in the above examples they are computed using a two-pass propagation
operation called Collect Evidence and Distribute Evidence, which can be thought of as a
parametrization of the marginalization method [Cowell et al., 1999]. This method is
implemented in HUGIN [Andersen, 1989], and HUGIN is the software library used to
calculate inference for these examples.

Pearl observes that a Bayesian network constitutes a model of the environment rather
than, as in many other knowledge representation schemes (i.e. logic, rule-based systems,
and neural networks), a model of the reasoning process [Pearl, 1988]. One could argue
that in some cases knowledge equals the environment, and in others the network
represents abstract ideas. A Bayesian network allows the investigator to answer a variety
of queries, including: associational queries, such as “Having observed A, what can we
expect of B?”; abductive queries, such as “What is the most plausible explanation for a
given set of observations?”; and control queries, such as “What will happen if we
intervene and act on the environment?”. Answers to the first type of query depend only
on probabilistic knowledge of the domain, while answers to the second and third types
rely on the causal knowledge embedded in the network. Both types of knowledge,
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associative and causal, can effectively be represented and processed in Bayesian
networks. The associative facility of Bayesian networks may be used to model cognitive
tasks such as object recognition, reading comprehension, and temporal projections. For
such tasks, the probabilistic basis of Bayesian networks offers a coherent semantics for
coordinating top-down and bottom-up inferences, thus bridging information from high
level concepts and low level percepts [Pearl, 1988]. The most distinctive feature of
Bayesian networks is their ability to represent and respond to changing configurations.
Any local reconfiguration of the mechanisms in the environment can be translated, with
only minor modification, into an isomorphic reconfiguration of the network topology. In
the network given as example below, to represent a disabled sprinkler, we simply delete
from the network all links incident to the node “Sprinkler”. To represent a pavement
covered by a tent, we simply delete the link between “Rain” and “Wet. This flexibility is
often cited as one of the main advantages of Bayesian networks, as it enables them to
manage novel situations instantaneously, without requiring training or adaptation [figures
32,33,34].

The examples above also provide examples of the basic possible connections between
the nodes of a Bayesian network. If A, B, C are nodes, the three main connection types
are [figure 35]:

• serial connection: A has an influence on B which in turn has an influence of C.
Evidence on A will influence the certainty on B, which then influences the
certainty on C. Similarly, evidence on C will influence the certainty on A through
B. On the other hand, if the state of B is known, then the channel is blocked, an A
and C become independent as evidence is transmitted through a serial connection
unless the state of the variable in the connection is known.

• converging connection: if nothing is known about A except what may be inferred
from knowledge of its parents, then the parents are independent: evidence on one
of them has no influence on the certainty of the others. If evidence is given for A,
then the parents become dependent due to the principle of explaining away
(conditional dependence).

• diverging connection: this is a generalization of the crowded museum example:
influence can pass between all the children of A unless the state of A is known
(conditional independence).
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Figures 32, 33, 34. Flexibility of Bayesian networks
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Figure 35. Basic connection types for Bayesian networks: serial, converging, and diverging connections.

Another observation which can be made from the above examples is that by using
graphs, not only it becomes easy to encode the probability independence relations
amongst variables of the network, but it is also easy to communicate and explain what the
network attempts to model. Graphs are a natural medium for representing information in
a compact form which humans can grasp, understand, and use. Whittaker [Whittaker,
1990] provides a number of examples which clearly demonstrate that even with relatively
few variables it is much easier to reason about independence relations using a graph than
it is without. In addition, the fact that the graphical model forces the modeller to
explicitly encode independence assumptions can be extremely useful in model-building
[Smyth, 1998].

A Bayesian network is called an influence diagram [Howard and Matheson, 1981]
when working with decision making. In decision theory one also specifies the desirability
of various outcomes, i.e. their utility, and the cost of various actions that might be
performed to affect the outcomes. The idea is to find the action (or plan) that maximizes
the expected utility minus costs. An influence diagram includes action nodes, i.e. nodes
indicating actions that can be performed, and utility nodes, i.e. nodes indicating the
values of various outcomes.

Various operations are typically performed on Bayesian networks. Inference is the
problem of calculating posterior probabilities for variables of interest given observed data
and given a specification of the probabilistic model. Typical inference problems include
calculating the probability of a class variable given observed features (in classification
problems) and calculating the probability of observed data under various different models
(as in speech recognition). The related task of maximum a posteriori (MAP)
identification is the determination of the most likely state of a set of unobserved
variables, given observed data and the probabilistic model. The learning or estimation
problem is that of determining the parameters, and/or the structure of the probabilistic
model from the data.

Following are some guidelines on some of the techniques typically used in Bayesian
networks for inference and learning.
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4.1.1. Inference in Bayesian Networks

Inference is the task of computing the probability of each value of a node in a
Bayesian network when other variables’ values are known. This is called equivalently
probability updating, network updating, or inference. In general this computation in NP-
hard [Cooper, 1987]. Depending on the particular structure of the network, the algorithm
used, and the accuracy of implementation, networks as small as a dozen of nodes can take
too long, or networks in the thousands of nodes can be done in acceptable time. The
tradeoffs are between speed, complexity, generality, and accuracy. Given that getting an
exact solution is NP-hard, researchers have developed a variety of methods to obtain
approximate solutions, which with high probability are within some small distance of the
correct answer.

One class of networks which can be updated with exact methods is that of singly
connected networks. A singly connected network, also called polytree, is one in which
the underlying undirected graph has no more than one path between any two nodes. The
underlying undirected graph is obtained by ignoring the direction of the edges between
nodes in the network.  A version of probability updating in singly connected networks
through message passing was presented by Kim and Pearl [Kim and Pearl, 1983]. To
evaluate multiply connected networks exactly, one needs to transform the network into an
equivalently singly connected one. Pearl describes in depth this technique, called belief
update or belief propagation in [Pearl, 1988, chapter 4]. A popular, fast, technique to do
this is one by Lauritzen and Spiegelhalter [Lauritzen and Spiegelhalter, 1988] and later
improved by Jensen [Jensen, 1990], also known as the Hugin method. This is the
technique used in the numeric examples above. An alternative to this probability update
method is the one proposed by Shafer and Shenoy [Shafer and Shenoy, 1990]. A
technique called lazy propagation proposed by Madsen and Jensen [Madsen and Jensen,
1999] merges the Shafer-Shenoy and Hugin propagation. Cowell [Cowell, 1999]
introduces a more general method of inference in Bayesian networks, called the junction
tree algorithm.  Approximate techniques come in various flavors depending on the nature
of the network. In essence they randomly set values for some of the nodes, and then use
these to select values for the other nodes. The statistics of the answers on the values of
each node give the final update value. Neal [Neal, 1993] introduced Markov Chain
Monte Carlo (MCMC) methods for Bayesian networks, inspired by research in statistical
physics. Gilks et al. [Gilks et al., 1994] have developed a quite popular and effective
system, called BUGS, for Gibbs sampling in Bayesian networks. In contrast to the
approach that applies probability propagation to multiply connected tress, and the
computationally intensive stochastic approach of Monte Carlo, Jordan et al. [Jordan,
Ghahramani , Jaakkola, Saul, 1999] propose an elegant variational formulation of
probability updating. Loopy belief propagation is a technique by Weiss et al. [Weiss,
1997] which entails applying Pearl's algorithm to the original graph, even if it has loops
(undirected cycles). In theory, this runs the risk of double counting, but in certain cases
(e.g., a single loop), events are double counted equally, and hence cancel to give the right
answer. Generalized Belief Propagation (GBP) is a very accurate but computationally
expensive belief propagation algorithm, inspired by statistical physics, by Yedida,
Freeman, and Weiss [Yedidia, Freeman, and Weiss, 2000]. Recently Minka [Minka,
2001] proposed a new fast probability update approximation technique called
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“Expectation Propagation”, which greatly reduces computational expense with respect to
all previous techniques.

Typically there is no single probability update technique, approximate or exact, which
works well for all kinds of networks, and researchers need to choose the algorithm which
best suits their network and problem, amongst the available ones.

4.1.2. Learning in Bayesian Networks

Learning in Bayesian networks refers to learning either the topology or the conditional
probability distributions (parameters) of the network. Depending on the problem at hand,
either or both of these may be pre-defined by the expert, or domain knowledge about the
problem, or may be learned. Heckerman [Heckerman, 1999] provides a good introduction
to learning with Bayesian networks.

If the structure of the network is known, Expectation Maximization (EM) is the
Maximum Likelihood approach used to learn the parameters [Lauritzen, 1995]. Zweig
[Zweig, 1998] discusses how to use EM in discrete Bayesian networks for the purpose of
doing speech recognition. Jordan et al. [Jordan, Ghahramani , Jaakkola, Saul, 1999]
introduce variational methods for learning and inference in graphical models. Another
class of learning methods is based on Monte-Carlo or sampling methods [Neil, 1993].

If the structure of the network is not known, various technques are available to learn
the network structure from data. This is an active field of research, especially for hybrid
networks containing both continuous and discrete nodes. Cooper and Herkovits [Cooper
and Herkovits, 1992] present the K2 algorithm to find the most probable belief network
structure, from a database of cases. Chickering, Heckerman and Meek [Chickering, 1997]
describe a Bayesian approach to structure learning with a greedy algorithm that searches
both for global and local structures simultaneously. Sprites, Glymour, and Scheines
[Sprites, 2000] proposed a constraint-based approach to structure learning called the PC
algorithm, which is now implemented in the Hugin library. Friedman [Friedman, 1997]
explains a method for learning both the network structure and the data, which in a later
paper, he renames the structural EM algorithm (SEM) [Friedman, 1998].

If more than one network topology is available, such as for example, one given by the
expert and one learned, the model selection problem arises.  One method for evaluating a
potential structure is to compute the joint probability for the data and structure p(D,S).
Using Bayes’ theorem, this breaks down into computing the posterior probability (the
likelihood) and the prior probability of the structure of the data (relative posterior
probability) [Heckerman, 1999]. Similarly, it is possible to choose between network
topologies using the “evidence” for the model [Mackay 1992a, 1992b, 1995]. The
evidence framework has undergone some discussion and controversy in the Bayesian
network community [Wolpert, 1993], yet is stays as a good first guideline for model
selection. Minka [Minka, 2001] proposes expectation maximization for model selection.
Neal [Neal, 1993] shows the use of Markov Chain Monte Carlo (MCMC) for model
comparison.
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4.1.3. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) model those problems where the environment
evolves over time. The model assumes that the Markov property holds, i.e. the current
state is affected only by the last state, and the action taken at that state. Based on the
observed history, the model evaluates the posteriors of a given state at a given time. It
typically answers queries related to how the system will evolve (forecasting or
prediction).  A Dynamic Bayesian Network is defined by a prior network and a transition
network [figure 36]. The transition network illustrates, for all time slices, what the
probabilities are for each variable, conditioned of the other variables, from the previous
and the same time slice. A DBN needs to satisfy the following conditions: (a) it has the
same structure at any time slice t and (b) the only transition (cross-slice) edges allowed
are those that extend from slice t to slice t+1.

Figure 36. Prior network and transition network for a Dynamic Bayesian Network.

The set of variables and probability definitions are the same for each time slice, with
the exception of the prior network, in the initial time slice, which has its own probability
distribution. Given the prior and transition network one can construct a dynamic
Bayesian network of arbitrary length [figure 37]. A broad corpus of exact and
approximate inference and learning techniques from the BN literature can be applied to
dynamic Bayesian networks [Ghahramani, 1997].

Figure 37. The same dynamic Bayesian network with 5 time slices.
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Note that it is possible to model a dynamic Bayesian network with a limited number of
time slices, using a “regular” Bayesian network, by replicating by hand the nodes for
each slice and the transition links.

The merit of Dynamic Bayesian Networks is that they generalize widely diffused
modeling techniques, such as HMMs and Kalman Filters. They capture a much richer
structure including spatial and temporal multiresolution structure, distributed hidden state
representations, and multiple switching linear regimes [Ghahramani, 1997]. For this
reason they have been successfully applied to a variety of tasks such as multimodal
sensing for gesture recognition [Pavlovic, 1999], speech recognition [Zweig, 1998],
traffic surveilance [Forbes, 1995], and body motion understanding [Pavlovic, Rehg,
Cham, and Murphy, 1999].

4.1.4. Related modeling techniques: HMMs, CHMMs, Kalman
Filters, and Markov Random Fields.

 Many time series models, including Hidden Markov models (HMMs), typically used
in speech recognition, and Kalman filter models, used in filtering and control
applications, can be viewed as examples or subsets of dynamic Bayesian networks
[Ghahramani, 1997].

HMMs consist of states, possible transitions between states, and the probabilities that
in a particular state, a particular observation is made. An observation can be any variable
of interest, from a phoneme, to a handwritten character. HMMs are called hidden because
the state of an HMM cannot in general be known by simply looking at the observation.
They are Markov in the sense that the probability of observing an output depends only on
the current state and not on previous states. By looking at the observations, using an
algorithm known as the Viterbi Algorithm, one can compute an estimate of the
probability that a particular instance or stream observed was generated by that HMM.
Another problem usually solved with HMMs is to compute the most probable HMM that
generated an observed data stream. These two problems, as similar to the inference and
structure learning problem for Bayesian networks, discussed earlier. An HMM can
effectively be represented as the simplest kind of DBN, which has one discrete or
continuous observed node per slice [figure 38]. Specifically, in an HMM the sequence of
observations { }tY is modeled by assuming that each observation depends on a discrete

hidden state tX , and that he sequences of hidden states are distributed according to a
Markov process. The joint probability for the sequences of states and observations, can
be factored exactly as for a Bayesian network with the structure shown in figure X:

{ }( ) 1 1 1 1
2

, ( ) ( | ) ( | ) ( | )  = 
T

t t t t tt
t

p X Y p X p Y X p X X p Y X−
=

∏
Consequently the conditional independencies in an HMM can also be expressed

graphically using dynamic Bayesian networks, and the parameter and structure learning
methods can be considered as special cases of the ones discussed earlier for Bayesian
networks [see Ghahramani, 1997].
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Figure 38. DBN representation of an HMM with 4 time slices.

Circles denote continuous nodes, squares →→ discrete nodes, clear means hidden, filled cyan →→ observed.

Coupled HMMs extend HMMs to model two separate interacting processes, and have
successfully been used for gesture recognition [Oliver, 1999], and freeway traffic
modeling [Kwon and Murphy, 2000]. In this architecture two HMM chains are coupled
via conditional probabilities modeling causal temporal influences between the hidden
state variables [figure 39]. Basically, for each chain, the state at time t depends on the
state at time t 1−  in both chains. Even though the topology of a coupled HMM resembles
that of an ordinary HMM, the inference schemes of ordinary HMMs are not directly
applicable to the coupled ones. Brand [Brand, 1996] describes a Viterbi-like
approximation inference scheme for CHMMs. Pavlovic developed a variational inference
approach [Pavlovic, 1999], using a DBN framework. Also within a DBN framework,
Kwon and Murphy present approximate inference algorithms based on particle filtering
(sequential Monte Carlo) and on the Boyen-Koller algorithm.

Figure 39. DBN representation of a coupled HMM.
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A Linear Dynamical System, or state-space model, is a partially observed stochastic
process with linear dynamics and linear observations, both subject to gaussian noise. The
Kalman filter is an algorithm to perform filtering or prediction on this model. A Kalman
filter performs least-squares optimal recursive estimation, and it can be described also as
a graphical model. In state-space models, a sequence of real valued observation vectors
{ }1, ... ,  TY Y is modeled by assuming that at each time step t , tY  was generated from a

real valued hidden state variable tX , and that the sequence of sX  define a first order

Markov process. If { }tY  denotes sequences from t 1=  to t T=  then:

{ }( ) 1 1 1 1
2

, ( ) ( | ) ( | ) ( | )  = 
T

t t t t tt
t

p X Y p X p Y X p X X p Y X−
=

∏

Figure 40. DBN representation of a Kalman filter with 4 time slices.

Circles denote continuous nodes, squares →→ discrete nodes, clear means hidden, filled cyan →→ observed.

Therefore, a Kalman filter has the same DBN topology as an HMM, where all the
nodes are assumed to have linear-Gaussian distributions [figure 40].

Markov Random Field (MRF) [Kinderman and Snell, 1980] are two dimensional
Markov chains represented by an undirected graph with nodes corresponding to variables
[figure 41]. They were originally developed in statistical physics to model sysyems of
particles interacting in a two dimensional or three dimensional lattice. Recently, they
have been applied to problems in image analysis [German and German, 1984] where
pixels play the role of particles in the physical system. The basic idea of a markov

random field is that the conditional probability for a state variable ,k ls
at position ( , )k l  in

the field, is the same as the conditional probability of ,k ls
given the states only in some

local neighborhood. The joint distribution for an MRF can be written in a factorized
form, as in the example below:

( , , , ) ( ) ( | ) ( | , ) ( | )p u s x y p u p s u p x u s p y x=
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Figure 41. An example of Markov Random Field

It can be observed that an MRF is the UG (undirected graph) version of a Bayesian
network, which is instead a DAG (directed acyclic graph). Since inference with an ADG
is typically carried out by inference on a related UG, there is increasing interest in
exploring the UG approximations for some applications involving ADGs [Saul and
Jordan, 1996].

When some of the observed nodes are thought of as inputs (actions), and some as
outputs (percepts), we can think of a DBN as a POMDP (Observable Markov Decision
Process) [Murphy, 2000; Kaelbing, 1998].

From the discussion above it becomes clear that the formalism of HMMs, CHMMs,
Kalman Filters, and Markov Random fields, can be expressed in the graphical framework
of Bayesian Networks and Dynamic Bayesian Networks. The inference and learning
algorithms known for Bayesian networks generalize previous algorithms used in the
models described in this section.  Therefore we can think of Bayesian networks as a
superset of these previous techniques [Ghahramani, 1997; Smyth, 1998].

The ability to view seemingly different algorithms for different problems within a
unified graphical model framework can provide powerful insights [Smyth, 1998]. More
important is the fact the graphical model framework enables the construction and
application of novel and relatively complex multivariate models in a straightforward and
systematic manner [Pavlovic, 1999]. Specifically the Bayesian network formalism allows
easy construction of hybrid models, which combine the use of HMMs and Kalman filters
for example, as shown by Pavlovic and Rehg [Pavlovic, Rehg, Cham, and Murphy,
1999].

The flexibility of use of Bayesian networks is also illustrated by the wet floor example
above. It become clear that especially in the modeling phase it is extremely useful to be
able to add or delete nodes in the model without having to relearn or recompute all the
conditional probability tables for the other nodes. This allows the system designer to have
room  for experimentation and trial, as it is possible to easily test multiple models, before
selecting a final Bayesian graph that best models a problem, as shown in the next section.
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Moreover, graphical models can easily be used for interpersonal communication. The
graphical format is easy for humans to read, and it helps focus attention, for example in a
group working together to build a model. In the context of this thesis for example, this
allows the digital architect, or the engineer, to communicate on the same ground (the
graph of the model) with the curator and therefore to be able to encapsulate the curator’s
domain knowledge, by getting appropriate feedback and applying multiple revisions to
the model. Jensen [Jensen, 2001] sees Bayesian networks as a language, specifically a
context-free language with a single context-sensitive aspect (no directed cycles). As a
language, Bayesian networks are well defined and their fomalism can easily be
communicated to a computer.

For all these reasons, I chose to use Bayesian networks to model visitor’s types at the
museum, rather than any of the techniques described in this chapter. By using a superset
of HMMs and CHMMs, and taking advantage of the modeling flexibility of Bayesian
network, in addition to the ease of communication with non technically savy people, such
as the museum curators, I was able to carry out the work described in the following
section and chapters in a relatively short amount of time.

To speed up the work, at least in the initial phase, in addition to the above mentioned
advantages, there exist today various software packages available to the researcher who
wishes to investigate applications or novel techniques for Bayesian Networks. The main
three well developed packages are:

• Hugin [Andersen, 1989] [http://www.hugin.com]

• Kevin Murphy’s matlab Bayesian Net Toolbox (BNT) [Murphy, 2001]
[http://www.cs.berkeley.edu/~murphyk/Bayes/bnt.html]

• BUGS [Gilks, Thomas, Spiegelhalter, 1994]                                 
[http://www.mrc-bsu.cam.ac.uk/bugs/]

For this thesis I used Hugin for calculation of inference, in simulation and in real time. I
also used Kevin Murphy’s matlab BNT to learn the network parameters as described in
section 7.1.

4.2. Modeling visitors’ intentions at MIT’s Robots
and Beyond Exhibit

The museum wearable uses a Bayesian network to provide a real time estimate of
visitor typology. An analysis of museum visitors, (see section 3.3) has led to identify
three main visitor types (or strategies): a greedy type, who wants to know and see as
much as possible, and does not have a time constraint, a busy type who just wants to get
an overview of the principal items in the exhibit, and see little of everything, and the
selective type, who wants to see and know in depth only about a few preferred items. Our
system attempts to classify the visitor behavior in the museum according to the above
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user types, and to present content tailored to these three types according to the intentions
and interests expressed by their estimated behavior in the museum space. The
information upon which the visitor type is identified is given by the infrared location
sensor described in section 6.3. It is of course possible and desirable to assign priors to
the user types: people entering the exhibit could be asked if they wish to declare
themselves as belonging to one of the above user types, or if they wish instead to explore
the exhibit uncommitted to any exploring strategy. It is also possible for people to behave
differently in different stages of their visit: somebody could for example behave like a
busy type during their first visit, and later behave like a selective type on a second visit. If
people are given the option to declare their visiting strategy (busy/greedy/selective) the
system needs to be able to account for those cases in which visitors change their mind:
having declared themselves as belonging to a busy type for example at the beginning of
their visit, they are later on carried away by what there are seeing and behave like a
selective type. Finally, priors could be assigned to the different user types by having
visitors spend some time in an introductory room, and measuring their behavior and
reaction to the artwork on display in that room.

After weighting all these options, I decided to model the system with minimal base
requirements, so that options could be easily added later, as a refinement to the system,
by taking advantage of the modeling flexibility of Bayesian networks I explained in the
previous section. These are the working hypothesis used to guide modeling the Bayesian
network to estimate the visitor’s type:

• 1. The information available to the system, modeled by the observed nodes of the
network is location (which object the visitor is close by) and how long the visitor
stays at each location (duration).

• 2. The priors on the three busy/greedy/selective type start equally for the three
types. The visitor does not declare belonging to a user type at the entrance so as
not to bias the priors on the visitor type to any of the three types. Some visitors
might in fact feel bothered being asked or being committed to a type at start. When
the museum wearable will be installed in a museum, is will be possible at the end
of each week (for example) to count the number of busy/greed/selective types that
have been through the galleries and use this information as a prior on the visitor
types for the following week. It is therefore a reasonable assumption for the first
prototype presented in this document to start with equal priors on the three types.

• 3. There is no introductory space that allows the system to know the visitor better.
While it would improve accuracy of type estimation at start, it would also impose a
definite constraint on the curator and the exhibit designer, as such an introductory
space would have to be found inside the museum galleries and set up. If such
space became available it would allow the museum wearable to estimate a visitor
type ahead of time during the visit. Without this prior estimation of the visitor
type, the Bayesian network will make informed guesses about the visitor’s interest
along the exhibit. In time, as the visitor sees more objects the probabilistic nature
of the system makes the guesses become more accurate.

• 4. Another assumption being made, is that each visitor belongs to one type which
the system estimates during the visit. Because of the probabilistic nature of the
system, this assumption does allow the system to change its mind about the visitor
type if the visitor’s behavior changes during the visit. What this assumption means
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is that I have chosen the visitor type as a static node rather than a dynamic node. It
can change but it is not a variable that evolves in time. This is to a certain extent a
subjective choice of the modeler (myself), guided by commonsense and previous
modeling experience. What it means is that even if the visitor starts with a busy
behavior and later behaves selectively, the system can still account for that while
considering the visitor as a unit and not as an entity whose value we sample in
time. This assumption will be illustrated by some of the following Bayesian model
examples.

• 5. To initially simplify the task at hand I have selected a subset of twelve
representative objects at the MIT Museum’s Robots and Beyond Exhibit, as shown
in figure 42.

Once the basic modeling assumptions have been made various choices are still
available when designing or modeling a Bayesian network for the exhibit. A variety of
modeling techniques is described in [Jensen, 1996]. It is clear that the model needs to be
some kind of dynamic Bayesian network, as estimating the visitor’s type is a process that
happens in time during the visit. Sampling times are given in this case by the presence of
the visitor at each location, and therefore we need to model a process with twelve time
slices, as twelve are the selected objects for the exhibit. In addition to this, the actual
placement of these objects on the museum floor dictates some constraints on the model
architecture. Therefore the geography of the objects in the exhibit needs to be reflected in
the topology of the modeling network, as shown in figure 43. I will now describe the
modeling steps and choices which have led to the Bayesian network which estimates the
visitor’s type from the location and stop duration information obtained from the infrared
location sensor.
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Figure 42. Selected objects at the MIT Museum’s Robots and Beyond Exhibit
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Figure 43. The geography of the exhibit needs to be reflected into the topology of the network
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The choices available in modeling this problem are:
• the topology of the network
• which states per node
• whether to have a continuous or discrete node for the visitor’s stop durations
• whether to have one unique node or multiple nodes to describe the stop durations.

These choices will affect the possible networks which model the problem. The first,
somewhat easy, decision is to have discrete states for the visitor’s stop durations. For
simplicity we can choose three simple significative labels: ‘skip’, ‘short’, and ‘long’. It is
of course possible later on to extend the model to consider a higher resolution of discrete
stop durations, such as one which includes: ‘skip’, ‘short’, ‘medium’, ‘long’, and ‘very
long’. I describe in section 7.2. a classification technique that allows the system designer
to choose which range of values define these three classes. In brief, the ranges are
specific to each museum exhibit and are derived from tracking data obtained by
observing and measuring visitor’s stop length and type at the museum, as described in
section 3.5.

The expert’s assumptions about the percentage of skip/short/long stop durations that a
busy/greedy/selective will do are given in table 4. This table assigns numeric values to
the qualitative description of these three types given at the beginning of this section.
Section 7.1. shows how these a priori values can later be revised, and tuned to a specific
exhibit, using the visitor tracking data described in section 3.5.

Conditional  probability table for the visitor node
skip short long

Busy 0.2 0.7 0.1
Greedy 0.1 0.1 0.8
Selective 0.4 0.2 0.4

Table 4. Conditional Probability Table for the visitor node

I will now describe four possible networks and explain the selection criteria which has
led to the final choice.

4.2.1. Visitor Type model 1

The first model is a naive first tentative which weights each possibility for a
busy/greedy/selective type to make a skip/short/long stop duration. Basically for each
‘skip’, ‘short’, ‘long’ event, modeled as separate nodes, it defines the probability that it is
caused by a busy/greedy/selective type. To simplify the assignment of the conditional
probability tables for the binary (true/false) of the skip/short/long nodes it is convenient
to use a noisy-or modeling for each of these nodes. When a variable B has several
parents, one must specify p(B | A*) for each configuration A* of the parents. In this case
for all binary nodes, this would imply having to assign: p(duration | busy, greedy,
selective) for all combinations of busy/greedy/selective. Specifying such a configuration
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may be too specific for any expert. A simplifying method is provided by the noisy-or
modeling technique [Jensen, 1996]. It is based on the assumption that an event happens
unless something prevents it to happen.

If 1, ..., nA A are binary variables listing all the causes of the binary variable B,
each event iA y= causes B y= unless an inhibitor prevents it, and the probability for

that is iq . This is expressed by: ( )| i ip B n A y q= = = . Then:

( )1 2| , ,..., n jj Y
p B n A A A q

∈
= = ∏  where Y is the set of indices for variables in the

state y. For example: ( )1 2 3 1 2| , , 1np B y A y A y A A n q q= = = = = = −  [figure 44].

Figure 44. Noisy-or modeling

By using the noisy-or modeling technique the number of probabilities to assign grows
only linearly with the numbers of parents.

For the museum visitor estimation problem the network is shown in figure 45, for one
time slice and the conditional probability tables obtained by noisy-or modeling is shown
in table 5. The priors p(busy=yes), p(greedy=yes) and p(selective=yes) are all 0.3333,
that is equal for all.

Figure 45. Topology of model 1, one time slice.
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p (SK | S B G)
sk=yes sk=no %  SK=skip

0.67 0.33 %  S=selective  B=busy  G=greedy
0.63 0.37 %  S=selective  B=busy  G=not greedy
0.59 0.41 %  S=selective  B=not busy  G=greedy
0.54 0.46 %  S=selective  B=not busy  G=not greedy
0.45 0.55 %  S=not selective  B=busy  G=greedy
0.39 0.61 %  S=not selective  B=busy  G=not greedy
0.30 0.69 %  S=not selective  B=not busy  G=greedy
0.23 0.77 %  S=not selective  B=not busy  G=not greedy

p (SH | S B G)
sh=yes sh=no %  SH=short

0.86 0.14 %  S=selective  B=busy  G=greedy
0.84 0.16 %  S=selective  B=busy  G=not greedy
0.52 0.48 %  S=selective  B=not busy  G=greedy
0.47 0.53 %  S=selective  B=not busy  G=not greedy
0.82 0.18 %  S=not selective  B=busy  G=greedy
0.80 0.20 %  S=not selective  B=busy  G=not greedy
0.40 0.60 %  S=not selective  B=not busy  G=greedy
0.33 0.67 %  S=not selective  B=not busy  G=not greedy

p (LO | S B G)
lo=yes lo=no %  LO=long
0.94 0.06 %  S=selective  B=busy  G=greedy
0.70 0.30 %  S=selective  B=busy  G=not greedy
0.93 0.07 %  S=selective  B=not busy  G=greedy
0.66 0.34 %  S=selective  B=not busy  G=not greedy
0.90 0.10 %  S=not selective  B=busy  G=greedy
0.49 0.51 %  S=not selective  B=busy  G=not greedy
0.89 0.11 %  S=not selective  B=not busy  G=greedy
0.43 0.57 %  S=not selective  B=not busy  G=not greedy

Table 5. Conditional Probability tables for the SKIP, SHORT, and LONG nodes
resulting from the noisy-or modeling

The transition probabilities between one time slice and the text are given by table 6. The
transition probabilities are the same for models 1, 2, and 3.

greedy not  greedy
greedy 0.6 0.4

not greedy 0.4 0.6
busy not  busy

busy 0.6 0.4
not busy 0.4 0.6

selective not  selective
selective 0.6 0.4

not selective 0.4 0.6
Table 6. Transition Probability tables for the GREEDY, BUSY, and SELECTIVE nodes
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The meaning of the transition probability table is quite important for the system. The
values along the diagonal describe how much past history matters in determining if a
visitor belongs to a type. For examples if the values along the diagonal are high (0.9) and
the visitor switches behavior from let say greedy to selective, the system will have some
inertia in identifying the new type. It will take the system a few time steps to catch up
with the new visitor behavior. This makes sense if there are many objects in the exhibit.
If instead there are only a few objects in the exhibit, such as MIT’s Robots and Beyond
targeted exhibit, it is desirable to have a system which adapts fast to the visitor’s behavior
and does not tend to “stick to the first impression” as before. In this case it is preferable
to have lower values along the diagonal (0.6) as shown in table 6.

To test the model, I introduced evidence on the duration nodes, thereby simulating its
functioning during the museum visit. I have included results below, limited to two time
slices, for the limited space available on paper. The reader can verify that the system
gives plausible estimates of the visitor type, based on the evidence introduced in the
system. The posterior probabilities in this and the subsequent models are calculated using
Hugin, which implements the Distribute Evidence and Collect Evidence message passing
algorithms on the junction tree.

Summary of results:
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type (0.6705)
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type (0.5943)
Test case 3. The visitor spends a long time with the first object and skips the second
object → the network gives the highest probability to the selective type (0.6016)

The importance of the transition probability table can be verified on the simple test case
3.  Figures 46-51 show results obtained with a transition probability with high inertia
(high values along the diagonal = 0.9) and with low inertia (diagonal probabilities = 0.6).
I introduce evidence separately for time slice 1 and 2. When I introduce evidence for a
long stop at object 1, for time slice 1, both systems select the greedy type as the highest
probability estimate for the visitor type, which is consistent with the type definition.
However when I introduce evidence for skip at time step 2, the systems make slightly
different inferences.  The system with low inertia stays with the type estimate made at
time step 1, and basically says “at time step 1 I had a greedy visitor, but now after a skip I
think that the highest probability is for a selective type”. The system with high inertia
instead changes its mind about what had happened at step 1, and says something like
“well given that now at time step 2 I observe a selective visitor, I must actually have been
wrong at time step one, and I am going to correct my estimate for step 1 from greedy to
selective”. This is an example of “explaining away” probabilistic reasoning, which causes
the probability of greedy at step 1 to lower as it is explained by the selective type at step
2. The reader has been introduced to explaining away in the examples provided in section
4.1. Ultimately there is really no right or wrong way of setting the transition probability
table. It simply depends on the problem at hand, and the choices that the modeler and the
curator find appropriate on the basis of the public they address and the message they wish
to convey.
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Figure 46. Posterior probabilities after evidence is introduced and inference is performed
(Duration 1=short and Duration 2=short)

Figure 47. Posterior probabilities after evidence is introduced and inference is performed
(Duration 1=long and Duration 2=long)
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Figure 48. Posterior probabilities after evidence is introduced and inference is performed, for model 1,
(Duration 1=long and Duration 2=short) –  system with *low* inertia.

Figure 49. Posterior probabilities after evidence is introduced and inference is performed, for model 1,
(Duration 1=long and Duration 2=short) –  system with *high* inertia.



71

Figure 50. Posterior probabilities after evidence is introduced and inference is performed, for model 1,
(Duration 1=long) –  system with *low* inertia.

Figure 51. Posterior probabilities after evidence is introduced and inference is performed, for model 1,
(Duration 1=long) –  system with *low* inertia.
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4.2.2. Visitor Type model 2

An alternative to the previous model, can be found by thinking what the different visitor
types have in common. For example both the busy and selective type tend to skip, the
selective or greedy do not make short stops, whereas the busy type makes many short
stops. The model shown in figure 52 extracts all similarities and differences between
types and encodes them in the topology and parameters of the model. It is
 of importance to notice that the (type or type) nodes do not necessarily have connections
to all skip/short/long nodes. The whole point of this model is that it is somewhat of a
summary of what common types might do, and therefore we do not need edges to all leaf
nodes. This allows us to simplify the conditional probability tables for the leaf nodes with
less incoming edges [tables 7,8,9]. As before, to simplify the assignment of the
conditional probability tables for the duration nodes, I used noisy-or to model the leaf
nodes. All the (type or type) nodes are logical XOR nodes. The priors p(busy=yes),
p(greedy=yes) and p(selective=yes) are all 0.3333, that is equal for all. The test cases
illustrates in figures 53-55 are the same as in the previous model and all lead to plausible
results.

Figure 52. Topology of model 2, one time slice.

       p(SK | S BoS GoB)
sk=yes sk=no

0.73 0.27 %  S=selective  BoS=b or s  GoB=g or b

0.68 0.32 %  S=selective  BoS=b or s  GoB=s (not)(g or b)

0.60 0.39 %  S=selective  BoS=g not(b or s)  GoB=g or b

0.54 0.46 %  S=selective  BoS=g not(b or s)  GoB=s (not)(g or b)

0.54 0.46 %  S=not selective  BoS=b or s  GoB=g or b

0.46 0.54 %  S=not selective  BoS=b or s  GoB=s (not)(g or b)

0.35 0.65 %  S=not selective  BoS=g not(b or s)  GoB=g or b

0.23 0.77 %  S=not selective  BoS=g not(b or s)  GoB=s (not)(g or b)

Table 7. Conditional Probability tables for the SKIP nodes, uses noisy-or
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p (SH | B SoG)
sh=yes sh=no

0.83 0.17 %  B=busy  SoG=s or g

0.80 0.20 %  B=busy  SoG=b not(s or g)

0.43 0.57 %  B=not busy  SoG=s or g

0.33 0.67 %  B=not busy  SoG=b not(s or g)

Table 8. Conditional Probability tables for the SHORT nodes, uses noisy-or

p(LO | S G)
lo=yes lo=no
0.93 0.07 %  S=selective  G=greedy

0.66 0.34 %  S=selective  G=not greedy

0.89 0.11 %  S=not selective  G=greedy

0.43 0.57 %  S=not selective  G=not greedy

Table 9. Conditional Probability tables for the LONG nodes, uses noisy-or

Figure 53. Posterior probabilities after evidence is introduced and inference is performed, for model 2.
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Figure 54, 55. Posterior probabilities after evidence is introduced and inference is performed, for model 2.
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In summary, for model 2:
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type (0.6925)
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type (0.6056)
Test case 3. The visitor spends a long time with the first object and skips the second
object → the network gives the highest probability to the selective type (0.5552)

4.2.3. Visitor Type model 3

Model 3 performs an inversion of the causal arrows with respect to the previous models.
It is equally possible to imagine that a greedy visitor generates a long stop, as well as to
think that a long stop “generates” a greedy visitor. For the sake of exploration I also
created a model with inverted causal arrow and obtained once again plausible results
[figure 56]. As before, in figures 57-59 the reader will find probability update calculation
for a simple two time-slices test case. The conditional probability tables for
greedy/busy/selective are also given in tables 10,11,12.

Figure 56. Topology of model 3, one time slice.

        p(B | SKB LOB SHB)
b=yes B=no
0.02 0.98 %  SKB=skip-B  LOB=long-B  SHB=short-B

0.01 0.99 %  SKB=skip-B  LOB=long-B  SHB=not short-B

0.75 0.25 %  SKB=skip-B  LOB=not long-B  SHB=short-B

0.58 0.42 %  SKB=skip-B  LOB=not long-B  SHB=not short-B

0.12 0.88 %  SKB=not skip-B  LOB=long-B  SHB=short-B

0.06 0.94 %  SKB=not skip-B  LOB=long-B  SHB=not short-B

0.94 0.06 %  SKB=not skip-B  LOB=not long-B  SHB=short-B

0.89 0.11 %  SKB=not skip-B  LOB=not long-B  SHB=not short-B

Table 10. Conditional Probability table for the busy node.
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        p(G | SKG LOG SHG)
g=yes G=no
0.01 0.99 %  SKG=skip-G  LOG=long-G  SHG=short-G

0.34 0.66 %  SKG=skip-G  LOG=long-G  SHG=not short-G

0.01 0.99 %  SKG=skip-G  LOG=not long-G  SHG=short-G

0.22 0.78 %  SKG=skip-G  LOG=not long-G  SHG=not short-G

0.14 0.86 %  SKG=not skip-G  LOG=long-G  SHG=short-G

0.89 0.11 %  SKG=not skip-G  LOG=long-G  SHG=not short-G

0.09 0.91 %  SKG=not skip-G  LOG=not long-G  SHG=short-G

0.81 0.18 %  SKG=not skip-G  LOG=not long-G  SHG=not short-G

Table 11. Conditional Probability table for the greedy node.

        p (S | LOS SKS SHS)
s=yes s=no
0.05 0.95 %  LOS=long-S  SKS=skip-S  SHS=short-S

0.47 0.53 %  LOS=long-S  SKS=skip-S  SHS=not short-S

0.06 0.94 %  LOS=long-S  SKS=not skip-S  SHS=short-S

0.52 0.48 %  LOS=long-S  SKS=not skip-S  SHS=not short-S

0.39 0.61 %  LOS=not long-S  SKS=skip-S  SHS=short-S

0.92 0.08 %  LOS=not long-S  SKS=skip-S  SHS=not short-S

0.44 0.56 %  LOS=not long-S  SKS=not skip-S  SHS=short-S

0.93 0.07 %  LOS=not long-S  SKS=not skip-S  SHS=not short-S

Table 12. Conditional Probability table for the selective node.

Figure 57. Posterior probabilities after evidence is introduced and inference is performed, for model 3.
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Figures 58, 59. Posterior probabilities after evidence is introduced and inference is performed, for model
3.

The summary of results for model 3 is:
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type (0.5534)
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type (0.5443)
Test case 3. The visitor spends a long time with the first object and skips the second
object → the network gives the highest probability to the selective type (0.5640)



78

4.2.4. Visitor Type models 4a and 4b

A final possibility is to consider a model which has the topology of an HMM, such as the
one shown in figure 60. However such a model would require having a dynamic visitor
node, which is a choice I discarded in the above discussion on the working hypothesis for
this model. A similar topology, but with a static visitor node, can be obtained by
introducing an object node which actually encodes information about the object being
observed by the visitor. For example, some objects can be very interesting or less
interesting, according either to the opinion of the curator, or the public’s preferences, and
this information can be encoded in the Bayesian network. Moreover, in a situation in
which the museum wearable was available to the public, it would be possible,
theoretically, at the end of each week, to take the posterior probabilities for all objects
and all visitors, and reintroduce them as priors for the Bayesian network used in the
wearables the following week. This would allow the system to account for the evolving
public’s preferences and types. While installation of the museum wearable in the museum
is not addressed in the research described by this document, it is important to notice the
possibility to easily update the priors of the model from the posterior probabilities of the
previous day or week to obtain a more accurate estimate of the variables of interest.
To obtain a better network topology, another possibility is to group together the binary
skip/short/long nodes, which only have true/false states, as in the examples above, into
one unique location node which represents how much time the visitor spends at that
location, i.e. with a ternary skip/short/long state [figure 61]. This is well representative of
the problem as truly an object skip excludes a short stop or a long stop and viceversa. If
skip/short/long are states of the same node the sum of their total probability needs to be
one, which mathematically translates the previous statement.
I initially implemented the latter model [figure 62], for simplicity, with a binary object
state with visited/not_visited states. The reason is that for the training of the model I later
performed, and which is discussed in section 7.1., no priors were available on whether the
objects were more interesting than neutral or boring, and I would have had to learn
separate conditional probabilities for the neutral/interesting/boring cases, for which no
training data was available.

Figure 60. HMM modeling of the visitor type estimation problem.
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Figure 61. Model 4a, which introduces object nodes. Only 3 time slices out of 12 are shown in figure.

Figure 62. Final selection: model 4b, with object nodes and ternary skip/short/long location nodes,
3 time slices.

After having taken tracking data on the twelve selected objects, as described in section
3.5, it is possible to analyze this data and infer priors on whether the objects are
neutral/interesting/boring. Then we need to give different conditional probabilities for the
interesting and boring cases, such that if a busy type spends quite a long type with an
object, that is more an indication of that object being interesting than the busy type
becoming more greedy in their visit.
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Table 13 shows the total amount of time, in seconds, that the fifty tracked visitors have
spent at the twelve targeted objects at MIT’s Robots and Beyond exhibit:

Intro
1

Lisp
2

Minsky
Arm 3

Robo
Arm 4

Falcon
5

Phantom
6

CogsHead
7

Quad
8

Uniroo
9

Dext
Arm 10

Kismet
11

Baby Doll
12

588 755 719 627 986 748 771 694 859 700 1025 548
Table 13. Total time spent by the 50 visitors at the 12 observed objects

A simple histogram plot [figure 63] shows which of these objects are
interesting/neutral/boring, always in a probabilistic sense. The tallest bins are from
objects 5,9,11, which are therefore the most interesting. The shortest bins are from
objects 1,4,12 that are therefore boring. All remaining objects shall be considered neutral.

Figure 63. Histogram of overall time, in seconds, that visitors spend at the 12 target objects.

Based on the information above, a set of priors of the twelve objects is given by table 14:

1 2 3 4 5 6 7 8 9 10 11 12
neutral 0.23 0.34 0.28 0.25 0.18 0.32 0.36 0.24 0.27 0.26 0.16 0.2

interesting 0.23 0.33 0.36 0.25 0.64 0.34 0.32 0.38 0.46 0.37 0.68 0.2
boring 0.54 0.33 0.36 0.5 0.18 0.34 0.32 0.38 0.27 0.37 0.16 0.6

Table 14. Priors for the 12 selected objects derived from the visitor tracking data.
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The priors on the visitor states are busy=greedy=selective=0.333. The conditional
probabilities p(location | object, visitor) is shown in table 15:

neutral interesting boring
busy greedy selective busy greedy selective busy greedy selective

skip 0.2 0.1 0.4 0.1 0.05 0.1 0.35 0.2 0.65
short 0.7 0.1 0.2 0.6 0.05 0.3 0.6 0.2 0.15
long 0.1 0.8 0.4 0.3 0.9 0.6 0.05 0.6 0.2

Table 15. Conditional Probability Tables for the Location Nodes.

The initial object and transition probabilities from one object to the next are given by
table 16:

P(O1) P(Oj | Oi) neutral interesting boring
neutral 0.333 neutral 0.6 0.2 0.2

interesting 0.333 interesting 0.2 0.6 0.2
boring 0.333 boring 0.2 0.2 0.6

Table 16. Priors for the 12 selected objects and transition probabilities.

The transition probabilities are in this model the same for all twelve objects. However
these could be also learned if more training data was available. For example visitors
could have a tendency to skip certain objects, or visit them in a different order than what
the exhibit designer has laid out. Alternatively, the transition probabilities would
highlight groups of object and show that for example the “Sensors” section of the exhibit
turns out to be more interesting than the “Movement” section. This information would be
reflected in the transition tables. From the visitor tracking data gathered at the MIT
Museum we observed people visiting objects one after the next in a linear sequence. This
observation is mapped to the table above.

The test cases illustrates in figures 64-66 are the same as in the previous models and all
lead to plausible results. The summary of results for model 4 is:
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type (0.8592)
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type (0.7409)
Test case 3. The visitor spends a long time with the first object and skips the second
object → the network gives the highest probability to the selective type (0.5470)

I have also included a test case for the HMM-like version of the model discussed above,
with the same p(object|visitor) as model 4 [figures 67-69], which led to the following
results:
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type (0.8640)
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type (0.75)
Test case 3. The visitor spends a long time with the first object and skips the second
object → the network gives the highest probability to the selective type (0.5874)
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Figure 64. Posterior probabilities after evidence is introduced and inference is performed, for model 4:
busy type.

Figure 65. Posterior probabilities after evidence is introduced and inference is performed, for model 4:
greedy type.
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Figure 66. Posterior probabilities after evidence is introduced and inference is performed, model 4:
selective type.

Figure 67. Posterior probabilities after evidence is introduced and inference is performed
HMM-like model: busy type.
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Figure 68. Posterior probabilities after evidence is introduced and inference is performed
HMM-like model: greedy type.

Figure 69. Posterior probabilities after evidence is introduced and inference is performed
HMM-like model: selective type.
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4.2.5.  Model Selection

The previous sections present five different Bayesian networks which all estimate the
visitor type from the information provided by the location sensor. The models have been
tested on all twelve time slices by introducing evidence by hand and comparing the
obtained visitor highest probability with the visitor assigned label, in the tracking data.
The figures above show only representative cases for two time slices, for the convenience
of a printed document which allows the writer only to show a limited size/resolution
picture. Rather than carrying out a full performance test for all five models (cross-
validation), which would be quite a long procedure, it is desirable to be able to have other
criteria that guide the selection of the best model amongst the ones proposed above.
Certainly various criteria can be adopted. Speed is an important factor, as calculations of
the visitor type with highest probability needs to be carried out in the real time in the
museum wearable. Performance is another criteria, i.e. how accurately can the system
guess the correct type. Given the limited number of objects that are usually present in a
museum (maximum a few hundred), all the models proposed achieve fast calculation,
therefore speed is not the main criteria in this case. As shown for the representative test
cases with two time slices, all models have good performance and all lead to a plausible
estimation of the user type. Other criteria are therefore needed to be able to select a
model from the five proposed.

Model selection is still an open field of research for Bayesian networks [Hoeting,
Madigan, Raftery, Volinsky, 1999] [Chickering and Heckerman, 1995] [MacKay, 1995].
MacKay provides a criteria for model comparison called the evidence framework
[MacKay, 1992a, 1992b]. The general validity of such framework has recently been
widely debated [Wolpert, 1993] and more recently questioned by Qi and Minka [Qi and
Minka, 2001].  The agreement in the research community today is that yet the model’s
evidence provides at least a basic quantitative model raking criteria for Bayesian
networks. Calculating the evidence for a Bayesian network can be in some cases a
difficult task. Minka [Minka, 2001] proposes expectation propagation as a fast
approximation technique for model selection.

For the purpose of this research, the evidence for the model H, given the data D: p(H|D)
can be obtained as a byproduct of the sum-propagation probability update performed by
Hugin, once evidence has been introduced for all the nodes of the network. The reason
for this is that Hugin propagation is based on the junction-tree algorithm, and the
operations Collect Evidence and Distribute Evidence. Once the messaging calls are
finished, all probability tables are normalized so that they sum to one. The normalization
constant for the root clique of the junction tree is the evidence of the model, given the
data.

MacKay suggests using the evidence of the model as a criteria for comparison in the light
of a Bayesian approach. According to MacKay, to evaluate the plausibility of two
alternative hypothesis or models, 1H  and 2H , we can use Bayes’ theorem, to calculate
the posterior probability for each of the model, given the observed data as:

( | ) ( )( | )
( )

i i
i

p D H p H
p H D

p D
=
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The quantity ( )ip H represents a prior probability for model iH . If we have no particular
reason to prefer one model over another, the we would assign equal priors to all of the
models. Since the denominator ( )p D  does not depend on the model, we see that different
models can be compared by evaluating ( | )ip D H .

This gives the following probability ratio between hypothesis (model) 1H  and 2H :

1 1 1

2 2 2

( | ) ( ) ( | )
( | ) ( ) ( | )

p H D p H p D H

p H D p H p D H
=

The first ratio 1

2

( )
( )

p H

p H
 on the right hand side measures how much our initial beliefs

favored 1H  over 2H . The second ratio expresses how well the observed data was
predicted by 1H  compared to 2H .

This indicates that the Bayesian approach can be used to select a particular model for
which the evidence is the largest. One might expect that the model with the greatest
evidence is also the one which will have the best generalization performance. However
MacKay shows us that that is only true, conditioning the model on the data, and that is
why we consider ( | )ip H D  as shown above. This is best illustrated by an example.

Let 1H , 2H , 3H  be three different models with increasing flexibility, corresponding for
instance to an increasing number of hidden units. Each model is given therefore by the
network topology (number of units, conditional probabilities), and is governed by a
number of active parameters. By varying the values of these parameters, each model can
represent a range of cases, More complex models, with a greater number of hidden units,
can represent a greater range of data sets. This is illustrated in figure 70.

Figure 70. Comparison of model complexity, from MacKay, [MacKay, 1995].
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When a particular data set 0D  is observed, the model 2H  has a greater evidence than
either the simpler model 1H  or the more complex model 3H .

According to MacKay, [MacKay, 1995] Bayesian model comparison embodies Occam’s
razor, the principle that states a preference for simple models. If several explanations are
compatible with a set of observations, Occam’s razor advises to go with the least
complex explanation. The principle is often advocated both for aesthetical and practical
reasons (empirical success). For MacKay, coherent inference embodies Occam’s razor
automatically and quantitatively.

Let see how these considerations apply to our problem. To rank the five models
previously presented, I performed a simple test using the two time slice test described
above. For each model, the data introduced is for test 1 is: 1 { , , }D short short busy= , for
test 2 : 2 { , , }D long long greedy= , and for test 3: 3 { , , }D long skip selective= . To calculate
the evidence for the model, the probability in all other nodes need to be set as well, and
this is done based on domain knowledge. For example for model 1, if busy is set, then
not_greedy, and not_selective can also be set. Similarly, not_long, and not_skip, are also
set. Once all the known cases have been introduced in the network, in case of uncertainty,
Hugin performs a max-propagation algorithm which selects the most likely combination
of states given the evidence. The most likely states are then also set. Once all the states
are set, the evidence for the network can be read as the normalization constant of the root
clique of the junction tree. The results obtained are shown in table 17.

test 1 test 2 test 3
( | )ip H D t1 t2 t1 t2 t1 t2

EVIDENCE short short long long long skip product ranking
model 1 0.002 0.004 0.0005 4  E-09 4
model 2 0.001 0.0034 0.001 3.4  E-09 5
model 3 0.005 0.0036 0.003 5.4  E-08 3
model 4 0.033 0.054 0.009 2  E-05 2
hmm 0.098 0.128 0.021 2.6  E-04 1

Table 17. Ranking of Bayesian networks according to the evidence framework

According to the evidence framework, the hmm-like Bayesian network is the highest
ranked, followed by model 4a, followed by the others. What the above numbers also tell
us is that the best model (hmm) is about fifty times better than the worst, and the best is
also about two and a half times better than the second best. This is in accordance to
Occam’s razor: the models are ranked in order of complexity, from the most simple, the
hmm, to the most complex. However model 4a, also ranks closely to the HMM, and even
if slightly more complex, it also gives us information about the object, as it has, for each
time slice, an added object node with a neutral/interesting/boring discrete state. Model 4a
is therefore my final choice for estimating the visitor type as either busy, greedy, or
selective, based on the sole stop duration information coming from the infrared location
sensors.
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Chapter 5

Sto(ry)chastics: editing stories for
different visitor types and profiles

5.1. Content granularity and the knobs of a
computational storytelling machine

The previous chapter has shown a Bayesian network based technique to identify the
visitor’s type in the museum. Rather than finding out what each individual wants, I have
simplified the problem into classifying people’s behavior at the museum in three basic
types, according to the museum literature. This problem of profiling the user of a
computer system is also known as user modeling. This chapter deals with content
selection, conditioned on the user model, that is how to use the information obtained
about the museum visitor to tailor a story which matches the visitor’s intentions or
desires. The intentions or desires are summarized and expressed by the visitor’s type.

For a story, or message, to be conveyed, a human storyteller needs to have some
knowledge about the narrated topic, and he/she needs to be able to articulate this
knowledge into a form, which we usually call story. For example, a museum guide uses
his/her knowledge about Van Gogh to explain to a group of visitors the particular style
and meaning of a Van Gogh painting. Usually, a good storyteller will be able to articulate
the story differently according to its audience. If the visitors are children from junior high
school he/she will describe the artwork differently than if the visitors were tourists, or art
experts. For the children he/she will simplify the language in which the story is told, and
will make frequent stops and ask question to the children to make sure the audience is
engaged. For the experts the storyteller will include many historical details, give precise
information on the artistic practices and techniques, and will use a more sophisticated
language. For the tourists he/she might enrich the description of the artwork with
anecdotes to make it more entertaining. In certain occasions the museum guide will try
and gather before or along the visit the visitors’ preferences and will make longer stops,
with longer and more articulated explanations next to the preferred artwork. If people
don’t seem interested the storyteller will instead cut short and move on to the next object
on display.

From the above example, we can extract some basic, simplified, ingredients and recipe of
storytelling which we can then use to parametrize a virtual storytelling machine hosted in
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the museum wearable, and powered by the user modeling system described in the
previous chapter.

The definition of story given below is quite simplistic, and nothing close to what one
would find in a book about human narrative or storytelling. Yet computer programs are
far from fully emulating certain high level human abilities, such as storytelling, and these
simplifications are necessary to start building an interactive automatic storyteller.

The basic elements of story, for the purpose of this research, can be summarized as
follows:

• 1. Knowledge about the topic: it can be summarized as the answers to: who, what,
when, where, why, how.

• 2. Ability to articulate such knowledge into a story form.

• 3. Ability to adapt the story to the audience: i.e. ability to narrate a story with a
different style or point of view, or slant (personalization: i.e. adapts to what the
audience is interested in).

• 4. Ability to make the story long or short according to the level of interest shown by
the public (adapts to how much the audience is interested in the narrated story, or
wants to know about).

• 5. The story needs to make sense, and it possibly needs to be good.

A story narrated by a computer comes in the form of an audio-visual narration. In the
specific case of this research, this narration is experienced through a mobile
headphones/eye-glass display system that the user carries with them. Therefore the
knowledge about a topic, for the museum wearable research, is represented by the
collection of available audio-visual clips. The ability to articulate such knowledge into a
story is similar to what in video or film is called sequencing. Sequencing is the task of
assembling a variety of given shots into a visual narration. The museum wearable, as a
computational storyteller, assembles together available audio-visual material, in such a
way that the final cut is a compromise between the visitor’s interests, what the curator
says is a good story, and time which falls out of the user.

Here is how the above listed elements and parameters of story are mapped to parameters
(knobs) of the automatic storyteller system for the museum wearable project:

• 1. Knowledge → described to the system in terms of content i.e. the collection of
available video clips about the artwork on display.

• 2. Story articulation → real-time probabilistic reasoning about sequences of video
clips.

• 3. Personalization → profiling: selection of the clips which best match the visitors’
interests.

• 4. Overall length of presentation → the system should be able to tell stories which
vary in size.
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• 5. Sensemaking or good story → ordering of clips: the correct order of clips makes
sure that cause-effect relationships are respected, and therefore that the story makes
sense to its audience. Ordering is of course a very simplified way of thinking of good
story and sensemaking. It is however a good first step in the framework of this
research.

More specifically we need yet to define exactly what is story form, for this project, that is
how to characterize the component elements that the system assembles together into a
story. The building bricks of our system are characterized based on 1. their length and 2.
their category. The length of the component elements in this context is not arbitrary, and
it is determined by the actual length of a meaningful chunk of content. The problem of
how to effectively segment the media into meaningful chunks is usually referred to, in the
multimedia field, as the issue of content granularity. This is best explained with an
analogy. If we had to assemble a written page from a book, we could choose whether our
building bricks are words contained in the book, or at a higher level, full sentences of the
book. This decision would have a high impact on the strategy we later need to implement
to assemble the basic pieces together. Choosing building elements which are too small,
such as words, has the advantage of producing a system which can be more flexible and
creative in making a new assembly of words from the book. On the other hand the system
needs to have a knowledge of grammar to be able to recombine the given words together
into new sentences. Choosing formed sentences instead provides less flexibility, but it
makes the subsequent editing task much easier. In this research the working assumption
is that each story segment is a closed mini-narration with full meaning, and is to the
whole story, what a sentence is to a paragraph of a written text.

The choice of categorizing the component elements into bins of related content material,
is related to profiling. In the specific case of museums, most of the audio-visual material
available for use by the museum wearable, tends to fall under a set of characterizing
topics, which typically define art and science documentaries. This same approach to
documentary as a composition of segments belonging to different themes, has been
developed by Houbart in her work which edits a documentary based on the viewer’s
theme preferences, as an offiline process [Houbart, 1994]. The difference between
Houbard’s work and what the museum wearable does is that the museum wearable
performs editing in real time, using sensor input and Bayesian network modeling to
figure out the user’s preferences (type). After an overview of the audio-visual material
available at MIT’s Robots and Beyond exhibit, I identified the following content labels,
or bins, I used to classify the component video clips.

Story bins:
• Description of the artwork: what it is, when it was created (answers: when, where,

what)
• Biography of author: anecdotes, important people in artist’s life (answers who)
• History of the artwork: previous relevant work of the artist
• Context: historical, what is happening in the world at the time of creation
• Process: particular techniques used or invented to create the artwork (answers how)
• Principle: philosophy or school of thought the author believes in when creating the

artwork (answers why)
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• Form and Function: relevant style, form and function which contribute to explain
the artwork.

• Relationships: how is the artwork related to other artwork on display
• Impact: the critics’ and the public’s reaction to the artwork

This project required a great amount of editing to be done by hand (non automatically) in
order to segment the two hours of video material available for the Robots and Beyond
Exhibit at the MIT museum in the smallest possible complete segments. After this phase,
all the component video clips were given a name, their length in seconds was recorded
into the system, and they were also classified according to the list of bins described
above.  The classification was done probabilistically, that is each clips has been assigned
a probability (a value between zero and one) of belonging to a story category. The sum of
such probabilities for each clip needs to be one. The result of the clip classification
procedure is shown in table 18.

I also conducted a study of how content is distributed geographically along the exhibit,
both in two and three dimensions. The purpose of this study was to visualize the different
stories for different visitors edited by the museum wearable as paths through the
hyperspace of content in the exhibit. The 2D study shows colored pie charts in the
vicinity of the twelve tracked objects at the museum. Each pie chart represents the
content available for the corresponding object. The size of the pie chart is proportional to
the amount of content available for that object. The size of the colored slices of the chart
represent the contribution of each story bin to the content available for the object [figure
71]. I also leveraged some of my previous work [Sparacino, 1997] to provide a
visualization of how the content bins contribute to create a storyscape specific to this
exhibit. This time I used color coded vertical columns (a color for each content bin)
whose height is proportional to the amount of content that each bin contributes to for the
corresponding object. The results of this visualization study are shown in figures
[72,73,74,75].

The museum wearable’s storytelling system is an automatic real time sensor-driven and
user-driven editing machine. Part of the success or good craft of the storytelling
experience offered by the museum wearable resides in two phases which are not covered,
or are beyond the scope of this research. The first phase concerns the production and
construction of the story content, i.e. the original video material the museum provides to
create the building blocks of story. The second phase is to do an accurate chunking of the
available video into smaller units that are the smallest possible complete segments
available for editing by the system. As of today, this editing work can best be done by a
human. Recent research in automatic labeling of video database may provide grounding
for future work which will allow the experience designer to extract automatically the
labels for the content bins, and segment the video into smaller pieces belonging to these
bins. However manual editing and labeling was required for this project. For all these
reasons, the argument of this thesis is somewhat independent of the specific video clips
available. Therefore in the rest of this document I will just use significant names to
describe the component video segments used to test the system, as the specific content of
each clip, once it has been labeled, does not contribute to prove the hypothesis of this
work.
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CATEGORIES / TITLES
LENGTH IN SECS

Bitinside
021

Bitintro
090

Cogdrum
083

Cogfuture
043

Coghistory
051

Description        DSC 0.7 0.2 0.3 0 0
History              HST 0.1 0 0 0 0.5
Context             CTX 0 0 0 0 0
Biography          BIO 0.1 0.2 0 0 0.1
Process             PRC 0 0 0.6 0 0
Principle            PNC 0 0.4 0.1 1 0.2
Form & Function FAF 0 0.2 0 0 0.2
Relationships      REL 0.1 0 0 0 0
Impact               IMP 0 0 0 0 0

Total P 1 1 1 1 1

CATEGORIES / TITLES
LENGTH IN SECS

Cogintro
041

Dexdesign
114

Dexintention
034

Dexintro
072

Dexstiffness
096

Description        DSC 0.8 0.1 0.3 0.5 0.4
History              HST 0 0 0 0 0
Context             CTX 0 0 0 0.2 0
Biography          BIO 0 0.2 0 0 0
Process             PRC 0.2 0.3 0 0 0.2
Principle            PNC 0 0 0.2 0.1 0.4
Form & Function FAF 0 0.4 0.5 0 0
Relationships      REL 0 0 0 0 0
Impact               IMP 0 0 0 0.2 0

Total P 1 1 1 1 1

CATEGORIES / TITLES
LENGTH IN SECS

Itshort
026

Kiscynthiabio
067

Kisdevelop
066

Kisfacesensor
160

Kisintro
066

Description        DSC 0.8 0 0.1 0.3 0.3
History              HST 0 0 0.2 0 0
Context             CTX 0 0 0 0 0
Biography          BIO 0.2 0.9 0 0 0
Process             PRC 0 0 0.1 0.5 0.3
Principle            PNC 0 0 0.2 0 0.3
Form & Function FAF 0 0 0.4 0.2 0.1
Relationships      REL 0 0.1 0 0 0
Impact               IMP 0 0 0 0 0

Total P 1 1 1 1 1

CATEGORIES / TITLES
LENGTH IN SECS

Kissocial
183

Leg3Dbiped
055

Legblobby
021

Legflamingo
043

Legflamjerry
118

Description        DSC 0.1 0.3 1 0.5 0.4
History              HST 0 0 0 0 0
Context             CTX 0.1 0 0 0 0
Biography          BIO 0 0 0 0 0.2
Process             PRC 0.3 0.6 0 0.5 0.3
Principle            PNC 0.5 0 0 0 0.1
Form & Function FAF 0 0 0 0 0
Relationships      REL 0 0.1 0 0 0
Impact               IMP 0 0 0 0 0

Total P 1 1 1 1 1
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CATEGORIES / TITLES
LENGTH IN SECS

Legmonopod
027

Legontherun
084

Legplbiped
054

Legquadropd
048

Leguniroo
017

Description        DSC 0.3 0.9 1 0.7 1
History              HST 0 0 0 0 0
Context             CTX 0 0 0 0 0
Biography          BIO 0 0 0 0 0
Process             PRC 0.7 0 0 0.25 0
Principle            PNC 0 0 0 0 0
Form & Function FAF 0 0 0 0 0
Relationships      REL 0 0.1 0 0.05 0
Impact               IMP 0 0 0 0 0

Total P 1 1 1 1 1

CATEGORIES / TITLES
LENGTH IN SECS

Phantappblin
d      057

Phantappfree
form 089

Phantapplacr
oscp 074

Phantappsur
g     120

Phanthowitw
orks 041

Description        DSC 0.5 0 0.3 0.6 0.2
History              HST 0 0 0 0 0
Context             CTX 0 0 0 0 0
Biography          BIO 0 0 0 0 0
Process             PRC 0 0 0.7 0.3 0.8
Principle            PNC 0.4 0 0 0 0
Form & Function FAF 0 0 0 0 0
Relationships      REL 0 0.2 0 0 0
Impact               IMP 0.1 0.8 0 0.1 0

Total P 1 1 1 1 1

CATEGORIES / TITLES
LENGTH IN SECS

Phantintro
116

Kisemotions
168

Phanttombio
107

Description        DSC 0.3 0.5 0.2
History              HST 0.1 0 0
Context             CTX 0 0.1 0
Biography          BIO 0 0 0.4
Process             PRC 0.1 0.3 0
Principle            PNC 0.2 0.1 0.4
Form & Function FAF 0 0 0
Relationships      REL 0 0 0
Impact               IMP 0.3 0 0

Total P 1 1 1

Table 18. Segments cut from the video documentation available for the MIT Museum’s Robots and Beyond
Exhibit. All segments have been assigned a set of probabilities which express their relevance with respect to
nine relevant story themes or categories.
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Figure 71. Two dimensional representation of content distribution for MIT Museum’s Robots and Beyond Exhibit.
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Figures 72, 73. Three dimensional representation of content distribution for MIT Museum’s Robots and Beyond
Exhibit.
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Figures 74, 75. Three dimensional representation of content distribution for MIT Museum’s Robots and Beyond
Exhibit.



98

5.2. Content selection for different visitor types

Having described the knobs of a computational storytelling machine, this section
illustrates how the museum wearable uses these knobs, with the knowledge of the visitor
type obtained with a Bayesian network (Section 4.2), to assemble and sequence in real
time a small audio-visual story relative to the object that the visitor is standing by. This
should be seen as the first step towards a personalized user-driven and sensor-driven real
time storytelling system. I further develop this discussion in section 5.3, which adds to
the knowledge of the computational storytelling system not only the visitor type, but also
the visitor interest profile, and therefore allows the system to articulate a more complex
and personalized story for the visitor.

To perform content selection, “conditioned” on the knowledge of the visitor type, the
system needs to be given a list of available clips, and the criteria for selection. There are
two competing criteria in this case: one is given by the total length of the edited story for
each object, and the other is given by the ordering of the selected clips. Therefore from
the discussion in 5.1., length and order are the two story knobs which are used here for
content selection. The order of story segments guarantees that the curator’s message is
correctly passed on to the visitor, and that the story is a “good story”, in that it respects
basic cause-effect relationships and makes sense to humans. Therefore in the Bayesian
network which does content selection there will be a root node, called the “good story”
node, which encodes, as prior probabilities, the curator’s preferences about how the story
for each object should be told.

To make a decision about which clip(s) to play, the Bayesian network is extended to be
an influence diagram: it will include decision nodes, and utility nodes which guide
decisions. The decision node contains a list of all available content (movie clips) for each
object. The utility nodes encode the two selection criteria: length and order. The utility
node which describes length, contains the actual length in seconds for each clip. The
length is transcribed in the network as a positive number, when conditioned on a
preference for long clips (greedy and selective types). It is instead a negative length if
conditioned on a preference for short content segments (busy type). This is because a
utility node will always try to maximize the utility, and therefore length is penalizing in
the case of a preference for short content segments. The utility node which describes
order, contains the profiling of each clips into the story bins described in section 5.1. and
listed in table 18 times a multiplication constant used to establish a balance of power
between “length” and “order”. Basically order here means a ranking of clips based on
how closely they match the curator’s preferences expressed in the “good story” node. The
selection of the first and subsequent content segments is therefore a function the clip’s
length, and of how closely it matches the curator’s preferences. By means of probability
update, the Bayesian network comes up with a “compromise” between length and order
and provides a final ranking of the available content segments in the order in which they
should be played. The network from the previous chapter is extended to do content
selection in addition to visitor type identification [figure 76], and the priors, utility, and
decision nodes are given in tables 25,26,27,28.
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This network, shows for simplicity a situation in which only one optimal content segment
is selected. However through the ranking of content segments provided by the decision
nodes for each object, the network can actually select more than one segment, as a
compromise between order of preference and story length. In the network shown in figure
76 the number of clips which are played is limited by the overall story length available
for each visitor type. This means that the type has an influence not only on the decision of
which segments are played, based on their length, but also in the number of segments that
are played, based on their total length. Before content assembly, the curator and the
system modeller  need to establish a maximum length of story in seconds for each object
and each type such as the one in table 19:

max length obj 1 max length obj 2
BUSY a little of everything 90 90
GREEDY a lot of everything 480 220
SELECTIVE a lot of the same 480 220

Table 19. Maximum duration of story (sum of segments) for the three visitor types

From this table the reader should notice that while the greedy and selective type are given
the same maximum allowed story length for an object, the system uses a different criteria
to concatenate segments for the two types. According to the simplified and somewhat
stereotypical type definition given in section 3.3., that serves as a working hypothesis for
this research, while a greedy type wants to see a lot of everything, the selective type will
want to see a lot only within the themes that he/she is most interested in. Not only will
these two types get a different story, but neither will see all the material that is available
to the system for each object. Usually the museum has usually a lot more audiovisual
information that anybody can browse in the time dedicated to a museum visit. As
described in section 3.2, the museum wearable assembles a short (2 minutes) to a
maximum length (10 minutes) stories for each object from the available audiovisual
database of several hours. If the wearable were to show all of its available content for one
object to the greedy type, his/her visit could last as long as 6 to 10 hours, which is
inconceivable (in one day) even for the most motivated visitor. Extension of the system
to be personalized for repetitive use across several days is beyond the scope of the
research described in this document, but is considered a desirable extension of the system
for future work. The calculation of which segments are played for each visitor stop is:

do {

2. select highest ranked clip (in order of individual segment’s length, and curator’s
preferences which express ordering of a good story)

3. select next ranked clip. For the selective type, select next clip only if similar to the
previously selected. If not, stop.

4. check if the overall length of story is less than the maximum allowed for each
type/object (as in point 1).

5.  If so, keep this segment, and find the next one: go to #3.

6.  If not, abandon the current segment selection, and try another one: go to #3.

} while there are still content segments available for the current object. Then stop.
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Note that the additional nodes in figure 77 are shown only to explain that there is an
additional computation to calculate the number of segments to be assembled. This
computation is actually performed in software, using the ranking provided by the
Bayesian network, but using C++ instructions instead, inside the program that handles
both the network and the content playout (section 6.4). The reason is that it would be
cumbersome to calculate with the network a simple algorithm as the one described above,
which can be easily performed in any computer language, but not so easily with a
Bayesian network (it’s a deterministic calculation, and not a probabilistic one).

Tables 29 and 30 show the results of content selection when two different definitions
(preferred segment ordering) are given to the network. This is done to show how the
curator’s viewpoint or message can be easily taken into account in this framework by
simply setting (or changing) the prior probabilities in the “good story” node. Choosing a
good order of story bins to produce an arrangement of segments which cognitively makes
sense to the visitor, is something important which is reflected in the prior probabilities of
the “good story” node. If  the segments are well cut, so that they encapsulate a minimum
length, yet complete, mini-story, and if the priors are well chosen, the resulting story will
make sense to the human viewer. Particular care needs therefore to be taken in these two
preparatory steps for the system, which are done by humans by hand. No matter how
good the network, and the content selection mechanism, if the original segments are
badly shot, and cut in a sloppy way, and the priors are not thoughtfully chosen, the story
produced by the system could be disjointed and non compelling.

Story bins or
CATEGORIES

curator
Frank

Curator
Liz

Description                DSC 0.3 0.1
History                       HST 0.1 0.19
Context                      CTX 0.03 0.03
Biography                  BIO 0.16 0.21
Process                      PRC 0.14 0.02
Principle                    PNC 0.06 0.2
Form & Function        FAF 0.09 0.12
Relationships             REL 0.08 0.05
Impact                       IMP 0.04 0.08
Total P 1 1

Table 20. Two different views of what is a “good story” according to curator Frank and curator Liz.

Table 20 shows to possible definition of “good story”, in the framework of this research,
by two different curators, called for easy reference, Frank and Liz. What the numbers
above say is that Frank believes that a good museum story should start with an extensive
object description, followed by biographical information about its creator. Next,
explanation about the process of creation should be given, accompanied by a history of
previous versions or sketches of the same object, and elements of form and function. Of
less importance are the relationship of the object to other objects on display, the guiding
philosophical principles which have led to its creation, its impact of the public and the art
critics, and what was happening in the world at the time of creation. Liz thinks differently
than Frank. She believes that a good museum story should be based on the creator’s
profile and biographical information, and that these elements should have the priority.
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Explaining to the public what previous artwork has led to the creation of the object they
are looking at is also important. Information about Form and Function, accompanied by a
more detailed description of the object should follow. All the other themes, or story bins,
are of secondary importance. The different results of these two rather opposite views of
story are shown in tables 29 and 30. These possible choices of Liz and Frank are given
only to provide examples how the system works. The same curator could actually choose
a different combination of weights for the good story node, for a different exhibit, as the
message carried by an exhibits changes with its content.

To provide examples of content selection I present three test cases, for the busy, greedy,
and selective types [figures 78-83], with the good story prior probabilities set by curator
Frank. I then show the different selection that the system makes with the priors, given by
curator Liz [figures 84-89]. For limited space on paper, these test cases are presented only
for the first two objects on display.
Test case 1. The visitor spends a short time both with the first and second object → the
network gives the highest probability to the busy type.
Test case 2. The visitor spends a long time both with the first and second object → the
network gives the highest probability to the greedy type.
Test case 3. The visitor spends a long time with the first object and a short time with the
second object → the network gives the highest probability to the selective type.

Model parameters:

Transition probabilities p(O2|O1) Preferred length
neutral interesting boring busy greedy selective

neutral 0.85 0.075 0.075 short 1 0 0.2
interesting 0.075 0.85 0.075 long 0 1 0.8

boring 0.075 0.075 0.85

Cog clips length Kismet clips length
Play cogdrum 83 Play kiscynthiabio 67
Play cogfuture 43 Play kisdevelop 66
play coghistory 51 Play kisfacesensors 160
play cogintro 41 Play kisintro 66

Play kissocial 183
Play kisemotions 168

length Long

kismet
clips

play
kiscynthiabio

play
kisdevelop

Play
kisfacesensors

play
kisintro

play
kissocial

play
kisemotions

67 66 160 66 183 168

length Short

kismet
clips

play
kiscynthiabio

play
kisdevelop

Play
kisfacesensors

play
kisintro

play
kissocial

play
kisemotions

-67 -66 -160 -66 -183 -168

Tables 21,22,23,24,25. Model parameters for the Bayesian network for content selection
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preferred
length

Long

cog clips play cogdrum play cogfuture play coghistory play cogintro
83 43 51 41

preferred
length

Short

cog clips play cogdrum play cogfuture play coghistory play cogintro

-83 -43 -51 -41

kismet
clips

Play kiscynthiabio

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

270 30

kismet
clips

Play kisdevelop

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

30 60 30 60 120

kismet
clips

Play kisfacesensors

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

90 150 60

kismet
clips

Play kisintro

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

90 90 90 30

kismet
clips

Play kissocial

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

30 30 90 150

kismet
clips

Play kisemotions

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

150 30 90 30

cog clips Play cogdrum

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

90 180 30

cog clips Play cogfuture

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

300

cog clips Play coghistory

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

150 30 60 60

cog clips Play cogintro

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

240 60

Tables 26,27,28. Model parameters for the Bayesian network for content selection

Tables 27, 28 include the same parameters of Table 18 (pg 88,89) multiplied by a weighting factor of 300
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Figures 76, 77. Extension of Bayesian network for visitor type identification to content selection.
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Fig.78

Fig.79
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Fig.80

Fig.81
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Fig.82

Fig.83
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The results for the three test cases in figures 78-83 are summarized below. The first
column shows the content selection in case the system was to show only one clip per
object. The remaining columns, and the rows highlighted in red, show how the system
edits a small story for each object, based on the description above. The reader should
notice how the system selects for the busy type the smallest description clip, called
“intro” for both objects, the Kismet and Cog robots on display at MIT’s Robots and
Beyond Exhibit. If more than one clip is selected the museum wearable also adds the
cogfuture segment to the story played for the cog object, as it is the next available short
clips which fits within the 90 seconds maximal story duration available for the busy type.
For the greedy type the system gives highest ranking to the kisemotions clip and the
cogrum clip, which both have high weights on the description and process themes,
preferred by the curator for this hypothetical museum wearable augmented exhibit. The
selective type sees the cogintro clip at his/her second short stop, which is coherent with
the specifications of the system. All these cases demonstrate how the museum wearable
selects content appropriately and in accordance to the visitor type profiling and
corresponding expecations.

#1 Table 29. Content segment  assembly  based on story  and segment  length

test 1 Short
selected Clip 1 length 1 clip 2 length 2 total time

busy Kisintro 66 kiscynthiabio 67 133
Kisintro 66 kisdevelop 66 132
Kisintro 66 kisemotions 168 234
Kisintro 66 kisfacesensors 160 226
Kisintro 66 kissocial 183 249
kisintro 66 66

Short
Clip 1 length 1 clip 2 length 2 clip 3 length 3 clip 4 length 4 total time

Cogintro 41 cogdrum 83 coghist 51 cogfuture 43 218
Cogintro 41 coghist 51 92
Cogintro 41 cogfuture 43 84
cogintro 41 cogfuture 43 84

test 2 Long
selected Clip 1 length 1 clip 2 length 2 clip 3 length 3 total time
greedy Kisemotions 168 kisfacesensors 160 kissocial 183 511

Kisemotions 168 kisfacesensors 160 kisintro 66 394
kisemotions 168 kisfacesensors 160 kisintro 66 394

Long
Clip 1 length 1 clip 2 length 2 clip 3 length 3 clip 4 length 4 total time

cogdrum 83 cogintro 41 coghist 51 cogfuture 43 218
test 3 Long

selected Clip 1 length 1 clip 2 length 2 clip 3 length 3 total time
selective Kisemotions 168 kisfacesensors 160 kissocial 183 511

kisemotions 168 kissocial 183 351 similar segments
Short

Clip 1 length 1 clip 2 Length 2 clip 3 length 3 clip 4 length 4 total time
Cogintro 41 cogdrum 83 coghist 51 cogfuture 43 218
cogintro 41 cogdrum 83 coghist 51 175
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Fig.84

Fig.85
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Fig.86

Fig.87
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Fig.88

Fig.89
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#2 Table 30. Content segment  assembly  based on story  and segment  length,
different “good story” node than Table 29.

test 1 short
selected clip 1 length 1 clip 2 length 2 total time

busy kiscynthiabio 67 kisdevelop 66 133
kiscynthiabio 67 67

short
clip 1 length 1 clip 2 length 2 clip 3 length 3 clip 4 length 4 total time

cogfuture 43 coghist 51 94
cogfuture 43 cogdrum 83 126
cogfuture 43 cogintro 41 84

test 2 long
selected clip 1 length 1 clip 2 length 2 clip 3 length 3 total time
greedy kissocial 183 kisemotions 168 kisfacesensors 160 511

kissocial 183 kisemotions 168 kiscynthiabio 67 418
long
clip 1 length 1 clip 2 length 2 clip 3 length 3 clip 4 length 4 total time
coghist 51 cogfuture 43 cogdrum 83 cogintro 41 218
coghist 51 cogfuture 43 cogdrum 83 177

test 3 long
selected clip 1 length 1 clip 2 length 2 clip 3 length 3 total time
selective kissocial 183 kisemotions 168 kisfacesensors 160 511

kissocial 183 kisemotions 168 351 similar segments
short
clip 1 length 1 clip 2 length 2 clip 3 length 3 clip 4 length 4 total time

cogfuture 43 coghist 51 cogdrum 83 cogintro 41 218
cogfuture 43 coghist 51 cogdrum 83 177

 Table 30 shows how the system selects different clips if a different preferred ordering is
specified in the good story node. At this point, a third curator, let say Nancy, could argue
that, in her view, a story should always start with the shortest possible introductory and
descriptive clip, followed by a longer description clip, followed by a segment which
describes the creative process and so on. Her preferences can be easily accomodated by
having the system always select the shortest description clip in first place, and then using
the segment ranking provided by the Bayesian network for the following segments. The
Bayesian network leaves therefore plenty of choice to the exhibit designer, curator, and
storyteller, on the preferred story editing ordering and criteria. What it provides them is
easy access to the knobs of the virtual storytelling machine described in section 5.1.
without the need to calculate in advance all possible combinations given by all the knob
values. A more in depth comparison between Bayesian networks and traditional
multimedia systems, based one one to one mappings between sensors (inputs) and
content (outputs) is described in section 7.2.

An alternative to clip selection, other than the one shown in tables above, consists in
replicating the decision node for each segment selection, and having a transition node
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which expresses preferences in segment concatenation. Table 31 shows the preferred
theme transitions for the stories told by the museum wearable. These transitions are set as
prior probabilities and have only heuristic value. The choice of which theme follows
which, is up to the curator, the content designer, and the system modeller, and therefore
the table below [table 31] shows a subjective preference chosen for this project. Another
team of designers may have as well chosen other theme transitions. Whatever the choice,
what the Bayesian network does for us is to give us a means to express this choice into a
node which then conditions the choice of the subsequent segment.

Description →→ Form and Function
Description →→ Impact
Description →→ Relations
Descriptions →→ Biography
Descriptions →→ Principles

History →→ Description
History →→ Form and Function
History →→ Principles
History →→ Process
History →→ Relations

Context →→ Biography
Context →→ Description
Context →→ Form and Function
Context →→ Impact
Context →→ Principles
Context →→ Process
Context  →→ Relations

Principles→→ Description
Principles →→ Context
Principles →→ Form and Function
Principles →→ Implications
Principles →→ Process

Process →→ Descriptions
Process →→ Form and Function
Process →→ Impact
Process →→ Principle

Relations →→ Impact
Relations →→ History
Relations →→ Context

Biography →→ Principles Form and Function →→ Implications
Impact →→ Biography
Impact →→ Principles

Table 31. Table with a possible example of segment sequencing constraints

An example of this technique is shown in figure 90. This new network, illustrated for
simplicity only for the first object, uses the “play next” node to encode the transition
probabilities below. A long stop duration at object one, with the “good node” as in case 1,
originally gave a story made by the segments: [kisemotions, kisfacesensors, kisintro]
[table 29]. With his technique instead, the final story has a slightly different composition
[figures 91-93]: [kisemotions, kissocial, kisintro]. Note that the last clip is the second best
choice, because it is of a shorter length than the best choice for that segment, and
therefore fits within the maximum allotted playout time for the greedy type. Below [table
32] is the conditional probability table for the segment transition node:

Story themes DSC HST CTX BIO PRC PNC FAF REL IMP
Description          DSC 0 0.2 0.143 0 0.25 0.2 0 0 0
History                 HST 0 0 0 0 0 0 0 0.333 0
Context                CTX 0 0 0 0 0 0.2 0 0.333 0
Biography            BIO 0.2 0 0.143 0 0 0 0 0 0.5
Process                PRC 0 0.2 0.143 0 0 0.2 0 0 0
Principle              PNC 0.2 0.2 0.143 1 0.25 0 0 0 0.5
Form & Function FAF 0.2 0.2 0.143 0 0.25 0.2 0 0 0
Relationships      REL 0.2 0.2 0.143 0 0 0 0 0 0
Impact                IMP 0.2 0 0.143 0 0.25 0.2 1 0.333 0

Table 32. Conditional probability table for the segment transition node
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Figure 90. Content editing with with sto(ry)chastics
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Figure 91. Content editing with with sto(ry)chastics: selection of first segment
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Figure 92. Content editing with sto(ry)chastics: selection of second segment
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Figure 93. Content editing with sto(ry)chastics: selection of third segment
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5.3. Content selection for different visitor profiles

The museum wearable prototype, described in detail in Chapter 6, implements visitor
type identification and content selection with a Bayesian network as illustrated in Chapter
4 and Sections 5.2. and 5.3. Bayesian networks however allow the system modeller to
extend the system much further than what was physically realized in the prototype in the
limited time available. I have therefore built and tested various extensions to the Bayesian
network presented so far to illustrate extensibility by showing how the system allows the
designer to easily add more content, to model more visitor types, and to add more sensors
to achieve a more accurate identification of the visitor’s interests and to perform robust
sensing. All the results of this sections are obtained in simulation, using the Hugin
Bayesian network development environment, and should be considered as a first step
towards the museum wearable vision described in Sections 3.1. and 3.2. Future work will
actually turn these simulations, and the corresponding sensor assembly, into real time
software running on the museum wearable.

5.3.1. Adding content

It is often the case that after the opening of an exhibit, more content becomes
available, and that the curator may wish to add it to the set of audiovisual material of the
museum wearable. One of the great advantages of Bayesian networks is their flexibility
and the ease given to the modeller in adding, or removing, nodes or states of the system
without having to perform any further calculations. As an example, let’s assume that
three new video clips become available. To add them to the system all that is needed is to
update the decision and utility tables of the network. First, the new content segments need
to be assigned probability weights which express what they are about in terms of the
themes which describe the targeted exhibit [table 33]. The same weights need to be
transcribed in the corresponding order utility table, multiplied by a balancing factor (300),
as before. Finally the utility length table is updated with the corresponding length seconds
for the new clips. No further calculations are needed. It would be even simpler to remove
a segment from the ones available: all it would require would be to simply delete the
segment’s field from the corresponding decision node, and the system would
automatically delete all references to it from the other connected nodes.
CATEGORIES / TITLES
LENGTH IN SECS

KisNEWFuture
044

CogNEWBrain
090

CogNEWSensors
123Description         DSC 0.3 0 0.3

History                HST 0 0 0

Context               CTX 0 0 0

Biography           BIO 0 0 0

Process               PRC 0 0.4 0.7

Principle              PNC 0.3 0.6 0

Form & Function FAF 0.1 0 0

Relationships      REL 0 0 0

Impact                IMP 0.3 0 0

Total P 1 1 1

Table 33. Theme categorization for the new content segments
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preferred
length

Long preferred
length

Long

kismet
clips

play
kisNEWFuture

cog clips play
cogNEWBrain

play
cogNEWSensors

44 90 123

preferred
length

Long preferred
length

Short

kismet
clips

play
kisNEWFuture

cog clips play
cogNEWBrain

play
cogNEWSensors

-44 -90 -123

Table 34. Lengths in seconds of added clips in for the utility node (up): these are positive values when        
long segments are preferred, and negative values when short segments are preferred

kismet
clips

play kisNEWFuture

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

90 90 30 90

cog clips play cogNEWBrain

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

120 180

cog clips play cogNEWSensors

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

90 210

Table 35. Value for the ORDER utility node: these are the same values in table 33 multiplied by a weight of 300

To illustrate how the system works with the new added clips, I include in figures [94,95]
the results of probability update after a short stop for the first object (the robot called
Kismet) followed by a long stop for the second object (the robot called Cog). The reader
can verify that the new segment kisNEWFuture competes closely with kisIntro to be the
preferred clip. Although shorter, kisNEWFuture is not the highest ranked because kisIntro
has more description elements, and description is the favored theme, as indicated in the
good story node. The same happens for the second object for which cogIntro is still first
ranked, followed by cogNEWSensors. Note that in the second case, even though the
visitor made a long stop, the system still consider that it is a busy type, even if by a short
margin. It will require a third long stop for the system to attribute a higher probability to
the busy type. If the visitor makes a short stop duration at the second object, instead of a
long one, while the system still decides for a busy type, now with a higher probability,
the segment selection is different [figure 96]. This is because a different probability for
the busy type causes a different probability for the preferred length segment which in turn
causes shorter length clips to be preferred in the [short, short] stop duration case, as
opposed to the [short, long] stop duration case. This is yet another advantage of using
Bayesian networks which handle probability propagation across nodes. A deterministic
system, which does simply one to one mappings between inputs and outputs would have
not been able to get to the same conclusions for the busy type.
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Fig.94

Fig.95
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Fig.96

5.3.2. Adding visitor types

Adding a new visitor type is just as simple. During a personal interview, Beryl
Rosenthal, director of exhibitions at the MIT Museum, described observing a “stroller”
type: a visitor who wonders through the exhibit space with no particular strategy or goal.
Such visitors spend a random amount of time with each object, and their behavior is
somewhat erratic. If they find something of interest they will make a long stop at that
object, but, as opposed to the selective type, they may also as well not make other long
stops with object closely related to, or belonging to the same theme of, the object which
originally attracted their attention. Therefore the conditional probability table for the
visitor node, with this new added type, look as [table 36]:

Conditional  probability table for the visitor node
skip short long

Busy 0.2 0.7 0.1
Greedy 0.1 0.1 0.8
Selective 0.4 0.2 0.4
Stroller 0.333 0.333 0.333

Table 36. Conditional Probability table for the visitor type with the new stroller type
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The full table, which extends the one showed in section 4.2.4., including conditional
probabilities for interesting and boring objects is shown below [table 37]. The remaining
tables are updated as shown in section 5.2. The prior probability for the type is still
equally distributed amongst all the types, but now with four types in place of three it has
a different value: p(busy)=p(greedy)=p(selective)=p(stroller)=0.25.

neutral interesting boring
busy greedy selective stroller Busy greedy selective stroller Busy greedy selective stroller

skip 0.2 0.1 0.4 0.333 0.1 0.05 0.1 0.167 0.35 0.2 0.65 0.666
short 0.7 0.1 0.2 0.333 0.6 0.05 0.3 0.167 0.6 0.2 0.15 0.167
long 0.1 0.8 0.4 0.333 0.3 0.9 0.6 0.666 0.05 0.6 0.2 0.167

Table 37. Conditional Probability table for the visitor type with the new stroller type with the object type as parent

Note that In the preferred length node the I have given the stroller no real preference
about segment length, in accordance to the definition of this type:

Preferred length
busy greedy selective Stroller

short 1 0 0.2 0.5
long 0 1 0.8 0.5

Table 38. Preferred length node values

I show in figures 97-101 an example of identification of a stroller type. To do so, I added
the nodes corresponding to the third object, as at least three stops are needed to identify
the stroller type. This is due to the fact that the stroller will likely do a short or long stop,
or will skip, and given that the location node has three states (skip, short, long) three time
slices are needed to identify the stroller. The two cases show a visitor making 1. [long,
skip, short] stop durations and 2. [skip, short, long]. If the location node has a higher
discrete resolution for the time spent by the visitor with the corresponding object, such as
the five discrete states: skip, short, medium, long, and very long, then five time slices
would be needed. For comparison with the previous case, I have also included the
probability distribution on the previous network, with only three visitor types, with the
same evidence: 1. [long, skip, short] and 2. [skip, short, long]. In both cases, the three-
visitor network identifies a selective type. What this means is that adding a new state for
the visitor node allows the system to have higher discriminative power and to be able to
distinguish a true selective type [figure 101] from a stroller type.

Note that the phantappsurg segment is preferred both in the three types and four types
case both for the selective and stroller type. The reason is that is segment has a great
utility value on the description theme, and therefore best matches the curator’s
preferences expressed by the good story node.

Pahntom
clips

play phantom-application-surgery

good story DSC, good HST, good CTX, good BIO, good PRC, good PNC, good FAF, good REL, good IMP, good

180 90 30

Table 39. Content theme utility values for the phantom-application-surgery segment
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Fig.97

Fig.98
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Fig.99

Fig.100
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Fig.101

5.3.3. Adding sensors: sensor fusion in a simulated environment

The museum wearable prototype described so far relies uniquely on the one location
identification sensor.  While modeling the sensor measurements probabilistically, rather
than in a deterministic way, allows the system to model the measurement uncertainty, it
would be still desirable to add more sensors to the wearable so as to have more
information about the visitor, or additional robustness with respect to location
identification. For content personalization the system should be able to infer an interest
profile for the visitors, in addition to their type as they wonder along the exhibit gallery.
With respect to the definition of story given in Chapter 5.1., an interest profile in the
context of this research means a rating of preference for the story themes given in table
18. Some people for example may like to hear more about the author’s biography, and
inspiring philosophy of thought, while others may be more interested in the processes and
techniques of creation of the artwork. Houbart [Houbart, 1994] uses this type of user
profiling, based on story themes, for her Viewpoints on Demand system which edits
offline a personalized documentary for the viewer after his/her preferences for the
available story themes, and maximum story duration time, are introduced in the system.
The museum wearable should be able to perform both visitor profiling and segment
assembly according to the visitor’s preferences in real time.
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Two sensors that could easily be added to the museum wearable to gather this type of
additional information are a GSR (galvanic skin response) sensor, and a small camera,
placed on the head mounted display, as shown in Chapter6. While I have performed
preliminary studies and signal characterization for these two sensors, it was not possible,
for time constraints, to include them as part of the museum wearable physical prototype.
What this section presents however is a full simulation on how to extend the Bayesian
network presented so far to include these two additional sensors to learn more and
provide more to the museum visitor.

5.3.3.1. The GSR sensor

The GSR (Galvanic Skin Response) sensor responds to skin conductivity and is often
used in the medical and psychological field as an aid to monitor an individual’s level of
excitement or stress [Healey, 1999]. Psychologists use for example a GSR sensor whose
signal is set to be proportional to the velocity of an toy electric train to monitor a child’s
excitability or response when asked delicate questions. Healey [Healey, 2000] has
demonstrated that a series or trains of peaks measured from a GSR sensor, is correlated to
a high level of energy or excitement of the human subject. The basic idea behind this
sensor is that high energy, excitement, or stress in most individuals, corresponds to
increased perspiration, and therefore increased skin conductivity. Two small plates in
contact with the skin measure the current that goes through them, which gives a measure
of skin conductivity. The main problem with GSR sensors is setting a baseline level for
the measurements, as skin conductivity varies across individuals. Most GSR devices
require a fairly quick initialization procedure, which lasts about 10 seconds, in which the
sensor baseline is set.

A GSR sensor can potentially give very useful information to the museum wearable. First
of all it can be easily worn as a wrist bracelet [see Chapter 6]. Second, we could use its
measurements, in conjunction with a story segment playout to infer the visitor’s interest
profile. If for example the GSR sensor measures a train of peaks when the wearable is
playing a segment with biographical information about the portrayed artist, the system
can infer, with a certain probability, that the visitor has a strong interest for this topic i.e.
biography. It will then update the visitor interest profile with the gathered visitor
preferences. The probabilistic framework offered by the Bayesian network approach is
particularly relevant for this type of sensor. For example the sensor could measure
excitability for other reasons than that a compelling video segment being shown, such as
meeting a friend, or recalling something that happened earlier during the day.

The decision node, in the earlier examples, was weighting segment length, and theme as
expressed by the “good story” node, corresponding to the curator’s preferences. It now
also needs to take into account the visitor’s preferences, which may compete with the
curator’s ordering preferences, to come up with the best content selection for each object.
The new extended network, shown in figure 102 models a hypothetical GSR sensor
added to the museum wearable and its influence on content selection.
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Fig.102. Simulation of visitor’s interest profile identification using sto(ry)chastics
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Table 40 show the states, prior probabilities, and conditional probabilities for the GSR
sensor node and the visitor status node.

GSR sensor visitor status peaks flat
peaks 0.5 excited 0.9 0.1

flat 0.5 neutral/bored 0.1 0.9
Table 40. States, prior probabilities, and conditional probabilities for the GSR sensor node

Note that as opposed to the visitor node, which is a static node, the visitor interest profile
is a dynamic node, i.e. it is repeated for each time slice. The profile utility node has the
same weights as the order utility node. This means that the curator’s preferences for
segment ordering and the visitor’s and weighted equally. Other choices are of course
possible, according to the modeller’s choice, such as having the curator’s preferences
matter more or viceversa having the visitor’s preferences matter more.

To give an example of modeling of the GSR sensor, I show two test cases, one without
[figures 103-105] and one with a GSR sensor [figures 106-108]. In both cases the visitor
makes a long stop duration at the first object, followed by another long stop at the second
object, followed by a short stop at the third object. In the first case, without the GSR
sensor, the first segment selection for the three objects is: [kisemotions-kisfacesensors-
kisintro, cogintro-cogdrum-coghist-cogfuture, phatappsurg]. In the second case the
network uses the information from the GSR sensor to build the visitor’s interest profile
distribution.

Object 1. As the visitor is seeing the last segment: kisintro, the
GSR sensor observes a train of peaks. The visitor status node, now
consider the visitor to be excited about this clip with 0.9 probability.
Therefore the system infers that the system is interested in the topics
shown by the kisintro clip, and updates the visitor interest profile
node [interest profile 1, next].

Object 2. As the visitor is seeing the last segment: cogfuture, the
GSR sensor observes a train of peaks. The visitor status node, now
consider the visitor to be excited about this clip with 0.9 probability.
Therefore the system infers that the system is interested in the topics
shown by the cogfuture clip, and updated the visitor interest profile
node [interest profile 2, next].

Object 3. Because of the influence on the content selection node by
the visitor interest profile, the segment chosen for object 3 is now: phantombio, as
opposed to phatappsurg which was the segment selected in the previous case, based
uniquely on the visitor type.

Introducing the GSR sensor, and extending the Bayesian network as shown, allows
therefore the experience designer to better tailor content to the user, and to better
understand and characterize the user’s interests.
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Figure 103. Simulation of sto(ry)chastics without a GSR sensor (for comparison): long stop at the first object.
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Figure 104. Simulation of sto(ry)chastics without a GSR sensor (for comparison): long stop at the second object.
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Figure 105. Simulation of sto(ry)chastics without a GSR sensor (for comparison): short stop at the third object.
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Figure 106. Simulation of sto(ry)chastics with a GSR sensor: long stop at the first object.



132

Figure 107. Simulation of sto(ry)chastics with a GSR sensor: long stop at the second object.
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Figure 108. Simulation of sto(ry)chastics with a GSR sensor: short stop at the third object.
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5.3.3.2. The camera

While the custom location sensor built for this project, described in Chapter 6, has
great reliability and long range, relying exclusively on the infrared location sensor to
gather information about the visitor’s location in the museum and length of state, can
occasionally produce errors. The infrared receiver sensor is located on top of the
headphones with attached display that the visitor wears, and it can sometimes be
ineffective either because it can be covered by hair, or because the headphones may be
worn with the headband not vertically aligned. Vertical alignment of the headphones’
headband is important so that the tiny infrared sensor located on top of the headband
points towards the  infrared emitters located in the light rack on the ceiling. The location
emitters could also break, as some the electronic components of the emitter tags, such as
the infrared emitting diodes could wear out, or power surges could damage the
transformer powering the emitters. To achieve robustness for location identification a
“redundant” sensor should be added to the system. A camera is the ideal complementary
sensor to the infrared location identification emitter-receiver tags. A study on possible
placement of tiny cameras to the head mounted display of the museum wearable is
described in Chapter 6. The camera is placed on the head mounted display, pointing
outwards, and covering the same field of view seen by the wearer: basically the camera
sees what the visitor sees.

I have carried out a preliminary study, which was not integrated in research, on the
usage of a very small infrared camera which detects the signal from tiny low-power
infrared emitters located near the object. This camera set up was preferred to using a
color camera doing image recognition for the Robots and Beyond exhibit at the MIT
Museum. The reason is that a color camera is best suited in situations in which the
museum wearable is “augmenting” a painting exhibit, and therefore the task of the
camera sensor would be to recognize flat, two dimensional objects, (the paintings) on a
uniformly colored background (the wall on which they are hung). Several computer
vision techniques can be used for this task, and they are dependent on how well the
technique identifies color under varying lighting conditions, such as ones determined by a
large window in the exhibit area. Recognizing the three dimensional objects –  the robots
on display –  from different viewpoints is a much harder task, and while various
approaches in computer vision are also available, further studies would have to be
performed to test the reliability of the technique in an fairly unconstrained environment
such as the museum gallery. Using object tagging with small, low powered, infrared
devices, or even better, with passive infrared reflective material placed right next to the
object, provides the means to do location identification with a small infrared camera. The
simulation presented in this section, is based on the latter type of infrared camera/infrared
object tagging system.

The camera based location identification sensor tells us more than the infrared
location identification sensor. While the latter is only able to say if the visitor is in
proximity of the tagged object, the camera sensor would be able to detect when the visitor
is actually looking at the object. This is a typical example of sensor fusion used to
achieve sensing robustness (see Chapter 2): the two sensors have some overlap, but they
also give complementary information in other respects. If the camera can be powered
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with the wearable’s battery (it absorbs about 2W) without wearing battery duration, and if
the tags can be placed near the museum objects in a way which is aesthetically acceptable
by the exhibit designer, both the camera and the infrared location sensors should be used.
From the camera it may also be possible to gather information on the visitor’s level of
attention: if the wearer is fixating an object, it is possible to gather, with a certain
probability, that they are attentive and interested. If instead the visitor is in proximity of
an object, and yet looking around, that may be a sign of distraction or non interest.
Finally, if the system receives a location identification from the camera but not from the
IR sensor, it might reasonably deduce that there is something wrong either with the IR
receiver on the wearable or the emitters.

This situation is modeled by the network in figure 109, which extends the story
selection Bayesian network to include additional modeling for the camera and the IR
sensor, separate from the time spent at each location, which is encapsulated in the
“location” nodes. To allow enough room on the page for all nodes in the diagram, only
the nodes for the first object have been added. The reader should consider that when used
with the museum wearable, the additional nodes to the left for object 1, should also be
replicated for all other objects modeled by the network. The initial probabilities and
conditional probabilities for the added nodes are given by the tables 41-44. The visitor
node has an added state, called “don’t know” used to model incertitude about the type
when neither sensor is active. Note that from the conditional probabilities assigned to the
“visitor present at location 1” node, the system considers the IR sensor more reliable than
the camera sensor, as it assigns a higher probability of presence of visitor given IR signal
detection (0.9) than given the camera based object detection (0.8). These same
probabilities are usually higher, i.e. 0.98 and 0.95. These values have been set to
highlight the effect of these two sensors can have on the visitor type identification, as
explored by the example below.

Camera 1 IR signal received
Looking at  object 1 0.5 IR present 0.5

Not looking at object 1 0.5 IR not present 0.5

Camera 1
visitor status at 1 Looking at 1 Not looking at 1

attentive 0.8 0.4
distracted 0.4 0.6

Visitor present at location 1
Camera 1 Looking at  object 1 Not looking at object 1

IR signal received IR present IR not present IR present IR not present
VT at 1 1 0.8 0.9 0.02

Not present 0 0.2 0.1 0.98

Tables 41,42,43. Probability tables for the nodes of the Bayesian network which simulates a
museum wearable with a camera sensor
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IR problem
IR signal received VT at 1 Not present

Visitor present at  location 1 IR present IR not present IR present IR not present
IR malfunction 1 0 0 1

IR OK 0 1 1 0
Table 44. Conditional probability table for the IR problem node

Figure 109. Simulation of sto(ry)chastics with a camera.

To show the effects of camera modeling, figures 110-113 show the probability
distributions on this network, in the four following cases:

1. The IR sensor detects the visitor’s presence, but the visitor is not looking at the
object . The visitor makes a short stop at the first object. P(VT at 1)=0.925 and
p(busy|short)=0.595.

2. The camera detects that the visitor is looking at the first object, but the infrared
location sensor does not. For a short stop, p(VT at 1)=0.846, less than in the
previous case, because the camera sensor is considered less reliable than the
infrared location sensor. This has an effect on the type estimation as now
p(busy|short)=0.551, less than in the previous case. Also note than in this case
the network signals a high probability of infrared sensor malfunctioning, as
expected.

3. Both the camera and the infrared location sensor detect the visitor’s presence and
the visitor makes a short stop. Therefore p(VT at 1) = 1 (the system is sure
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because both sensors agree) and p(busy|short) = 0.636, higher than in the
previous cases.

4. Neither sensor detects the visitor’s presence. In this case the network correctly
says that it does not know what type is the visitor as the posterior probability for
the don’t know state for the type node is: 0.89, and
p(visitor=busy)=p(visitor=greedy)=p(visitor=selective)=0.0358.

The camera also gives information on the visitor status. If the visitor stares at an
object for a long time, we can reasonably think that he/she is attentive, as opposed to
distracted. This can have an impact on the visitor’s preferences as shown in table 45,
containing numbers extracted from the simulations in figures 114, 115. When the
visitor is attentive, we can model the network for attentiveness to have an impact on
the visitor’s profile, whose values are increased. As shown in these examples,
attentiveness causes higher values to appear in the visitor profile node, and as a
consequence a different ranking is given to the content segments for the next object.

Distracted visitor Attentive visitor

Table 45. Different values for the visitor profile in case of an attentive vs a distracted visitor.

While the previous case with a camera and a IR sensor provided an example of sensor
fusion at the feature level [Hall and Llinas, 1997] this last case provides an example of
sensor fusion at the strategy level. In the previous case the system was trying to establish
how certain is the presence of the visitor at a certain location (feature) and both sensor
contribute to determine that value. In this case, the sensors cooperate in determining a
more accurate user model or profile.
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Figure 110. IR sensor detects the visitor, visitor distracted.

Figure 111. Camera detects the visitor is looking at the first object, but IR makes no detection.
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Figure 112. Both the camera and the infrared location sensor detect the visitor’s presence.

Figure 113. Neither sensor detects the visitor’s presence.
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Figures 114 and 155. Visitor interest profile and ranking for segment selection if visitor distracted/attentive
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Chapter 6

Building the Wearable

6.1. The wearable computer

The museum wearable is made by a lightweight CPU hosted inside a small shoulder
pack and a small head mounted display. The display is a commercial lightweight
monocular, VGA-resolution, color, clip-on screen, which is attached to a pair of sturdy
headphones. When wearing the display, after a few seconds of adaptation, the user’s
brain assembles the real world’s image seen by the unencumbered eye with the display’s
image seen by the other eye, into a fused augmented reality image [figures 116, 117].

  
Figures 116, 117. Camera “wearing” the head mounted display: shows how the user’s brain assembles the real

world’s image seen by the unencumbered eye with the display’s image seen by the other eye, into a fused
augmented reality image.

To monitor the visitor’s behavior in the museum, and deliver a story as a function of
the visitor’s evolving path, I have built a first prototype of the museum wearable using
uniquely a location sensor. The location sensor informs the wearable on the wearer’s
location in the exhibit, and proximity to an object on display, and length of stay for each
tagged location. The location system is made by a network of small infrared devices,
which transmit a location identification code to the receiver worn by the user and
attached to the display glasses. The transmitters have the size of a 9V battery, and are
placed inside the museum, next to the regular museum lights. They are built around a PIC
microcontroller and their signal can be detected as far as about 30 feet away within a
cone range of approximately ten to thirty degrees. The location sensor receiver is made of
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two parts: a tiny infrared detector, located on top of the headphones, and the circuitry
which detects its signal and transmits it to the wearable computer via the serial port,
which is hosted inside the carrying shoulder pack.

         Summary of elements of the museum wearable hardware [figures 118, 199]:
• containing shoulder pack
• computer (CPU): SONY picturebook from which the display has been

removed to reduce weight
• Head Mounted Display (HMD): VGA resolution MicroOptical clip-on

mounted on sturdy headphones with a custom mount
• HMD’s powering unit: hosted inside the containing shoulder pack
• Infrared receiver: the sensor is located on top of the headphones and the

receiver circuit is located inside the containing shoulder pack.

 

Figures 118, 119. Hardware parts of the museum wearable. Left: CPU, connectivity, carrying shoulder pack.
Right: closeup of infrared location receiver circuit.
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To obtain more, and more accurate, information about the visitor’s behavior inside the
museum gallery additional sensors are desirable. A discussion on which sensors can be
added to the first museum wearable prototype, and for which purpose, can be found in the
next paragraph. In view of having a museum wearable which can later be expanded to
include other sensors, and process information not just from the infrared location sensor,
but for example also from a small camera processing images in real time, I have chosen
to use and modify a commercially available small sized laptop computer. I selected the
SONY picturebook PCG-C1VPK for its combined size, weight, computing power,
multimedia capabilities, and longlasting batteries. Given that the images generated by the
laptop are viewed uniquely through the head mounted display, I have removed the LCD
screen from the picturebook, to reduce weight and size, as shown in figures 118, 121. The
picturebook features a Crusoe™ processor TM5600 clocked at 667 MHz, and without the
LCD weighs only approximately one lb, and has a size of 0.5" X 9.8" X 6.0" (H x W x
D). The picturebook has a 15GB capacity hard drive, which allows the programmer to
store on the local hard drive many hours (8-10) of MPEG-compressed VGA resolution
video (640x480) (approximately one hour of MPEG-compressed 640x480 video per one
GB of available space on the internal hard drive). It also has 128 MB SDRAM, which
allows the computer to play smoothly the audio and video clips, as well as process
images in real time when the computer is connected to a camera. This computer has
outstanding multimedia capabilities: it has an ATI RAGE™ MOBILITY graphics chip
with 8.0 MB SDRAM, hardware to encode and decode MPEG1 and MPEG2 digital
video, and hardware MIDI for sound. The external ports include one USB port which is
connected to the infrared receiver with a USB to serial converter, and a VGA and
headphone output which are connected to the video/audio inputs of head mounted display
of the museum wearable. It also supports one type II card, which can be used to host a
PCMCIA card for wireless communication over the internet or a PCMCIA image
acquisition card. All these features, combined with a battery life of 2.5-5.5 hours with the
standard lightweight battery, largely enough for a single museum visit, make the
picturebook an ideal choice for the selected application.

An alternative to the picturebook is the smaller handheld IPAQ pocket PC 3670. The
iPAQ 3670 features 64 MB of SDRAM and a 206-MHz Intel StrongARM SA-1110 32-
bit RISC Processor. It has USB or serial connectivity that would interface with the
infrared receiver of the museum wearable and it is only 5.11" x 3.28" x 0.62" (HxWxD)
in size. To be used for our application it would need a dual PC expansion slot to host a
VGA PCMCIA output card, to send the images to the head mounted display, as well as a
PCMCIA wireless connection card to allow a video server to stream the MPEG video to
the iPAQ computer, as it would not have enough internal storage for all the necessary
content.

In order to build a first prototype of the museum wearable, so that it can be expanded
to use other sensors, such as a camera for real time image processing, I chose the SONY
picturebook. Although slightly bigger (larger) in size, the picturebook has MPEG
hardware, as well as all necessary multimedia capabilities and storage space, which have
allowed me to focus on the mathematical modeling work described in this document
(sto(ry)chastics) rather than in solving hardware problems with a less powerful device,
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such as the iPAQ 3670. However, now that the prototype has been built and tested, the
iPAQ 3670 is a desirable solution for the deployment of several museum wearables –
which need to work only with the location sensor – in a museum. The iPAQ solution is
cost effective because its cost is considerably smaller than the SONY picture book, and
its size is also smaller.

Figure 120. PAQ pocket PC 3670 Figure 121. Sony picturebook with removed LCD

 

      

Figures 122, 123, 124, 125. Above: visitor wearing the museum wearable and receiving an audiovisual story
about the displayed artwork (picture in picture). Below: wearable museum prototype laboratory testing setup.
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6.2. The choice of sensors

Adding other sensors to the museum wearable would allow the system to obtain more
reliable information on the visitor’s behavior in the galleries. I performed a study on
available off the shelf sensors that, in addition to the above mentioned infrared location
identification sensor, can contribute to modeling and understanding the visitor’s type and
interest profile. The following list identifies these sensors in order of importance:

• IR location sensor
– Identifies visitor’s location and path along the museum. Helps identifying objects

or themes of interest by measuring how long the visitor stays in proximity of an
object. Helps identifying the visitor’s type by determining the if visitor’s
exploration strategy is made by many short stops (busy type), a few long stops
(selective type) or many long stops (greedy type).

• GSR (Galvanic Skin Response) sensor
– Measures visitor’s levels of excitement in response to the content shown on the

head mounted display. A high level of excitement suggest, with some probability,
that the content category being shown is of interest to the visitor and it is therefore
likely to be selected again by the system.

• Computer vision (with IR object tagging)
– Measures the visitor’s level of attention by determining which object the visitor is

looking at and for how long the visitor actually fixates the object.

• Motion sensor (accelerometer)
– Contributes to determine the exact path of the visitor along the exhibit as well as

visitor-specific motion patterns, which become meaningful in association with
other sensors i.e. approaching an object in a particular way when interested, or
suddenly stopping and or coming back when surprised, or moving around
erratically when distracted or disoriented.

While using only one sensor, may seem like a limiting factor to construct an
interactive experience such as the one described, having such long range infrared location
ID can provide a great deal of useful information for the targeted application. With the
location ID receiver, connected to the wearable through the serial port, we can measure a
sampled path of the visitor throughout the exhibit, how long the visitor stays in proximity
of the tagged object on display, and his/her overall strategy of exploration. Skipping
objects all pertaining to the same category, is an index of dislike for that category, or
similarly stationing for a long time next to the legged robot for example, may mean
interest for humanoid-like robots.

While the project described in this document features only the infrared location
identification sensor, having the GSR sensor would allow the system to identify not only
the visitor’s type but also the visitor’s interest profile, by measuring the level of
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excitement of the wearer in conjuction with the content presented on the head mounted
display. If for example the visitor reacts with excitement to biographical video clips the
system will infer that the visitor likes biography and will use that information to build an
interest profile for the visitor. The GSR sensor can be worn as a bracelet around the wrist,
as shown in figures 126,127,128. A simulation of how the system would use the GSR
sensor in conjunction with the other aforementioned sensors to gather more information
about the visitor and match more accurately the visitor’s desires and interests is provided
in section 5.3.3.

                          Figures 126, 127, 128. Study of placement for GSR sensor

   

 Figures 129, 130. Study of camera placement on the head mounted display
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6.3. Sensor Design: the infrared location sensor

6.3.1. Requirements and Alternatives
When I started this project I conducted an extensive search on commercially available

off the shelf tagging technology that I could use right away to bootstrap the project. The
requirements for a location sensor to be used in a museum, for the targeted application
are:

• functionality: the location sensor is made of two parts: an emitter, situated in a
convenient location in the museum, in proximity of the object that it tags; and a
receiver, carried by the visitor, together with the museum wearable.

• size and shape: both emitter and receiver need to be of a relatively small size:
the receiver needs to be lightweight and small to be easily carried by the
visitor. The emitter needs to have a sufficiently small size that it does not stand
out or disturb the layout or landscape of the museum galleries. It needs to have
a shape or enclosure that are appropriate to the room where it is placed.

• range: while range is certainly a function of the museum gallery layout, it is
safe to require that the location emitter covers an area of visibility around a
museum object, which has the shape of an semi-circle and a radius varying
from 2-10 feet away from the object. If the location emitter tags are placed on
the ceiling, together with the standard museum lighting, where they would
easily be hidden, the requirement for range increases up to 25 feet, for high
ceiling placement.

• directionality and no overlap: while the range needs to provide a clean signal
up to 25 feet, there cannot be overlap between areas that different location
identification sensors cover. Therefore the location sensor need to feature a
high directionality which can eventually be adjusted around the object of
interest.

• immediacy of signaling: for the location sensor to achieve its purpose, the
receiver needs to receive an identification signal from the emitter as soon as
the visitor enters the area covered by the emitter, the sensed area around the
object on display. This implies a frequency of signaling of at least 2Hz to allow
the system to perform at least minimal error checking.

• power consumption: it is important for the receiver unit carried by the visitor
not to require much power so that it needs large and heavy batteries, or daily
battery changes. Ideally the receiver should be powered by the wearable
computer and should not draw more than an absolute maximum of 1 Watt to
avoid wearing the batteries that power the wearable computer. Powering the
emitter may be more problematic, as an interactive museum exhibit, visited
with the museum wearable, needs as many emitters are the are objects on
display. If the emitters are battery powered, this imposes the constraint that the
batteries last for as long as the exhibit, as a daily change of batteries for all
emitters for all objects on display would be highly impractical. Yet to provide
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a location signal which covers the range specified above the power
consumption would likely be more than what small sized batteries would cover
for the whole duration of the exhibit. Therefore powering the location emitters
with transformers connected to the available standard power lines is highly
advised.

• connectivity: the receiver needs to be able to communicate to the wearable its
readings from the emitter tags, via the available serial or USB connection.

Keeping in mind the above specs, I conducted a literature and commercial availability
search for the desired location identification sensors and examined various possible
choices. Following are considerations on some of the solutions I evaluated:

• passive RF ID tags
these involve passive (non powered) small emitter tags that would be placed near
the object on display at the museum. The wearer carries a small antenna that
capacitively charges the emitter which then sends an identification signal to the
receiver worn by the wearer.
— advantages: ease of placement and availability of emitter tags which do not

need to be powered.
— disadvantages: small PCMCIA receivers were announced not yet available as

of January 2001. The available receivers are too heavy and power hungry to be
used in a wearable application.  The available range with the prototype not
commercially available PCMCIA receivers is only about 7 feet, barely
adequate for the museum wearable.

— comments: it would be an ideal solution if it had an adequate range and small
sized receivers were available. Probably will be in a year or two as hardware
developers make new progress.

• Infrared tags, based on the IRDA protocol
[http://www.media.mit.edu/~ayb/irx/irx2/].

— advantages: they are small, lightweight, easy to build and customize.
— disadvantages: the range is too short, only up to 7-10 feet in low light

conditions. They are also too directional as they cover only a cone of emission
of infrared light of a very narrow angle: they can be sensed only along a line.

— comments: they would be a good solution, if the emitters can be powered via a
transformer from the standard power line, and if they can emit a stronger and
better shaped signal.

• Image or object recognition by real time computer vision
— advantages: it does not require any physical tagging of the objects on display

and therefore it is easy to set up and allows the exhibit designer to easily
change object positions and reconfigure the exhibit layout, if needed. It does
require training the recognition parameters of the program on the existing
objects to be recognized.
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— disadvantages: while it is possible to recognize paintings on a wall if they are
sparsely located and the wall has a uniform color, the image classification is
dependent on the changing light conditions of the museum rooms. This adds an
extra variable in the image classification process which makes the recognition
less reliable than in any of the previously mentioned cases. Recognizing three
dimensional objects is also much more complicated than recognizing paintings
on a wall, and therefore using image recognition is not a general purpose
tagging option.

— comments: image recognition is an interesting solution in those limited cases in
which the images to recognize can be easily segmented from their background
(i.e. large paintings on a white wall) and where it is possible to reliably model
the varying light conditions in the galleries. It is however not reliable enough
unless further effort is invested in more robust classification techniques.

• Bluetooth location tags:
— advantages: many people carry already bluetooth technology endowed objects,

such as their cellular phone or PDA. These objects could also receive
additional information from the museum wearable, which would allow the
visitor to have a continued museum experience also outside the museum walls.
The museum wearable would have a personalized exhibit catalogue
downloaded to the visitor’s PDA, or the next generation cellular video phone
could  be the wearable computer itself.

— disadvantages: customization is difficult as prototyping kits are not easily
available. Potentially the receiver can be connected to the wearable computer
via USB or PCMCIA yet I have not been able to access sufficient hardware or
software development resources to customize Motorola’s PCMCIA bluetooth
receivers nor to program Ericson’s bluetooth modules as emitters. Power
requirements for the emitter tags are also an issue, as bluetooth is in general a
power hungry technology, unless the tags can be powered from the standard
power line.

— comments: the technology is simply not mature yet to build or purchase
bluetooth based locations sensors.

Based on the above considerations I therefore realized I needed to build my own location
sensor to turn the museum wearable into immediate tangible reality. Following from the
previous analysis, I concluded that the solution which included most of the desired
features of the location sensor was to improve on the existing and easily customizable
infrared tags.

6.3.2.  Design and Construction of long range infrared location emitter/receiver
tags

To improve on the design of the existing emitter/receiver infrared tags, I designed a
daughter board, which, attached to the infrared tag, turns it into a long range infrared
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emitter. Typically infrared I/O tags are built on a general-purpose prototyping board with
a PIC microcontroller, serial I/O, and infrared input and serial output links. An example
of hardware construction of infrared emitter/receiver tags are the iRX tags

[http://www.media.mit.edu/~ayb/irx/irx2/]. The PIC microcontroller is the heart of the
board. It's a programmable microcontroller with 1K words of program memory and 68
bytes of general purpose RAM. It has 13 general purpose I/O ports. On the iRX board,
five of these ports are dedicated (Serial In, Serial Out, Infrared Receive, Infrared LED,
RED LED).

InfraRed (IR) data communication uses light waves in the Infra Red spectrum. The
physical communication layer is formed by the emitter (a photo diode) that emits the
signal and a receiver (another photo diode) that receives the signal. The light waves are
modulated by the emitter at a frequency of 40 KHz. This is done in order to cut out other
sources of IR such as electric lamps, etc. The data link layer is implemented by using
binary pulses. The signal is pulse coded which means that the length of the pulse is varied
to represent data.

Figure 131. Example of pulse coded signal: PCW: the width of the pulse represents data.

The idea I used for the construction of long range infrared emitter tags is that it is fine
to overdrive an infrared diode beyond its specs, as long it is driven with very short pulses
and it is later given the chance to rest a little (pause the transmission), after sending a
signal. Overdriving here means having a current of 1A up to 1.5 A going through the
infrared emitter diode even if the specs of the device rate it for a much less forward
current, typically about 200mA. When driving the infrared diode with such a large
current, the radiant emitted power increases linearly with the current that goes through
the diode, and the range is greatly improved.

To do what I described above it suffices to use a power resistor in series with the
infrared LED. However with such large currents involved it is impossible to drive the
diode directly from one of the output pins of the microcontroller. I therefore use a power
MOSFET transistor to drive the diode and I send the desired signal to the gate for the
MOSFET from the microcontroller. To generate higher currents it is useful to have as
large as possible voltage drop across the diode plus power resistor in series. I therefore
decided to use the 9V iRX voltage supply as the positive voltage source for these
components and grounded the other end of the circuit segment. I chose a power resistor
value of 5 ohms to obtain a pulse forward current across the IR emitting diode of (9V –
2V of voltage drop across the diode)/5 ohms = 1.4A. For efficiency, and to be able to
actually drive the gate of the mosfet transistor between 9V and ground, I used a mosfet
driver: the MAX 4420. Given a voltage supply of 9V and a square wave signal between 0
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and 5V at the input, the MAX4420 reproduces the same input signal at the output, except
that the output signal oscillates between 0 and 9V. The MAX4420 has also the added
convenience of having two outputs and it therefore can drive two infrared emitting diodes
at the same time for added range just with one single input signal from the
microcontroller.

In the receiver tag, I used an infrared receiver module, the Panasonic
PNA4613M00XD, which demodulates the incoming signal from the 40KHz carrier, and
sends it to the output. The use of such a detector, rather than a regular receiver diode is
highly recommended. Besides demodulation, it offers signal amplification and noise
removal, it has a visible light cutoff resin over the detection pin diode to block visible
light, and therefore gives the maximum reception distance. In addition, it requires little or
no external components for operation. Of course it needs to be selected at the same
spectral sensitivity and at the same wavelength of the selected infrared LED, which for
the emitter tags is 940nm, and to operate at the exact frequency of the modulated data
carrier, which for the SONY infrared protocol I use is 40KHz. The infrared receiver
module is very sensitive to the value of the powering line: if it is not 5V exactly, the
device malfunctions and causes noisy and shorter range detection. To avoid this problem
I replaced the 78L05 voltage regulator of the iRX board with a better quality 5V
regulator: the LT1121CZ-5, with a tantalum 1uF capacitor at the output. This low
dropout regulator was chosen because it can supply 150ma of current, has reverse battery
protection, and a low 0.4 volt dropout voltage. For the circuit design of the receiver I use
a common NPN transistor, the 2N3904, to invert the signal and clamp it between 0 and
5V, which makes decoding a much easier task for the microcontroller.

The power consumption for the emitter daughter board is calculated by adding the
power dissipated both by the LED and the power resistor which have respectively a
voltage drop of 1.5V and 7.5V. The current in that circuit segment is 1.4A, as calculated
above. Therefore for a driving square wave at 20% of its duty cycle, the emitter
dissipates: 9V*1.4A*0.5*0.2=1.26W.

I tested range and directionality of the location identification sensor with a variety of
high power infrared diodes. Assuming that the emitter tags generate a cone of infrared
light, as shown in figures 135,136, I measured the height and diameter of the base of the
cone both with one and two emitting diodes. I measured distance along a straight line, to
test the maximum range. I measured the diameter of the emitted cone of infrared light at
6 feet [table 46], which corresponds to having the emitters placed in the museum with the
other lights at about eleven feet from the floor, and assuming that people’s head – where
the infrared sensor is located – is at a (conservative) average height of 5 feet. The reader
can verify from table 46 that a pair of OED-EL-1L2 diodes by Lumex reach up to 135
feet. The LN51L diode has the narrowest experimental angle of coverage of
approximately 26° and the Lumex OED-EL-1L2 has the widest angle of coverage of 34°.
The reason why the measured angle of coverage is much different from the one given by
the manufacturer’s specifications is that I overdrive the diode to emit a much higher
radiance power than the value that was used to measure the angle of coverage by the
manufacturer.
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Figure 132. Circuit Diagram of the infrared emitter daughter board

Figure 133. Circuit Diagram of the infrared receiver daughter board
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Figure 134. Circuit Diagram of the infrared emitter/receiver mother board

Figure 135. Examples of different coverage angles (directionality) for the OED-EL-8L and
the OED-EL-1L2 by Lumex
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Diode
Model

Pwr
(mW)

Specs
(theta)

ΦΦ at 6 ft
1diode (in)

ΦΦ at 6 ft
2diodes

(in)

Theta exp Distance
1 diode

Distance
2 diodes

LN 51L
panasonic

6 mW 8 125 105 26 70 ft 100 ft

LN 166
panasonic

10 mW 20 173 187 32 95 ft 125 ft

OED-EL-
1L2
LUMEX

25 mW 60 184 217 34 100 ft 135 ft

LN 66A
panasonic

9 mW 25 139 182 30 90 ft 120 ft

OED-EL-8L
LUMEX

3 mW 30 177 212 32 100 ft 130 ft

Table 46. Comparison of various commercially available infrared diodes. All infrared diodes
operate at 940nm.

Figures 136. 3D model of MIT’s Robots and Beyond exhibit which shows the cones of infrared
light  from the infrared location sensors
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For transmission I used the standard SONY remote control infrared protocol which I
modified slightly to transmit an ascii character made of eight bits, rather than the standard
twelve bit: 5 for the address and 5 for the command, typically transmitted by SONY
remote control units. According to the SONY infrared communication protocol, the light
waves are modulated by the emitter at a frequency of 40 KHz. This is done in order to cut
out noise from other sources of IR such as electric lamps, etc. The data is sent using pulse
coding. I modified the standard protocol to send packets of 8 bits preceded by a header.
Each packet varies in length between 100 and 160 milliseconds and is followed by 200ms
of silence to allow the infrared diode to rest after being overdriven at 1.4A. The overall
frequency of trasmission of a location ID is therefore approximately 3Hz. The 40KHz
carrier is generated only at 20% of its duty cycle, once again to preserve the lifetime of
the overdriven infrared diode, as shown in figure 137.

The other specifications for this protocol are:
• Basic time period T = 550 micro secs
• Header length = 4T  followed by T space
• 0 = Pulse with length T followed by space of length T
• 1 = Pulse with length 2T followed by space of length T

The emitter location identification tags have been embedded inside standard light fixtures
to allow the exhibit designer to easily place them in the museum, next to the regular
museum lights, and using the same power rack as the regular museum spotlights [figures
140-145].
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Figure 137. Pulse width modulation of the infrared location signal. The carrier is 40 Khz, generated
at a 20 % duty cycle to preserve the life time of the infrared emitter diode. Below: it takes about 100-

160 ms for the emitter to send an 8 bytes (characters) location signal, and after sending it, the
software pauses for 200 ms, again to preserve the life time of the overdriven diode. The final location

emission rate is therefore approximately 3 Hz.
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     Figure 138. Maximum range of the location sensor          Figure 139. Location sensor: receiver

 

 

 
Figures 140, 141, 142, 143, 144, 145. Location sensor: emitter tags embedded inside light fixtures



158

6.4. The software

The museum wearable plays out an interactive documentary on the displayed artwork
as video on the head mounted display augmented display glasses. The video is edited in
small segments which vary in size from twenty seconds to one and half minute. A video
server, written in C++ and DirectX 8, plays these clips and receives TCP/IP messages,
representing which clip to play, from another program which weights the visitor’s initial
preferences which the information measured by the location ID sensors. This server-
client architecture allows the programmer to easily add other client programs to the
application, which communicate to the server information from other possible sources,
such as sensors or cameras placed along the museum aisles, which measure the
crowdedness of the galleries or how often a certain object has been visited. The client
program reads IR data from the serial port and the server program does inference, content
selection, and content playout using DirectX for full screen playout of the MPEG
compressed clips. Using MPEG compression for the video clips allows for great space-
saving on disk, as well as smooth full screen playout at video resolution.

This program uses HUGIN’s software library [www.hugin.com] to perform real time
probabilistic inference (see Chapter 4 for more details on the probability update algorithm
used) on the basis of the information obtained from the infrared location tags and selects
movie clips as a function of the visitor’s estimated type.

Figure 146. Diagram of the software architecture for the museum wearable.
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6.5. The head mounted display

The size and weight of both the wearable’s CPU and glasses are critical for a museum
application. The augmented reality glasses cannot have a heavy and power hungry
powering unit which requires frequent battery changes. Glasses also need to easily fit
various people’s head sizes, with annexed hair style, which is not an easy task. The
wearable would be handed out to between ten and one hundred people a day, and
therefore needs to be of robust assembly and easy to wear. Given that it is difficult to
design one single head mounted display that fits all users, I have designed and assembled
three different displays, which different styles and mounts. All these fashioned assembles
use commercial heads up displays, which I have thoroughly researched according to the
following requirements. determining the most resourceful visual display, five
characteristics are key to the model ideal in our application: resolution, power
consumption, purchase availability and foremost, ergonomics with the inclusion or
adaptability with sensors, weight, and size. I have considered four models for candidates:
Sony’s PML-S700 PC Glasstron, MicroOptical’s  CO-3, Daeyang’s  DH-4500MA, and
Olympus M2 sold in the US at Tekgear retailers.

Resolution is vital for the museum visitor to be capable of reading text clearly
especially while walking. VGA resolution provides the minimum resolution acceptable
for text reading and enjoyable crisp images which do not produce eye-strain for viewing.
An improvement, also in the visual field, is the superiority of having a partial see-through
display rather than complete blockage of view by the display. In Sony’s Glasstron, it is
possible to remove one LCD producing monocular see-though view, while Daeyang’s
model is already monocular, yet not see-though.

RESOLUTION COLUMNS ROWS
SVGA 800 640
NTSC 720 480
VGA 640 480
QVGA 320 240

Table 47. Video resolution acronyms

The consumption of power limits the operation of the wearable unit. Addition of
devices and sensors decrease the time of functionality before another battery is required.
Therefore a visual display with the minimum power consumption would be optimal. For
a theoretical mobile operation of an hour and a half, with the inclusion of the computer
and sensors, the desire model should consume less than 6 Watts. Sony’s Glasstron with
exceptional resolution requires a power input above the battery limit.
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Model Resolution
(H)*(V)

Number
of Pixels

Opaque or
Translucent

Sony
Glasstron
PLM-S700

832*624 1.55
million

Translucent
w/o LCD

Daeyang
DH-4500MA SVGA 1.44

million 1 eye opaque

Olympus
Tekgear M2 SVGA 480,000 Translucent

MicroOptical VGA ---------

Table 48. Comparison of commercially available head mounted displays, for their video resolution

The DH-4500MA, was announced to be available beginning of June 2001, with its
superior resolution at a low cost, it was a probable winner for the museum wearable
project. Daeyang recently has announced it will delay its introduction until the near 3rd
quarter of the year, too late for the completion of this project, leaving the Olympus M2,
and the MicroOptical.CO-3 as the final candidates.

Model Power
Consumption

Voltage DC

Sony
Glasstron
PLM-S700

10 W 8.4

Daeyang
DH-4500MA 4 W 5

Olympus
Tekgear M2 2 W 5

MicroOptical 3 W 7.2

                  Table 49. Comparison of commercially available head mounted displays, for their power consumption
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Ergonomics plays a key role for the final elimination. In pursuing models with higher
resolutions, some adjustments must be made for our application. The ideal model will
have only one LCD, leaving one eye to observe the museum media. Sensor adjustments
should be as easy as possible, the display needs to being lightweight, adaptable to
different headsizes, and comfortable to the user. The following figure shows some
adjustments on the final candidates to meet our requirements.

Model Weight Required adjustments

Olympus
Tekgear M2 210g       Addition of sensors

MicroOptical 40g(w/o box) Addition of headphones
and sensors

Table 50. Required adjustments for use with the museum wearable for the selected displays.

Cost became the final criteria to select the head mounted display. The color VGA
resolution MicroOptical costs half the price of the Olympus M2 ($2,500 vs $5,000) and it
was therefore selected to be the display of choice for the museum wearable.

Below is a description of the product design study I carried out on three different
fashioning of the head mounted display so that it can adapt to the different needs and
head sizes of museum visitors.

The common fashion display
The common fashion display features an augmented reality display, which joins

together a lightweight VGA resolution color display from the MicroOptical corporation,
and a commercial high quality sturdy set of headphones. The two are joined rigidly by a
metallic mount, which is attached to the side of the headphones and has a slot designed to
accommodate the clip of the MicroOptical display. I designed this mount after several
optimization iterations, so that it does not have pointy parts that could hurt the wearer and
it is flexible so that it can bend slightly towards to face of the wearer to align the display
along the visual axis of the visitor. It has been created in stainless steel with the user of a
water jet cutter machine.

 The choice of headphones is a compromise between quality and weight. To avoid
having a display that bounces as the visitor moves along the exhibit the headphones need
to be somewhat sturdy, although not as heavy as professional headphones, which would
be uncomfortable for the common visitor to wear. The infrared sensor is placed in the
center of the headband, and it is connected by a thin wire to the circuitry that reads the
data and sends it to the serial port of the computer. This circuitry, described in the
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following paragraph, is located inside the small shoulder pack which also holds the
computer.

  

  

Figures 147, 148, 149, 150, 151. Product design and assembly of the common fashion display

Figure 152. Museum visitor wearing the common fashion display
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The high fashion display
 This design is a provocative stylish mount, mainly intended for visitors with a strong

sense of aesthetics, and suitable for use in wearable fashion shows, to promote a non-
nerdy and high fashionable wear of augmented reality displays for the large public. The
MicroOptical augmented reality display is here rigidly mounted to a pair of Oakley “over
the top” glasses, as illustrated in the figures 153-156. This slick mount was especially
designed for Olympic athletes who need to have glasses which do not bounce or move
while they perform. The infrared sensor is also located in the center of the headband, as
in the previous design.

Figures 153, 154, 155, 156. High fashion display: MicroOptical wearable display mounted onto
Oakley over-the-top glasses with study for camera placement



164

The old fashion display
I propose this design for visitors who feel uncomfortable wearing an augmented reality

display all along the length of their visit at the museums. These are potentially visitors
with special needs, elderly people, or more cautious visitors who would like to try a less
immersive augmented reality device, than the two previously illustrated. The old fashion
display imitates the design of old opera glasses or binoculars, that people would wear
momentarily to see details or close-ups of a theatrical or musical performance. It is made
by a large pair of glasses, from which we have removed one lateral arm. The remaining
arm is rigidly joined with a stainless steel joint which provides a support to attach the
MicroOptical augmented reality display, as well as a one-ear headphone. The infrared
sensor is located in between the lenses of the glasses.

 

Figures 157, 158. The old fashion display
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Chapter 7

Results and Evaluation

7.1. Model Validation
Classifying people’s behavior using the dynamic Bayesian network described in Chapter 4 can
be done on the sole basis of the expert’s opinion, which assigns numerical values to the
conditional probability tables of the network. This results in an expert system, and in this case
the network reflects the subjective opinion and domain knowledge of the people who designed it.
In some cases performing probability update on such models leads to satisfying results, such as
for systems that model the specialist’s medical knowledge in decision support systems which
help determine whether further tests or investigation are needed to assess the health state of a
patient.

When a database of cases is available, we have the opportunity to perform out-of-sample testing
to validate that the model has any predictive power, given the data. This is important in the case
of a museum exhibit in which the public’s behavior cannot necessarily be correctly modeled by
the curator’s expertise, because of the changing nature of the shown artwork, and the public’s
needs.

According to the problem that is defined there are various techniques for data analysis which
combine prior knowledge with data to produce improved knowledge. In some cases we may
need to learn the topology of the network, in others, the topology is given and we need to learn
the parameters of the network. The four possible cases and techniques, taken from Murphy and
Mian [Murphy and Mian, 1999], are described in the table 51. Heckerman [1999] provides an
introduction to some of the issues involved in learning with a Bayesian network.

Structure Observability Method

Known Full Sample Statistics

Known Partial EM or gradient ascent

Unknown Full Search through model space

Unknown Partial Structural EM

Table 51. Learning methods depending on what is already known about the problem. Taken from Murphy and
Mian [1999].
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7.1.1. Learning from the data

Specifically for this research, I made the assumption that the structure of the network is correct
and I used the tracking data on visitor’s path and length of stops at the museum to learn the
conditional probability tables (parameters) for the nodes of the network. I grouped the visitor
tracking data gathered at the museum in two groups: a group from which I trained the proposed
Bayesian network (i.e. I learned the parameters of the network from the data) and a control group
on which I performed out-of-sample  testing to validate the predictive power of the model. For
robustness I split the data in a training group and a control group in three different ways,
repeated the learning procedure three times, and compared the obtained results. The training and
test groups are listed in tables 55-61.

The Bayesian network on which I perform learning [figure 62] has three nodes per time slice: the
object and location nodes are dynamic, i.e. they are repeated at each time slice, whereas the
visitor node is a static node, as I assume that the visitor type does not change during the visit at
the museum.

The input to the network are the location nodes, which express how much time the visitors spend
at each object. Rather than having location nodes with continuos values, which would require
more sophisticated probability updates techniques, it is more convenient to have discrete location
nodes with a few states, such as “short”, “long” stop duration, or “skip” object. Section 7.1.2.
describes how, mathematically, stop durations are labeled as skip/short/long. This section
focuses on model validation and out-of-sample testing, and assumes that the input data has
already been correctly classified.

The nodes of the network have discrete states as below [tables 52,53,54]:

Location (L) Visitor (V) Object (O) Object’ (O’)

Skip Busy Visited Neutral

Short Greedy Not Visited Interesting

Long Selective Uninteresting

For simplicity, in this first phase of this research, I have assigned only two trivial states to the
object node: Visited and Not Visited. A more accurate description could include three states for
the Object nodes: Neutral, Interesting, Uninteresting, based on the number of visits they receive
and length of stops. Given that the system is learning the conditional probability table of the
location nodes, given the visitor and object nodes, i.e. p(L|O,V), in the p(L|O’,V) case it would
have to learn  27 parameters (3 location states x 3 object states x 3 visitor states) instead of 18
(3x2x3).

visitor priors object 1 priors object 2-12 CPT
Busy 0.333 visited 0.5 visited 0.5 0.5

Greedy 0.333 not visited 0.5 not visited 0.5 0.5
Selective 0.333
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location nodes Conditional Probability Table
type busy Greedy selective

object 1 visited not visited visited not visited visited not visited
skip 0.2 1 0.1 1 0.4 1
short 0.7 0 0.1 0 0.2 0
long 1 0 0.8 0 0.4 0

Tables 52,53,54. Initial (before learning) probability tables of the nodes of the dynamic Bayesian network.

To learn the 9 p(L|O,V) parameters (only 9 to learn for the visited nodes) I applied the
Expectation Maximization algorithm. The Expectation-Maximization (EM) algorithm is a
broadly applicable approach to the iterative computation of maximum likelihood (ML) estimates,
useful in a variety of incomplete-data problems. On each iteration of the EM algorithm, there are
two steps, called the expectation step or the E-step and the maximization step or the M-step.
Because of this, the algorithm is called the EM algorithm. This name was given by Dempster,
Laird, and Rubin [Dempster, Laird, and Rubin, 1977] in their fundamental paper. On each
iteration of the EM algorithm, there are two steps, called the expectation step or the E-step and
the maximization step or the M-step. Because of this, the algorithm is called the EM algorithm.

The basic idea of the EM algorithm is to associate with the given incomplete data problem, a
complete-data problem for which ML estimation is computationally more tractable; for instance,
the complete-data problem chosen may yield a closed-form solution to the maximum likelihood
estimate (MLE) or may be amenable to MLE computation with a standard computer package.
The methodology of the EM algorithm then consists in reformulating the problem in terms of
this more easily solved complete data problem, establishing a relationship between the
likelihoods of these two problems, and exploiting the simpler MLE computation of the complete
data problem in the M-step of the iterative computing algorithm.

More specifically, let’s assume we wish to estimate some set of parameters θ that describe an
underlying probability distribution, given only the observed portion of the full data produced by
this distribution. Let 1 2{ , ,..., }mX x x x=  denote the observed data in a set of m independently
drawn instances, let 1 2 m= unobserved data
let  =   Z∪  denote the full data. We use h to indicate the current hypothesized values of the
parameters θ, and h’ to denote the revised hypothesis that is estimated on each iteration of the
EM algorithm. The EM algorithm searches for the maximum likelihood hypothesis h’ by seeking
the h’ that maximizes: E[ln p(Y|h')] . It uses its current hypothesis h in place of the actual
parameters θ to estimate the distribution governing Y. Let us define a function Q(h'|h)  that gives
E[ln p(Y|h')]  as a function of h’, under the assumption that θ = h and given the observed portion
of the full data Y: Q(h'|h) = E[ln p(Y|h') | h, X] . The EM can be described as:

Step 1. Estimation (E) step: Calculate Q(h'|h)  using the current hypothesis h and the observed
data X to estimate the probability distribution over Y.

Q(h'|h)  E[ln p(Y|h') | h, X]←
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Step 2. Maximization (M) step: Replace hypothesis h by the hypothesis h’ that maximizes the Q
function.

h'
h argmax  Q(h'|h)←

The results of EM parameter learning for the three training groups in tables 55, 57, 59, are given
in table 61.

Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby
Doll-12

TYPE

1 skip skip long short long long short long long long long short greedy

2 short long long long long long long long long skip short long greedy

3 short skip short short short short skip skip skip skip long skip busy

4 short short short short short short long short skip short skip long busy

5 short short short short short short short long long short short short busy

6 short short long skip skip skip short short short short long short busy

7 short skip skip skip short skip short short short long short short busy

8 short short short short short short skip short short short long skip busy

9 short short short skip skip skip short long short short skip skip busy

10 short short short short skip short skip skip skip short short short busy

11 short long long long short skip long skip skip skip skip short slctv

12 short skip short short short skip short skip skip long long skip slctv

13 skip long short long long short long skip skip short skip long slctv

14 skip skip skip skip long short short skip short long long short slctv

15 long long long long long short short skip skip skip long skip slctv

16 skip short skip skip long long skip skip skip long long long slctv

17 long long long long short long short short short skip short skip slctv

18 long short skip short skip skip short long long short skip skip slctv

19 short long short long skip skip skip long short long skip long slctv

20 short long short short long long skip skip skip skip skip short slctv

21 short long short short skip skip short skip skip short skip long slctv

22 short short short long short long long skip skip skip long short slctv

23 short long short skip short short short skip long skip long skip slctv

24 short long short long long long short skip skip skip skip skip slctv

25 short long long long long skip skip skip short long skip skip slctv

 Table 55. Training group 1

Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby
Doll-12

TYPE

1 skip short long short long long skip long long long long short greedy

2 short short short short short short short short short skip long skip busy

3 short skip skip skip short skip skip short short short long short busy

4 short short short skip skip short short skip skip skip long short busy

5 short skip skip skip short short short short short short skip short busy

6 short long short short long long long short short short short short busy

7 short long short short long short long short short short long skip busy

8 skip short short short short skip short skip short short short short busy

9 short short short short long short short long long short skip skip busy
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10 short skip long long long long skip skip long short long skip slctv

11 short skip long short long short skip skip skip short long short slctv

12 skip skip short long long long skip long short long skip short slctv

13 long long long skip skip short short long short short skip skip slctv

14 short short short skip skip short long short long skip long skip slctv

15 long skip skip skip skip skip short long long long short long slctv

16 skip skip short long skip skip long short short short skip long slctv

17 short short long long long long skip skip long skip long skip slctv

18 short skip short short skip long long long skip long short skip slctv

19 short skip short skip long short long short long skip long skip slctv

20 short long long long long skip skip skip short short long skip slctv

21 short skip long skip short skip short skip short long long short slctv

22 skip long short skip long skip long long long long skip skip slctv

23 short long short long long short short long skip skip skip skip slctv

24 short short skip short long short long skip long skip long skip slctv

25 short skip skip long short short long long short short skip skip slctv

 Table 56. Test  group 1

Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby
Doll-12

TYPE

1 short long long long long long long long long skip short long greedy

2 short short long skip skip skip short short short short long short busy

3 short skip skip skip short skip short short short long short short busy

4 short skip skip skip short skip skip short short short long short busy

5 short short short short short short skip short short short long skip busy

6 short short short skip skip skip short long short short skip skip busy

7 short long short short long short long short short short long skip busy

8 short short short short skip short skip skip skip short short short busy

9 short short short skip skip short short skip skip skip long short busy

10 long short skip short skip skip short long long short skip skip slctv

11 short short long long long long skip skip long skip long skip slctv

12 short long short long skip skip skip long short long skip long slctv

13 short long short long long short short long skip skip skip skip slctv

14 short long short short long long skip skip skip skip skip short slctv

15 short skip short short skip long long long skip long short skip slctv

16 short short skip short long short long skip long skip long skip slctv

17 short long short short skip skip short skip skip short skip long slctv

18 skip long short skip long skip long long long long skip skip slctv

19 short short short long short long long skip skip skip long short slctv

20 short skip short skip long short long short long skip long skip slctv

21 short long short skip short short short skip long skip long skip slctv

22 short skip long skip short skip short skip short long long short slctv

23 short long short long long long short skip skip skip skip skip slctv

24 short long long long long skip skip skip short short long skip slctv

25 short long long long long skip skip skip short long skip skip slctv

Table 57. Training group 2
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Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby
Doll-12

TYPE

1 skip skip long short long long short long long long long short greedy

2 skip short long short long long skip long long long long short greedy

3 skip short short short short skip short skip short short short short busy

4 short skip short short short short skip skip skip skip long skip busy

5 short short short short short short short short short skip long skip busy

6 short short short short short short long short skip short skip long busy

7 short short short short long short short long long short skip skip busy

8 short skip skip skip short short short short short short skip short busy

9 short short short short short short short long long short short short busy

10 short long short short long long long short short short short short busy

11 short skip long long long long skip skip long short long skip slctv

12 short long long long short skip long skip skip skip skip short slctv

13 skip skip short long skip skip long short short short skip long slctv

14 short skip short short short skip short skip skip long long skip slctv

15 short skip long short long short skip skip skip short long short slctv

16 skip long short long long short long skip skip short skip long slctv

17 long long long skip skip short short long short short skip skip slctv

18 skip skip skip skip long short short skip short long long short slctv

19 long long long long long short short skip skip skip long skip slctv

20 skip skip short long long long skip long short long skip short slctv

21 skip short skip skip long long skip skip skip long long long slctv

22 long skip skip skip skip skip short long long long short long slctv

23 long long long long short long short short short skip short skip slctv

24 short skip skip long short short long long short short skip skip slctv

25 short short short skip skip short long short long skip long skip slctv

Table 58. Test  group 2

Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby
Doll-12

TYPE

1 skip skip long short long long short long long long long short greedy

2 skip short short short short skip short skip short short short short busy

3 short skip short short short short skip skip skip skip long skip busy

4 short short short short short short short short short skip long skip busy

5 short short short short short short long short skip short skip long busy

6 short short short short long short short long long short skip skip busy

7 short skip skip skip short short short short short short skip short busy

8 short short short short short short short long long short short short busy

9 short long short short long long long short short short short short busy

10 short skip long long long long skip skip long short long skip slctv

11 short long long long short skip long skip skip skip skip short slctv

12 skip skip short long skip skip long short short short skip long slctv

13 short skip short short short skip short skip skip long long skip slctv

14 short skip long short long short skip skip skip short long short slctv

15 skip long short long long short long skip skip short skip long slctv

16 long long long skip skip short short long short short skip skip slctv

17 skip skip skip skip long short short skip short long long short slctv

18 long long long long long short short skip skip skip long skip slctv

19 skip skip short long long long skip long short long skip short slctv
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20 skip short skip skip long long skip skip skip long long long slctv

21 long skip skip skip skip skip short long long long short long slctv

22 long long long long short long short short short skip short skip slctv

23 short skip skip long short short long long short short skip skip slctv

24 short short short skip skip short long short long skip long skip slctv

25 long short skip short skip skip short long long short skip skip slctv

Table 59. Training group 3

Intro-1 Lisp-2 MinskyAr
m-3

RoboAr
m-4

Falcon-5 Phantom-
6

CogsHea
d-7

Quad-8 uniroo-9 Dext
Arm-10

Kismet-
11

Baby Doll-12

1 skip short long short long long skip long long long long short greedy

2 short long long long long long long long long skip short long greedy

3 short short long skip skip skip short short short short long short busy

4 short skip skip skip short skip short short short long short short busy

5 short skip skip skip short skip skip short short short long short busy

6 short short short short short short skip short short short long skip busy

7 short short short skip skip skip short long short short skip skip busy

8 short long short short long short long short short short long skip busy

9 short short short short skip short skip skip skip short short short busy

10 short short short skip skip short short skip skip skip long short busy

11 short short long long long long skip skip long skip long skip slctv

12 short long short long skip skip skip long short long skip long slctv

13 short long short long long short short long skip skip skip skip slctv

14 short long short short long long skip skip skip skip skip short slctv

15 short skip short short skip long long long skip long short skip slctv

16 short short skip short long short long skip long skip long skip slctv

17 short long short short skip skip short skip skip short skip long slctv

18 skip long short skip long skip long long long long skip skip slctv

19 short short short long short long long skip skip skip long short slctv

20 short skip short skip long short long short long skip long skip slctv

21 short long short skip short short short skip long skip long skip slctv

22 short skip long skip short skip short skip short long long short slctv

23 short long short long long long short skip skip skip skip skip slctv

24 short long long long long skip skip skip short short long skip slctv

25 short long long long long skip skip skip short long skip skip slctv

Table 60. Test  group 3

NEW  LEARNED  conditional  probability  table,   train  group 1 Original  conditional  probability  table

skip short long skip short long
Busy 0.27 0.63 0.1 Busy 0.2 0.7 0.1

Greedy 0.13 0.21 0.66 Greedy 0.1 0.1 0.8
Selective 0.37 0.3 0.33 Selective 0.4 0.2 0.4

NEW  LEARNED  conditional  probability  table,   train  group  2 Original  conditional  probability  table

skip short long skip short long
Busy 0.3 0.59 0.11 Busy 0.2 0.7 0.1

Greedy 0.08 0.17 0.75 Breedy 0.1 0.1 0.8
Selective 0.36 0.3 0.34 Selective 0.4 0.2 0.4
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NEW  LEARNED  conditional  probability  table,   train  group 3 Original  conditional  probability  table

skip short long skip short long
Busy 0.2 0.67 0.13 Busy 0.2 0.7 0.1

Greedy 0.17 0.25 0.58 Greedy 0.1 0.1 0.8
Selective 0.36 0.3 0.34 Selective 0.4 0.2 0.4

Tables 61. New parameters learned from the visitor tracking data using the EM algorithm.

I used the new learned parameters to test how well the Bayesian network performs in identifying
the other half of the tracked user types. In each case I took the original set of 50 visitor tracking
data, and split it randomly in two parts, each composed of 25 subjects. I used the first half of the
subjects as training data, and the remaining half as test data. For robustness I performed this
operation three times, each time with a different random subdivision of the original data set in
half. I then, for each of the three learned conditional probability tables for the location nodes,
substituted the original conditional probability table with the new learned parameters. Then, for
each of the 25 visitor data (row) in the test group, I introduced the stop duration for the 12
tracked objects as evidence in the network, and calculated the posterior probability on the visitor
nodes. I compared the visitor’s busy/greedy/selective state with the highest probability, with the
label assigned to the visitor behavior in the test file. When the original labeled data coincided
with the posterior with the highest probability I considered this a ‘success’, otherwise a ‘miss’.
For the three test cases, each made of 25 cases, I obtained respectively 25, 24, and 25 successes,
which are listed in tables 64, 65, 66. There was only one miss, with test data as below, which the
network classified as ‘busy’ while it was labeled ‘selective’.

 short skip  short  short  short skip  short skip skip long long skip selective

The percentage of skips, short, and long stops for this test case is respectively:

%-busy %-greedy %-slctv
0.42 0.42 0.16

The absolute classification errors for the second test data group are:

E-busy E-greedy E-slctv
0.33 1.16 0.34

NEW  LEARNED  conditional  probability  table,   train  group  2

skip short long
Busy 0.3 0.58 0.12

Greedy 0.08 0.17 0.75
Selective 0.36 0.3 0.34

Table 62. New learned probability table, for train group 2
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As one can observe from the error table, the misclassified visitor had therefore a behavior at the
dividing boundary between busy and selective, as they have very close absolute errors. I would
attribute the error to the human who observed the visitors’ behavior at the museum, and labeled
that particular’s visitor behavior wrongly because of the ambiguity of that test case.

Given the high success rate of this learning/test procedure, which can be quantified as 74/75=
0.987, for further visitor classification with the given Bayesian network, I have performed EM
learning on all 50 visitors obtaining the final learned parameters in table 63:

Final Conditional Probability Table p(L|O,V)
skip short long

busy 0.25 0.625 0.125
greedy 0.14 0.22 0.64

selective 0.36 0.3 0.34
Table 63. New learned probability table, for all 50 visitor data.

test1: correct=25 incorrect=0
1 yes result=greedy Original=greedy

2 yes result=busy original=busy

3 yes result=busy original=busy

4 yes result=busy original=busy

5 yes result=busy original=busy

6 yes result=busy original=busy

7 yes result=busy original=busy

8 yes result=busy original=busy

9 yes result=busy original=busy

10 yes result=selective original=selective

11 yes result=selective original=selective

12 yes result=selective original=selective

13 yes result=selective original=selective

14 yes result=selective original=selective

15 yes result=selective original=selective

16 yes result=selective original=selective

17 yes result=selective original=selective

18 yes result=selective original=selective

19 yes result=selective original=selective

20 yes result=selective original=selective

21 yes result=selective original=selective

22 yes result=selective original=selective

23 yes result=selective original=selective

24 yes result=selective original=selective

25 yes result=selective original=selective

Table 64. Test results for group 1.

test2: correct=24 incorrect=1
1 yes result=greedy original=greedy

2 yes result=greedy original=greedy

3 yes result=busy original=busy

4 yes result=busy original=busy
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5 yes result=busy original=busy

6 yes result=busy original=busy

7 yes result=busy original=busy

8 yes result=busy original=busy

9 yes result=busy original=busy

10 yes result=busy original=busy

11 yes result=selective original=selective

12 yes result=selective original=selective

13 yes result=selective original=selective

14 no result=busy original=selective

15 yes result=selective original=selective

16 yes result=selective original=selective

17 yes result=selective original=selective

18 yes result=selective original=selective

19 yes result=selective original=selective

20 yes result=selective original=selective

21 yes result=selective original=selective

22 yes result=selective original=selective

23 yes result=selective original=selective

24 yes result=selective original=selective

25 yes result=selective original=selective

Table 65. Test results for group 2.

test3: correct=25 incorrect=0
1 yes result=greedy original=greedy

2 yes result=greedy original=greedy

3 yes result=busy original=busy

4 yes result=busy original=busy

5 yes result=busy original=busy

6 yes result=busy original=busy

7 yes result=busy original=busy

8 yes result=busy original=busy

9 yes result=busy original=busy

10 yes result=busy original=busy

11 yes result=selective original=selective

12 yes result=selective original=selective

13 yes result=selective original=selective

14 yes result=selective original=selective

15 yes result=selective original=selective

16 yes result=selective original=selective

17 yes result=selective original=selective

18 yes result=selective original=selective

19 yes result=selective original=selective

20 yes result=selective original=selective

21 yes result=selective original=selective

22 yes result=selective original=selective

23 yes result=selective original=selective

24 yes result=selective original=selective

25 yes result=selective original=selective

Table 66. Test results for group 3.
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7.1.2. Labeling the data

The first task before learning is to assign labels to the tracking data gathered at the museum,
shown in table 1 (chapter 3). For example, for the targeted exhibit, I need to decide whether a
stop of 18 seconds should be considered ‘short’ or ‘long’. Various classification techniques can
be used for this problem. Gerschenfeld [Gerschenfeld, 1999] describes a soft clustering
technique using a Gaussian kernel. I have used instead hard clustering techniques, which are less
precise than the soft clustering ones, as the classification problem addressed is simple enough for
unsupervised classification techniques, such as k-means, to be effective.

To be able to compare results, I have actually used two different techniques for this classification
problem: one is to use a popular classification procedure, known as k-means. The other consists
in simply plotting histograms of the data, and finding a threshold between ‘short’ and ‘long’
stops by histogram intersection. The classes of data that are needed are only two: ‘short’ and
‘long’, as ‘skip’ is easily identifiable as a stop of zero seconds duration. I used both methods and
compared results, as discussed below.

An important step before data clustering is performing data quantization, when necessary. Most
statistical data analysis problems require some kind of data abstraction. The data often carries
more precision than needed, and may therefore include too many categories with too much
precision. This can be a problem as extra subdivisions can hide trends. Preprocessing reduces the
number of variables without jeopardizing the results.

To label the data I first discarded the zero values, as the zero time length case is easily labeled as
‘skip’. From the initial 50 visitor * 12 objects = 600 data points I obtained 413 non zero data
points. I then plotted non zero data points as a histogram, such that the height of each bin
corresponds to the number of data points with value x, where x is the x (horizontal) coordinate of
the bin [figure 159].

Without preprocessing, the histogram has too much resolution, and its reading is ambiguous, as it
shows a wave-like data envelope which hides the actual trend of the data [figure 160]. To obtain
the correct data abstraction for this problem, I merged together adjacent bins, as the short bins
next to the tall bins should actually be added to the tall bins to represent the actual data. I
quantized the data in groups of five, and obtained the histogram shown in figure 161, which
clearly exhibits an exponential decay data trend. This means roughly that visitors globally tend to
make many more short than long stops at this exhibit.

I grouped the observed visitors according to their type: I observed a total of 3 greedy types, 16
busy types, and 31 selective types (table 1). These types contribute differently to the quantized
histogram as shown in figures 162-164. The non exponential decay trend of the greedy type may
be explained because of the small number of greedy types observed.

To distinguish short stops from long, I need to find a threshold in the quantized histogram which
clearly sets the boundary between these two labels, based on the gathered tracking data. I first
used the histogram intersection method and plotted normalized histograms of the greedy, busy,
and selective visitor types, two at a time, as shown in figures 165-167.
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Y  axis: number of data points with value x

X axis: x=stop durations in seconds

Figure 159. Histogram of the 413 non zero data points, which represent duration of visitors’ stops
for the 12 observed objects

X axis: x=stop durations in seconds

Y  axis: number of data points with value x

Figure 160. Histogram of the 600 data points, including the zero second length stops. The ‘skip’ bin is dominant.
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 Figures 161, 162. Above. Quantized histogram for the duration of visitors’ stops. Below. Contribution of the greedy type.
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Figures 163, 164. Different constributions of the busy, selective (and above greedy) types to the quantized histogram of the
duration of visitors’ stops for the 12 observed objects.
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Figures 165, 166, 167. Histogram intersection for the three selected types, taken in pairs.

It can be observed that the three histogram intersections, greedy/busy, greedy/selective, and
busy/selective all overlap at bin x=20. Based on this simple analysis one can argue that a good
candidate that sets the threshold between short and long stop durations for visitors at the Robots
and Beyond exhibit is x=19. This means that for further data analysis, any tracked stop duration
number less or equal than 19 should be labeled ‘short’ and any number greater than 20 should be
labeled ‘long’. According to this data classification, it is possible to rewrite table 1, which
contains the numbers with stops durations, into a new table, which contains only three labels for
the 50 visitors’ stop durations at the 12 tracked museum objects on display [table 68]. Using this
classification I have plotted histograms of the relative composition of ‘short’ and ‘long’ stop
durations for the greedy, busy, and selective histograms [figures 171, 172, 173]

With this result it is also possible to revise the expert’s original assumption on the percentage of
skip, short, long stops which describe the behavior of the greedy, busy, and selective visitors
respectively. These values are obtained by averaging the respective number of skip, short, long
stops for the three visitor types. The new and the original parameters are similar [table 177], and
the new table can be considered as a fine tuning of the parameters given by the expert.
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NEW conditional probability table original conditional probability table

%-skip %-short %-long %-skip %-short %-long
Greedy 0.14 0.22 0.64 greedy 0.1 0.1 0.8
Busy 0.25 0.625 0.125 busy 0.2 0.7 0.1

Selective 0.36 0.3 0.34 Selective 0.4 0.2 0.4

Table 67. Revision of the original assumption on the percentage of skip, short, and long stops for the three targeted
museum visitor types.

To confirm the threshold of 19 seconds as separator between short and long stop durations, I
have also performed clustering of the data using the k-means algorithm. K-means [Therrien,
1989] is an unsupervised classification algorithm which works as follows:

• 1. Begin with an arbitrary assignement of samples to clusters, or begin with
an arbitrary set of cluster centers, and assign samples to nearest centers.

• 2. Compute the sample mean of each cluster.

• 3. Reassign each sample to the cluster with the nearest mean.

• 4. If the classification of all samples has not changed, stop.
Else go to step 2.

Together with assigning approximate center clusters at start, the K-means algorithm requires
setting k, which represents the number of clusters the algorithm divides the samples into. I
performed k-means analysis of the visitor tracking data, having set k=3, to allow the extra third
cluster to collect all the samples which do not fall into the ‘short’ or ‘long’ category. I also set
the center cluster at start to the approximate initial values of: 10, 30, and 60 seconds respectively.
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# Intro
1

Lisp
2

MinskyArm
3

RoboArm
4

Falcon
5

Phantom
6

CogsHead
7

Quad
8

Uniroo
9

Dext Arm
10

Kismet
11

Baby Doll
12

TYPE

1 skip skip long short long long short long long long long short greedy

2 skip short long short long long skip long long long long short greedy

3 short long long long long long long long long skip short long greedy

4 skip short short short short skip short skip short short short short busy

5 short skip short short short short skip skip skip skip long skip busy

6 short short short short short short short short short skip long skip busy

7 short short short short short short long short skip short skip long busy

8 short short short short long short short long long short skip skip busy

9 short skip skip skip short short short short short short skip short busy

10 short short short short short short short long long short short short busy

11 short long short short long long long short short short short short busy

12 short short long skip skip skip short short short short long short busy

13 short skip skip skip short skip short short short long short short busy

14 short skip skip skip short skip skip short short short long short busy

15 short short short short short short skip short short short long skip busy

16 short short short skip skip skip short long short short skip skip busy

17 short long short short long short long short short short long skip busy

18 short short short short skip short skip skip skip short short short busy

19 short short short skip skip short short skip skip skip long short busy

20 short skip long long long long skip skip long short long skip slctv

21 short long long long short skip long skip skip skip skip short slctv

22 skip skip short long skip skip long short short short skip long slctv

23 short skip short short short skip short skip skip long long skip slctv

24 short skip long short long short skip skip skip short long short slctv

25 skip long short long long short long skip skip short skip long slctv

26 long long long skip skip short short long short short skip skip slctv

27 skip skip skip skip long short short skip short long long short slctv

28 long long long long long short short skip skip skip long skip slctv

29 skip skip short long long long skip long short long skip short slctv

30 skip short skip skip long long skip skip skip long long long slctv

31 long skip skip skip skip skip short long long long short long slctv

32 long long long long short long short short short skip short skip slctv

33 short skip skip long short short long long short short skip skip slctv

34 short short short skip skip short long short long skip long skip slctv

35 long short skip short skip skip short long long short skip skip slctv

36 short short long long long long skip skip long skip long skip slctv

37 short long short long skip skip skip long short long skip long slctv

38 short long short long long short short long skip skip skip skip slctv

39 short long short short long long skip skip skip skip skip short slctv

40 short skip short short skip long long long skip long short skip slctv

41 short short skip short long short long skip long skip long skip slctv

42 short long short short skip skip short skip skip short skip long slctv

43 skip long short skip long skip long long long long skip skip slctv

44 short short short long short long long skip skip skip long short slctv

45 short skip short skip long short long short long skip long skip slctv

46 short long short skip short short short skip long skip long skip slctv

47 short skip long skip short skip short skip short long long short slctv

48 short long short long long long short skip skip skip skip skip slctv

49 short long long long long skip skip skip short short long skip slctv

50 short long long long long skip skip skip short long skip skip slctv

Table 68. Labeled data
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Figures 168, 169. Plot of samples (above), and color labeling of clusters after k-means classification (below).
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K-means gives three clusters centered respectively in 9, 30, and 79, and with ranges 1-19, 20-54,
and 55-140. I have labeled these clusters as ‘short’, ‘long’ and ‘very long’. Just as for the
previous method, K-means also gives a threshold of 19 seconds as separator between short and
long stops, for visitors at MIT Museum’s Robots and Beyond exhibit. These results are
summarized in figure 170 below.

Figure 170. Summary of results after k-means classification, k=3.

With the knowledge of these ranges, I have plotted separate normalized histograms of stop
durations for the three types, by color coding the bins corresponding to the different duration
ranges found. For further discussion I will merge the long and very long clusters into one ‘long’
cluster, ranging from 20 to 140 seconds.
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Figures 171, 172, 173. Classification of short, long, and very long stop durations for the greedy, busy and selective types.
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7.2. Comparison with previous real-time sensor-driven
content selection architectures

Learning the parameters of the system from the visitor tracking data, as shown in the previous
section, is an important step in system validation, as it allows the Bayesian network to fine tune
or modulate the curator’s opinion about the public’s typology and interests to the actual visitors’
behavior. This new information is reflected in the new learned parameters of the network.

Another step in system validation is to show that the chosen approach has several advantages
over other possible authoring approaches. I have illustrated in Chapter 2 a taxonomy of authoring
techniques, which I have called scripted, responsive, and behavioral. This section develops a
general purpose example of a typical input-output coupling problem which typically arises in
interactive multimedia storytelling. The example is purposedly chosen to be as abstract as
possible to ensure the general validity of the following discussion. Using this example as a
guideline, I will then compare authoring approaches for the specific research described in this
document.

Let’s imagine a sensor driven system which presents some form of digital content
(video/audio/graphics/music) to the user as a function of a set of recognized input actions
performed by the user. More specifically, we would have a sensing system which detects a
sensorial percept, that we shall call P. This signal needs to be classified as belonging to one out
of four recognized input actions: A1, A2, A3, A4. Based on which of these actions is recognized,
the system selects six possible outcomes, digital content segments S1, S2, S3, S4, S5, S6, which
are presented to the user via a computer screen, a projection, or any selected output medium.
This is in essence a typical problem that multimedia authors are confronted with.

Let’s analyze how we can address this problem using first a scripted approach, then a responsive
approach, followed by a behavioral approach, and finally using sto(ry)chastics. For each of these
cases I will then extend the conclusions of this discussion and compare approach to the one
earlier described for the museum wearable application.

In the scripted case we typically want to encode in the system which sequence of inputs
determines which output or sequence of outputs, i.e. should A1, A2, A3, A4, happening in this
order cause S3, or if A3 happens before A2 should instead S4 be shown. If the system has a
memory as long as the number of possible actions, for a given sensorial percept P, there are

44 =256 possible sequences which express the different order in which these actions can happen
(permutations with repetition). For each of these cases we can choose an output sequence in 6
different ways, for a total of 256x6=1536 possible cases that the author needs to keep track of.
This is obviously too much to do, and therefore an obvious simplification would be to reduce the
memory of the system to only the last and the current action. With this simplification there are
only 24 =16 possible action sequences, which determine 16x6=96 cases: a more tractable
number of possibilities to encode in the system. The problem comes when we may want to apply
some changes to the original input-output coupling strategy, such as adding more output, i.e. a
new content segment S7, or adding a new input, i.e. action A5. In either case the system modeller
would have to specify what input produces which output all over again from scratch ! Therefore
such an authoring technique is quite inflexible to allow the author try out various scenarios,
which is usually required when initially testing and fine tuning the system’s operation. If, in
addition to selecting one content segment, we wish to have a criteria to assemble together and
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edit a small story using as components the available outputs, as shown for the museum wearable
in Chapter 6, then the cases to keep track of become: 16x 6! = 16x720 = 11520, a nearly
impossible number of cases to handle. Figure 174 shows graphically what the scripted approach
entails: each action node is connected to all output segments nodes.

Figure 174. Scripted authoring.

If we used instead a responsive authoring approach, the input-output mapping problem would be
quite simpler: we would establish a geography of one-to-one correspondences between inputs
and outputs as shown in figure 175. As I observed in Chapter 2, this authoring strategy has an
advantage not only for the author, as it simple to encode, but also for the public, as the input-
output mapping is consistent in time, and it can be quickly understood or discovered by the
public. It is therefore a desired approach to author several multimedia experiences. The main
drawback of this technique is that it can offer the public only a shallow depth of content. If we
want to add more outputs to the system we also need to add more inputs, thereby complicating
the user interface to a number of actions which cannot all be memorized or learned quickly by
the user. A good analogy for a responsive system is the piano, a musical instrument which
associates a musical note to each key pressed. If we had a piano with only 4 keys, we would be
able to produce only very limited music with it. However adding more keys complicates the
interface to the extent that it can take several years and skills for the user to actually learn the
interface to an extent that it produces interesting or satisfying (musical) content.

The behavioral approach retains some of the mapping simplicity of the responsive approach,
while still allowing for some of the ability to articulate content offered by the scripted approach.
In this case the system adopts a decentralized strategy to couple input and outputs, by making
each output object “responsible” for triggering the appropriate event (show itself, play, stop,
rewind) in correspondence to the incoming input action performed by the user. This is done in
analogy with the behaviorist ethological or psychological theories which describe animal or
human behavior as driven by a set of learned or innate stimulus-response associations.
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Figure 175. Responsive authoring.

The behavioral approach retains some of the mapping simplicity of the responsive approach,
while still allowing for some of the ability to articulate content offered by the scripted approach.
Typically a tree-like graphical structure is used to represent each behavior driven object. Root
nodes correspond to high level behaviors which are decomposed, lower in the tree graph, into
simpler behaviors. Leaf nodes represent to the atomic actions the object need to perform for the
corresponding root behavior to happen. Behavior systems implement an action selection
mechanism which provides a criteria to select the most appropriate behavior for the object given
the set of sensory inputs present at each time step [Johnson, 1994; Blumberg, 1995]. In relation
to the discussed example, we can imagine a simplified behavior system with 6 objects: S1, S2,
S3, S4, S5, S6, which have one behavior only: play the corresponding video or audio clips
segment. Each object/segment encapsulates an action selection mechanism which make it play
(select its only behavior) as a function of one or more actions. This simplified behavior system is
represented by figure 176.

Figure 176. Behavior based authoring.
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While the behavior based approached has proven effective for interactive computer graphics,
where the tree-like hierarchical structure is useful to coordinate the motion of articulated
graphical characters, it still leaves some open questions for the case considered in this section.
For example if action A4 is recognized, objects S3, S5, S6 could all play. Yet the system would
have to negotiate amongst the three activated objects, if only one of them or all should play, and
in the latter case in which order.

If we limit the content selection mechanism for the museum wearable described in Chapter 6 to
just one time slice (one object), we have a problem quite similar to the one illustrated above.
Figures 177,178 shows the clip selection Bayesian network of the previous chapter, with
renamed nodes, but same topology.

Figures 177, 178. Sto(ry)chastics authoring.
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As shown from these figures, sto(ry)chastics offers several advantages over the previous
approaches. With a responsive approach the resulting system would show only one pre-chosen
video clip or pre-edited story per object on display. While such a system could still be used to
test the public’s reaction and acceptance of the museum wearable, it may overall not satisfy
neither the curator, who needs to make in advance an careful selection of all the available
audiovisual material, nor the public which may find the content shown either too detailed, or not
enough detailed, or simply not matching their interests. With sto(ry)chastics we can aim at
building technology which does not get in people’s way, which does not oblige museum goers to
take a pre-arranged path, and which does not require visitors to select and push buttons to get
additional information from multimedia kiosks. With sto(ry)chastics a busy type is not delayed
by a lengthy explanation of the artwork, and a greedy type gets all the desired details. A scripted
approach would produce a system frozen in its final mapping between inputs and outputs, and
would not allow the curator to easily add new objects, new content, or even new visitor types, as
we can easily do with sto(ry)chastics as shown in Chapter 6. A behavior based modeling
approach, while preferable to the responsive and scripted approaches, would still not allow the
designer to easily derive and refine a model for the visitor type (and preferences) or tailor content
to the visitor’s needs. Additionally it would also not be easy to model a notion of “good story”
which can easily be changed and tested with different probability priors to satisfy the curator’s
requirements for content presentation. Another clear advantage of sto(ry)chastics is its robustness
with respect to wrong or inaccurate sensory information. Using any of the other authoring
approaches, in the absence of a user model, any noise in the sensor measurements would result in
a system error. If, for example, noise in the sensing system produced a short instead of a long
stop duration for a greedy type, a system with a direct input-output mapping architecture would
show a short introductory story according to the “misinterpreted” input signal. Sto(ry)chastics
lowers instead the probability for greedy, and is still consistent with what the visitor expects: a
lengthy and detailed story for the object they are looking at.  If the visitor were instead to change
his/her behavior at the museum, sto(ry)chastics would be able to adapt from greedy to selective
or busy in a few time slices, thereby emulating a human who does not instantaneously change
his/her mind about somebody’s behavior, but who would use more than one observation and
evidence to modify their original opinion.

By way of the posterior probabilities of the network nodes [figure 179] sto(ry)chastics gives a
great deal of information: it tells about the most likely visitor’s type, how interesting or boring an
object may be, and which is the best segment to play taking into account the curator’s criteria for
a good story. It also provides robustness in evaluating this information, as explained above. It
allows the curator to quickly add content, objects, and other visitor types, or even to quickly
change the definition of a good story in accordance to the simplified definition of story for a
computational storytelling machine given in Section 6.1. As shown in Chapter 6, the network can
be extended to edit various segments pertaining to the same object together, without having the
combinatorial complexity and non-flexibility of a scripted system. Sto(ry)chastics is therefore a
preferable authoring technique to the scripted, responsive, or behavior-based approaches, when
the content requires more depth that simple one to one mappings between inputs and outputs,
when the system output needs to be personalized for individual users, and when we wish or need
to model contextual or domain knowledge about the problem so as to influence the selection
criteria for the output.
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Figure 179. Richness of information provided by the sto(ry)chastics authoring.
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Chapter 8

The impact of the museum wearable on
exhibit design

The museum wearable has the potential to impact traditional exhibit design, by
guiding the visitor through the exhibit, and providing him/her with
information/entertainment via the wearable. The wearable could augment the visitor’s
experience and it expand it in ways complementary to the traditional means that the
exhibit designer relies on. Some of these traditional spatial narrative aids which are used
to guide and attract the visitors are space layout, text labeling, printed images, signage, or
handouts. I have carried out  a visualization exercise to help the reader imagine some of
the possible changes in space design determined by the availability of the museum
wearable to the public, specifically for the MIT Museum’s Robots and Beyond exhibit.
The changes that the visualization shows and  proposes will need to be validated by an
actual installation of the wearable at the museum, and by evaluating the implication of
such installation with the exhibit designer and the curator. This visualization exercise is
motivated by the fact that, because of our limited access to the exhibit’s site and our
limited ability to eliminate and/or move objects around, it seemed easier to imagine the
impact of the museum wearable in the exhibit design as a three dimensional animation.

The digital architect of the 20th century has a broad range of tools at their disposal
[Mitchell, 1993; Bendikt, 1991].  Realizing a three dimensional visualization, rather than
a traditional series of sketches and drawings, allowed me to think more comprehensively
about the potential impact of the museum wearable on exhibit design. I selected to use
Alias Wavefront’s Maya 3, for modeling and animation, so as to be able to easily move
objects around or create video sequences in which certain objects would appear or
disappear.

This visualization project started therefore with the production of an accurate three
dimensional model of the physical layout of the exhibit space [figure 180]. It then
proceeded with imaging a visitor in the space and by creating an animation of how
visitors currently cruise the exhibit. To create a realistic animation, the visitor tracking
data for all exhibit objects was averaged for all visitors, and proportional stop duration
times were used to create the animation. The animation helps illustrate that, with the
current space organization and layout, people spent most of their time at the exhibit
looking at the video played by button activated kiosks, rather than with the objects on
display. While the video is certainly useful and informative to explain the origin and
functioning of the robots, the resulting exhibit seems to be centered around the video
kiosks: the robots on display have more a decorative than a protagonist role.
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The first illustration also reveals that visitors spend much of their time reading text
labels related to adjacent robots. However from the tracking data and our observation of
museum visitors, we have remarked that people do not spend sufficient time to read all of
what is described in the posters to absorb the corresponding information. A great deal of
the space occupied by the posters and text labels is therefore wasted, as most people don’t
take advantage of information provided in a textual form.

The series of animations I realized for this project help illustrate the potential changes
and improvements that the wearable can produce for the space design of the MIT
Museum’s Robots and Beyond exhibit:

• 1. There would be no more need to have so many posters and text labels, as the
corresponding information could be provided in a more appealing audio visual
form, in a video documentary style by the museum wearable. The space now
made available by eliminating the large posters, can be used to display more
robots, which are the true protagonists of the exhibit. Typically most exhibit have
to discard many interesting objects as there not enough physical space available in
the museum galleries for all objects. Therefore making more space available is a
clear advantage provided to the exhibit designer and the curator. Figures 181-182
show how the posters at the entrance of the MIT Museum’s Robots and Beyond
exhibit can be replaced by more objects to be seen and appreciated by the public.

• 2. Visitors would be better informed, as the information currently provided by the
posters is mostly neglected by the public. The same information would instead
become part of the overall narration provided by the wearable, and it would be
better absorbed and appreciated by the public.

• 3. The video kiosks would no longer be necessary because the same material
would be presented by the museum wearable. Therefore the robots would be
again the center of attention for visitors, as the wearable’s display allows both the
real world and the augmented audiovisual information to be seen at the same time
as part of the wearer’s real surround view. This would again make more space
available for additional objects to be displayed.

The fact that the audio visual material is presented together with the corresponding object
by the museum wearable, rather than separately in space and time, in a museum catalogue
or in a printed poster, or in a video or multimedia kiosk, is also of great importance.
While no studies have been conducted yet on the quality and effectiveness of the learning
experience offered by the museum wearable, there is reasonable hope believing that
synchronous and local information provided while actually looking at the object
described by the wearable can make a longer and more effective impression on the
visitor.

One last series of animations shows a futuristic imaginary Empty Space [figure 183], with
no objects, which can be used by a museum to show any past exhibits, possibly with the
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aid of a three dimensional holographic head mounted display. In such a space, people
could select which past exhibit they wish to see, using a dial attached to the museum
wearable, and multiple people could be in the same space exploring different exhibits
which have been hosted in that space in the past.

Figures 180. 3D model: start frame of animation of a visitor at the exhibit.
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Figures 181. Before use of the museum wearable: posters in the Roots section are needed to explain the exhibit.

Figures 182. Potential impact of the museum wearable on the current exhibit layout: the posters in the Roots
section are replaced by new objects.
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Figure 183. Visualization of a futuristic Empty Space: no objects are physically present in the space.

An empty space, just with walls and the infrared location sensors, can be used by a museum to show any past
exhibits, possibly with the aid of a three dimensional holographic head mounted display. In such a space, people
could select which past exhibit they wish to see, using a dial attached to the museum wearable. Multiple people
could be in the same space exploring different exhibits which have been hosted in that space in the past. The

frames of the above animation show an overview of the Empty Space, a visitor approaching an area covered by
the location sensor, and then an object appearing to the visitor as he/she enters the area.
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Chapter 9

Summary of Accomplishments and
Future Directions

This research introduces Bayesian networks for real time sensor-driven storytelling,
and demonstrates that they are a useful tool to model the uncertainty in the sensor
measurements, make informed guesses about people’s intentions during interaction,
encapsulate the storyteller’s message, and orchestrate a complex audiovisual narration as
a function of these. I call such stochastic modeling of story and user-story interaction:
sto(ry)chastics. Sto(ry)chastics has implications both for the human author
(designer/curator) which is given a flexible modeling tool to organize, select, and deliver
the story material, as well as the audience, which receives personalized content only
when and where it is appropriate.

Sto(ry)chastics proposes an alternative to complex centralized interactive entertainment
programs which simply read sensor inputs and map them to actions on the screen.
Interactive storytelling with such one-to-one mappings leads to complicated control
programs which have to do an accounting of all the available content, where it is located
on the display, and what needs to happen when/if/unless. These systems rigidly define the
interaction modality with the public, as a consequence of their internal architecture.
Rather than directly mapping inputs to outputs, we need to endow digital content itself
with the ability to "understand the user" and to produce an output based on the
interpretation of the user’s intention in context.

Sto(ry)chastics uses dynamic Bayesian networks to model the sensors in the system and
allows the system to interpret the sensor data by taking into account the context and
domain of interaction, represented by other nodes of the network. The interpretation of
sensor data is robust in the sense that it is probabilistically weighted by the history of
interaction of the participant as well as the nodes which represent context. Therefore
noisy sensor data, triggered for example by external or unpredictable sources, is not
likely to cause the system to produce a response which does not “make sense” to the user.
For content selection and delivery, sto(ry)chastics allows the system to build a profile of
the participant through time, and therefore can tailor content according to the
participant’s estimated desires and interests. These features: robustness with respect to
“misunderstandings” because of knowledge of context, and the ability to learn more
about the user through time, produce a system which with further development can
potentially, in the future, simulate an elementary conversation with a human participant
and is able to gear the topic of discussion towards the interests of the latter.
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As an example of application of sto(ry)chastics, and to illustrate its features, I have
designed and developed a real time storytelling device: a museum guide which in real
time evaluates the visitor’s preferences by observing his/her path and length of stops
along the museum’s exhibit space, and selects content from a set of available movie clips,
audio, and animations. This device, which I call the Museum Wearable, illustrates the
advantages of sto(ry)chastics in designing and authoring real-time sensor-driven digital
media presentation systems.

With further testing on site, the museum wearable will possibly enrich and personalizes
the visit as a visual and auditory storyteller which can adapt its story to the audience’s
interests and guide the public through the path of the exhibit. With this device curators
may be able to present a larger variety and more connected material in an engaging
manner within the limited physical space available for the exhibit.

The museum wearable identifies three visitor types: busy, greedy, and selective, which
have been selected as the essential museum visitor types from the museum literature. It
uses a custom-made infrared location sensor to gather tracking information about the
visitor's path in the museum's gallery and uses this information to introduce evidence in
the dynamic Bayesian network which interprets the sensor information and delivers
content to the visitor. The network performs probabilistic reasoning under uncertainty in
real time to identify the visitor's type. It then delivers an audiovisual narration to the
visitor as a function of the estimated type, interactively in time and space. The model has
been tested and validated on observed visitor tracking data using the EM algorithm.
Estimation of visitor preferences using additional sensors is provided in a simulated
environment.

The main contribution of this research is to show that (dynamic) Bayesian networks are a
powerful modeling technique to couple inputs to outputs for real time sensor-driven
multimedia audiovisual stories, such those that are triggered by the body in motion in a
sensor-instrumented interactive narrative space. Other contributions are: the design of the
museum wearable application, the assembly and fashioning of a wearable computer,
specifically conceived for museum use; the design and realization of a new long range
infrared location identification sensor; the construction and test of a variety of Bayesian
networks for user type and profile estimation; the extension of the previous Bayesian
network for real time story segment selection and editing; model selection; model
validation and parameter learning via the EM algorithm; and simulation of processing
multiple sensor inputs with a Bayesian network for robust estimation and more accurate
user profiling.

More specifically, Chapter 4 and Sections 5.1. and 5.2. have illustrated a variety of
Bayesian networks for sensor-driven user modeling and user-driven content selection, in
the framework of the museum wearable application. I have called this type of modeling:
sto(ry)chastics. Through these examples the reader can observe several virtues and
advantages of sto(ry)chastics, which I list and summarize below. Sto(ry)chastics is:

• 1. Flexible: it is possible to easily test many different scenarios by changing the
parameters of the system, performing probability update, and reading the posterior
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probabilities of the parameters. These changes include adding and removing states for
a node, changing the prior probabilities for the rood nodes, or changing the
conditional probability tables for some nodes, if the posterior probabilities do not
model the problem in a satisfying way. The system is also flexible as it can adapt to
the visitor’s changing interests and curiosity.

• 2. Reconfigurable: it is also quite easy to add or remove nodes and/or edges from the
network without having to “start all over again” and specify again all the parameters
of the network from scratch. This is a considerable and important advantage with
respect to hard coded or heuristic approaches to user modeling and content selection.
Only the parameters of the new nodes and the nodes corresponding to the new links
need to be given. The system is extensible story-wise and sensor-wise. These two
properties: flexibility and ease of model reconfiguration allow the system modeller,
the content designer, and the exhibit curator to work together and easily and cheaply
try out various solutions and possibilities until they converge to a model which
satisfies all the requirements and constraints for their project. A network can also
rapidly be reconfigured for another exhibit.

• 3. Robust: Probabilistic modeling allows the system to achieve robustness, as the
system draws conclusions (posterior probabilities) by weighting all the network
parameters which in turn describe user, sensors, and story segments, probabilistically.
A good example is one which assigns a probability to the visitor being excited when
the GSR sensor measures various peaks at its output. This probability is set to 0.9, as
our assumption is that in 10% of cases, people may be excited for other reasons that
what there are seeing or listening to with the wearable. The effects of this conditional
probability not being 1 but a lesser value, cascade down to other dependent
parameters during the probability update operation, and therefore allow us to come up
with reasonable and robust guesses about the values of the nodes of interest.
Robustness also means that rather than having sensors being threshold activated,
which is a strategy prone to errors simply because the real world and real sensors are
noisy,  the information provided by the sensors produces an action only with the
given probability and if it contributes to the overall understanding of the user desires
or intentions. Also, as shown in section 5.3.3. with additional sensors, and using
redundant sensing modalities, sto(ry)chastics can potentially achieve robustness by
sensor fusion with the addition of a few nodes to the network.

• 4. Adaptive: sto(ry)chastics is adaptive in two ways: it adapts both to individual users
and to the ensemble of visitors of a particular exhibit. For individuals, even if the
visitor exhibits an initial “greedy” behavior, by consistently making long stop
durations at the exhibit objects, it can later adapt to the visitor’s change of behavior if
he/she starts making only short stops. It will initially guess that the visitor is possibly
selective, and if the busy stops continue, it will finally label the visitor as busy. It is
important to notice that, reasonably and appropriately, the system “changes its mind”
about the user type with some inertia: i.e. it will initially lower the probability for a
greedy type until other types gain probability. Sto(ry)chastics can also adapt to the
collective body of its users. If a count of busy/greedy/selective visitors is kept for the
exhibit, these numbers can become priors for subsequent visitors, thereby causing the
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entire exhibit to adapt to the collective body of its users through time. This feature
can be seen as “collective intelligence” for an exhibit which can adapt not just to the
individual visitors but also to the set of its visitors.

• 5. Context-sensitive: for any system to be robust and to provide relevant information
to its user, it is important to model the context of interaction together with the other
system parameters. For example, using any of the modeling techniques described in
the previous sections, sto(ry)chastics could provide an explanation of a visitor’s
change of behavior at the museum. If suddenly a greedy type starts making short
stops, the system, before concluding that they are actually a selective or busy type,
could test if the current time is near closing time for the museum galleries, or if, by
use of other room sensors, there is a great crowd in the new galleries where the visitor
is making short stops. Coming up with the right conclusions, given this type of
external information means that the system is context-sensitive. Specifically, with
respect to the networks previously described, context is modeled in the object nodes
that have a neutral/interesting/boring discrete state, and in the “good story” node
which models the curator’s preferences as context for content selection for the
targeted exhibit. Context is therefore also modeled by the priors of some root nodes.
Through these priors we incorporate domain knowledge and expectations of the
curators of the visitor types that a particular exhibit is likely to attract. ) Also in some
cases the network topology reflects domain knowledge about the problem/application.
Hence sto(ry)chastics  is not just data driven but data and expert driven. In this
respect it stands mid way between traditional Artificial Intelligence top down high
level reasoning approaches (expert systems) and pattern recognition based bottom up
low-level approaches (HMMs), and is able to include both within the same graphical
probabilistic framework.

• 6. Able to explain its choices: as opposed to neural networks, all the nodes of a
Bayesian networks have a meaning and a role, and therefore by reading the posterior
probabilities for the nodes of interest, including nodes that are not observable as
physical measurements, we can “understand” how the system comes up with its
conclusions and how it makes its choices. What we human call “conclusions” are the
result of a probability update in a Bayesian network, as explained by the examples is
Section 4.1. The diagrams shown in Chapters 4 and 5 can be seen as a brain probe
into the system during interaction.

• 7. Accessible: graphical models have a very intuitive meaning which facilitates
understanding and collaboration between the curator and the technologist (when these
are different people). They provide an easy-to-understand representation of
conditional independence relationships for the non-mathematician and are therefore
accessible to all people who wish to contribute to the design of the interactive
experience modeled by sto(ry)chastics.

Finally, the accomplished research described in this document is highly interdisciplinary.
Specifically, in completing my thesis I have used knowledge acquired in mathematical
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probabilistic modeling, machine learning, computer programming in C++, DirectX, 3D
modeling and animation, networking, electronics for the design and construction of the
IR location sensors, machining for the wearable computer and head mounted display
assembly, video and film editing, photography, and architecture.

An experimentation phase at the museum should follow the current research. A procedure
would have to be set to establish if and how the museum wearable does actually enhance
learning and entertainment at an exhibit, or how the content shown does actually match
the visitor’s preferences. A selected group of visitors could be instructed to “speak their
mind” onto a microphone attached to the wearable during the visit, to later compare how
the content shown actually corresponds to the visitor’s interests. A questionnaire should
also be handed to the visitor at the end of the experience. It should contain questions
asking how people think the wearable has been useful or entertaining for them, as well as
asking visitors specifically to give a subjective evaluation of their own interest profile,
after the visit.

The research here presented can be expanded in various ways. One direction of work is to
find ways to get to know the visitor better so as to target content presentation more
accurately towards his/her level of knowledge or competence. Asking to the visitor to fill
lengthy questionnaires upon entering the exhibit may not be practical. An interesting
venue for future work may come from extracting as much information as possible from
the visitor’s home page in the WWW, and derive from that a set of prior probabilities for
the visitor’s interest profile node. With this technique the only extra time required to the
visitor would be to give the system the URL address of their home page, if they wish. It is
of course desirable to experiment with additional sensors, such as the GSR and the
camera sensor, whose functioning and contribution to the museum wearable experience
are described in Chapter 5. More visitor tracking data would need to be gathered at the
museum site, to eventually infer more visitor types than the ones described in this
document, and compare them with the more sophisticated visitor typologies discussed in
the museum literature.

The museum wearable can also potentially be developed to become a useful tool for
visitor tracking data gathering in the museum. For example, rather than coming up with a
set of visitor types from the museum literature, one could use the opposite approach of
“inferring” the visitor types from a statistical analysis of the tracking data (path and stop
duration) gathered by visitors with the museum wearable. This information would help
the curator, exhibit designer, and the modeler of the interactive museum experience to
refine their knowledge about visitor types for a specific exhibit.

Similarly, by analyzing the posterior values of the object nodes, the curator and the
exhibit designer could see which objects are the most interesting or boring for the
visitors, and change the exhibit layout accordingly.

An important extension to the museum wearable would allow it to support visitors who
want to come to the museum as a group and have the freedom to comment and discuss
the artwork amongst themselves instead of being fully immersed in the experience
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offered by the wearable. A simple modification to the current prototype would be to add a
small microphone capable of detecting when the visitor is talking, which would
automatically pause the narration. If for example the group of visitors is composed by
high school students, it would be useful, for learning purposes, to make the visitor profile
available to the users at the end of the exhibit, and have the system regroup the visitors
according to matching profiles. This same capability could also be made available to
visitors at the end of their tour in the museum’s cafeteria, to play matchmaking among
those who wish to be involved. Alternatively the visitor’s profile, path, and length of stay
can be used to create a web based exhibit catalogue whose URL can be sent to the visitor
as a personalized  basis for further learning.

I would also like to consider an extension of the museum wearable to my previous work
on wearable city, and envision applications which involve the urban environment as a
narrative space, for art, tourism, and entertainment. Another possible development is to
model “media actors” [Sparacino, 1999b] to be modeled by sto(ry)chastics. Media Actors
are active content which interact with the user, as a theatrical or improvisational
performer would relate with its public. For example if the visitor skips an important
artwork which matches his/her profile, the media actor would call them back by playing
an audio clip saying “hey come back, come see me, I am really interesting, allow me to
tell you my story”. This venue is encouraged by personal discussions I’ve had with some
museum curators and theater director which welcome the opportunity to create
experimentation platforms to merge their fields.

In a more distant future it would also be desirable that museum exhibits using similar
Bayesian networks are able to exchange experience about their visitors so that they can
better adapt to their needs. They could then learn from each other to fine tune their
parameters for more effective content presentation. This is a quite substantial step ahead
which would require sequential learning (as opposed to the batch learning technique
illustrated in Section 7.1.) not from data, but from another network. In addition a metrics
to evaluate network similarity would have to be researched.
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Appendix

Sto(ry)chastics for other  applications

Sto(ry)chastics is suited for a variety of applications, typically those in which the
space or the user are instrumented with sensors, and a strategy is needed to couple
sensory media inputs with a coordinated presentation of story fragments, which together
form a story in the sense defined in Chapters 1 and 6. I illustrate in this section another
possible application of sto(ry)chastics, based on my previous work, and sketch out how I
would approach the real time input-outputs coupling problem with a Bayesian network
approach. The purpose of this section is to provide the reader with a developed example
of the sto(ry)chastics authoring approach, so as to show how the research presented in
this document can extend to other interactive art and entertainment applications.

For this purpose I selected to present the Tabletop circus, a sophisticated interactive
application for which interpreting the participant’s intentions to couple inputs to outputs
seems essential to achieve the artist’s goal. In Tabletop Circus I envision an entertaining
home-theater interactive show in which participants interact gesturally with projected
images of circus performers on a custom-made table-size stage [figures 184, 185].  The
work builds on principles incorporated into Unbuilt Ruins, an interactive museum design
installed in the Compton Gallery at MIT in February 1999. Inspired by Alexander
Calder's Circus (on permanent exhibit at the Whitney Museum in New York City)
Tabletop Circus will invite the participant to use their hand to spin acrobats, to push a
tightrope walker so that he falls from his rope, or to make performers juggle with
imaginary objects.  Music, public's reaction and comments, active tags which select the
performers on the arena, contribute to the playful experience. All the video clips of the
circus performers are organized in small loops, each serving the role of an elementary
story fragment. The system will feature three performers and the public’s reaction. The
user interacts with the performer’s video loops projected onto the table using hand
gestures. In one case the participant will push the tightrope walker and make him loose
balance. In another case he/she will spin the woman acrobat with a lateral gesture of the
hand. Finally, the participant can interact with a contortionist and drive her into a full
body knot. The demonstration currently uses infrared computer vision to track the user’s
hand and perform hand gesture recognition. What it is currently lacking is additional
sensors for robust sensing, and a more sophisticated strategy to map hand gestures with
the looped video segments. To provide an example of how sto(ry)chastics can help author
the tabletop circus, I will focus on one of its featured digital performers, the tightrope
walker, and will suggest a Bayesian network to handle sensor fusion and content
selection. The proposed framework is only valid as an example, and further investigation
will need to be carried out, as future work, to fully prove the expected results deriving
from applying sto(ry)chastics to the tabletop circus.
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Figures 184 and 185. Current prototype and setup for tabletop circus.

Here is a list of itemized video loops which are the elementary story fragments for the
tightrope walker [figures 186,187]:

1. walk 5. kick
2. dance 6. bend
3. walk backwards 7. knee down
4. stand on one leg 8. spin around

The sensor modalities that we would like to fuse for this demonstration are: 1.
Computer vision; 2. Capacitive sensing; 3. Doppler’s radar to measure hand’s velocity.
The hand gestures/poses that are inputs to the system are:

1. point up 4. hand on table horizontally
2. point down 5. hand on table vertically
3. move sideways 6. grab with index & thumb, and drag

The meaning of the above actions in the context of this interactive multimedia
experience are:

1. push sideways 7. poke
2. push down 8. pat/caresse
3. push up
4. halt

9. do nothing or keep doing
what you were doing before

5. help cross 10. move away
6. give kite

Some of the above actions are clearly hostile, others are friendly, and therefore the
user can be seen by the performer as friendly, or unfriendly, or neutral, which will
influence the performer’s response. The internal state of the tightrope walker which
determine which content segment (video loop) is selected are:
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1. happy 3. unstable (falling)
2. angry 4. neutral

From all the parameters listed above, it is obvious that authoring this interactive
multimedia art piece can be quite a complex task. First of all there is only a subtle
difference between some hand gestures which we need to distinguish from one another,
such as for “poke”, “pat”, and “push”. Therefore the need for adding more sensors. The
doppler radar can be added to make more accurate velocity measurements, which can be
a key factor in disambiguating similar hand gestures. A capacitive sensor can also
cooperate with vision in achieving a more robust position and hand shape information.
The system needs further specification on how hand gestures, once correctly interpreted,
affect the tightrope walker’s internal state, or how, in some cases, they directly determine
his behavior. The hand actions also need to be interpreted in the context of the actual
story being told. For example a “grab and drag” should not be confused with a “move
sideways” gesture. Having a model for a friendly/unfriendly visitor can help interpret the
user’s action without ambiguity or misinterpretation. A friendly visitor is more likely to
be handing the kite to the tightrope walker whereas an unfriendly visitor will instead try
to push the performer to make him fall.

Given the high number of parameters that the author of the interactive experience
need to take into account and control, using a traditional authoring system, such as any of
the ones described in Chapter 2, can be a very difficult task. Even if the human author
took care of choosing and encoding an appropriate heuristic for all possible cases, the
resulting system would be inflexible to allow more video loops or more user actions to be
added, because that would require specifying the input-output mapping from scratch. Nor
such a system would allow the designer to easily try out various options or scenarios, as it
is often needed when optimizing and fine tuning the application. The complicated web of
relations and dependencies amongst all the system parameters is shown by figure 188. In
addition to the interdependencies highlighted in the diagram, the author would have to
account for the higher or lower degree of dependency amongst some of them, thereby
multiplying the number of items to keep an accounting for, by the “resolution” of the
dependency.
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Dance

Stand on one leg

Knee down

Kick

Figure 186. Representative frames for the tightrope walker in the tabletop circus.
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Bend

Walk back

Walk

Turn

Figure 187. Representative frames for the tightrope walker in the tabletop circus.
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Figure 188. A scripted authoring for the tabletop circus would be very complicated
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Another possibility is to simplify the interactive experience to fewer inputs and
outputs to a one-to-one input-output responsive experience, which has been the approach
of the majority multimedia authors so far.

A Bayesian network would allow the designer to handle the required authoring
complexity and at the same time to ensure robustness in sensory data interpretation by
way of sensor fusion. The steps that need to be undertaken to apply sto(ry)chastics to this
problem are:

1. research a Bayesian network which correctly models the problem. Possibly try out
various alternative models, and compare them, as shown in Chapter 4.

2. gather data of users interacting with the system

3. validate the model with the previous data. This can imply learning the parameters
of the network proposed in step one, as shown in section 7.1., or going a step
further, and learning the topology of the network from the data, if necessary.

Just as an example, or startpoint, an example of a possible Bayesian network used to
model the tabletop circus as specified above is shown in figure 189. Figure 190 shows the
possible internal states for some of the nodes. The root nodes for the sensors are not
specified in the figure and are left blank. In some cases it may be best to have continuous
nodes for the sensory information, whereas in others it is possible to classify the sensory
information ahead into discrete categories, as for the museum wearable (see Section 7.1.).
When the problem or data allows it, having all discrete nodes make the probability update
and parameter/network learning easier and faster than having a hybrid network.
Sometimes however this is not possible, nor desirable, and care has to be taken in making
such modeling choices.

Figure 189. An example of a possible sto(ry)chastics authoring approach for the tabletop circus
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Figure 190. An example of states of the nodes of the network describing the tabletop circus


