AN Chdtre ECF }
MIT FILMVIDEO SECT,
!
20 AMES STREET ON

BLDG. E15-435
CAMBRIDGE, MA 02139

Picture and Sound Editing on Optical Media
with a Graphical User Interface:

Progress Report for MacEdit

Submitted in partial fulfillment of the requirements

for the S.B. degree in Computer Science

by
J. Michael Tindell

August 10, 1986

Signature of Author:

/9 7%/(&7/%/ 76_”/3,({,% on /4(,{/4 /é’/ 1986
Thesis Advisor: Richard Leacock

(2 c«ﬂv\«,L&NzwL {_ on Seﬁb ¥ 1986
Thesis Supervisor: Glorianna Davenport
A !
///)/aw_q ;j/lwmmq%n é&éﬂ/’ ¥ 1986
14 / /

Introduction

The optical disk medium has made random access to audio-visual
information a practical reality. There are no low-cost systems that allow
Jsers to impose an abstract structure upon the material stored on a disk
or disks. The organization might be a traditional edited program, a
hierarchical database, or something else. The advantage to a sof'tware
approach is the ability to impose an arbitrary number of structures upon

the same optically stored information.

Background

In the information tradition, user interfaces for the artist were a
natural outgrowth of the technical and physical characteristics of the
media. This is true for all media, the inks and paper, paint and canvas, and

the modern picture and sound media, film and videotape.

Film has always been a very physical medium and so have the
techniques for editing it. In a very real sense film editors "sculpt’ raw
footage into a finished product in an evolutionary, non-linear fashion. The
celuloid gives physical reality to the notions of space and time and the
editor has total control over the flow. The techniques of film editing are
much the same today as those used in the infancy of filmmaking. The

picture and sound tracks are generally edited on separate lengths of

celuloid. These tracks are played back in synchronization on some sort of
mechanical viewing system; two of the most widely used today are the
flatbed editor and the moviola. The editor watches and listens to the
sequence he is editing and periodically stops the viewer to make a change.
This is accomplished by physically cutting the celuloid and taping the cut
ends. In this manner a given shot may be lengthened, shortened, or
substituted. The process is often tedious and time-consuming; however,
editors become quite adroit at the mechanics of timing and splicing edit
points. Most important to the film editor is his confidence that, given

time, he can achieve a desired effect with his medium.

Magnetic videotape was first introduced into television
broadcasting as a means to record programs for later rebroadcast. These
programs were either live video or film that was scanned into video. Soon
engineers began to do some rudimentary editing by splicing the videotape.
At first this was accomplished by painting various ferromagnetic
solutions on the tape in order to make the scanning lines and control track
puises visible. Later they devised electronic means of locating these
splice points and eventually built circuitry that would identify the edit
point and insert a special pusle on the control track at that point (the
control track is a sequence of 60 hertz pulses recorded on part of the tape
that are used by feedback circuitry to maintain the correct tape speed).
Eventually editing began to be done by building a master tape by

succesively recording segments. This was done by rolling the machines in

sync and then turning on the record heads of the master deck at the desired
edit point. This was the genesis of electronic videotape editing.
Eventually computer control was integrated into the process (companies
and systems) and the process was made precise to the frame and

repeatable to allow rehearsals of edits.

Modern videotape editing is limited by the fact that a program or
sequence is built linearly by recording on to a master tape. Changing the
duration of one previously recorded shot requires altering the duration of
another, or may require the rerecording of every subsequent shot if the
change cannot be compensated for elsewhere without creative sacrifice.
This has shaped the way that people have used tape; it has also, to many

observers, limited the creative options in tape editorial.

The optical disk is a new animal: virtually instant random access
to audiovisual material. There is, as of yet, no system that takes full
advantage of the new medium in a way that is not a paradigm of a
traditional (ie. video or film) editing methodology. These editing
methodologies are not necessarily the "best” ways of organizing moving
pictures and sound. They were simply ¢ Aoc responses to the available

technology; perhaps we can do better with the optical disk.

Some novel editing systems

Until very recently there were not any concerted efforts toward
applying state-of-the-art computer technology to the editorial process.
Computerized videotape editing systems used (and still use, for the most
part) hardware and software that is antiquated by today's standards;
however, this situation is changing. In the last couple of years there have

been two interesting developments in this area.

About six years ago George Lucas got together with several other
filmmakers to discuss how computer technology could be used to enhance
and speed up the production and post-production processes. He came away
with a strong commitment to developing new editing systems utilizing the
latest hardware. The fruit of this commitment is the EditDroid
(manufactured by The Droid Works, San Rafael CA). The EditDroid is based
on a Sun Microsystems workstation, complete with an advanced
bit-mapped graphic display. The high-quality graphics allow for the
development of a highly visual and interactive user interface. The system,
as currently conceived, is essentially an electronic flatbed film editing
table. The EditDroid was designed with videodisk media in mind and works

best with them.

More recently, Montage Computer Corporation developed and
introduced the Montage Picture Processor. This system attémpts to make
video editing more of a visual than numeric process. The in and out points
of various shots are identified not by timecode numbers but by digitized
video frames. These head and tail frames are displayed together for an
effect somewhat akin to looking at a collection of film clips. This system
is unique in its approach to random access media. Rather than use
videodisks, which were viewed as impractical for the near term, the
system uses a stack of fourteen Beta Hi-Fi VCRs to record source material
and then is able to assemble areal-time preview of a finished program by

sequencing the playback of the Beta decks.

Both of these systems were widely acclaimed as "breakthroughs”,
yet neither has truly radicalized the editorial process. They are important
in the sense that they have broken the ice and left open the way for further

development.

Desi s for thi

The scope of design will be limited here to discussion of a system
that will be an alternative to current editorial processes in the realm of
post-production. The ideas here might easily be expanded to the emergent
technologies of CD-ROM and CD-Interactive. The design will emerge as an
authoring system that could be generalized for any information stored in

optical form.

The best designs are ones that follow the flow of the particular
task at hand. The mission f~r 31 videodisk editing system is to provide an
easily referenced organizativhal framework that can incorporate the
material on to be edited. Once this is accompllished the editing process
may begin. In this stage the editor will want to be able to arrange shots
into sequences, play them back, and make changes rapidly. This will
~ require the abilty to shuttle the videodisk players so that frames may be

identified and easily referenced.

One of the simplest database organizations is one that has a
hierarchical structure. In this system the organizational unit is called a
segment. A segment contains either additional segments or a
representation of an interval on the disk. Since the system has no
restrictions on the physical content of the disk, it is up to the user to
define these segments by playing the disk and identifying beginning and
-end points for each of his segments. The system needs controls on the
screen for shuttling the disk and marking the beginning and ending points
of a segment. There should also bg controls for playing back a segment or

segments and adjusting the in and out points of each.

Once the user has defined a segment he needs some identifier for
it. He may identify each segment with a textual or visual mnemonic so
that he can reference them without having to play a segment from the disk.
These mnemonics would be displayed as icons on the Macintosh screen. In

this way the user can build up a database of the information on the disk.

After the user has organized some material he will want to do something
with it. This will be accomplished by icon-dragging and the other natural
Macintosh screen functions. For the purposes of discussion let us assume
that he wants to edit the material into a program. The material may be
organized in the desired order and played back from beginning to end. The
windows that contain segments will all have the some characteristics. In
this application, the user may chose to organize his segments according to
location, scene, shot, etc. Then he would open an empty segment window
and copy the desired segments for a particular sequence into it and edit

there, leaving the original organization intact for future reference.

Soft imol tat

The system software is written in the C 1anguage, using the Mac-C
development environment (copyright Consulair Corporation, 1983, 1984) .
The system itself is broken down into modules that correspond to a
particular functional area: for example, all of the procedures that draw,
move, and do i/0 with the Macintoéh windows are contained in the window

module.

The main control loop for the system is in the macedit module. It
initializes the system data areas and dispatches events. The basic system
data types are segment s and macedit_window s. The former is the

basic unit of the hierarchical database while the latter is used to keep

track of information about windows that the Macintosh window data type
does not encompass. The segment objects are stored in doubly-linked
lists. The links in the list are full longword pointers; this is not the most
efficent use of available memory resources and would have to be changed

to a scheme using array indicies for a finished implementation.

* Videodisk control

. The control of videodisk players is relatively straightforward.
The individual frames of information may be treated as addresses on the
disk and a player may be instructed to search for a frame, play for a given
number of frames, then stop or repeat as desired. The control information

is exchanged over an RS232 serial communication line to a Macintosh.

The mechanics of videodisk player control are well defined. The
more difficult problem is the design of a generalized user interface to
pictures and sound that happen to be on videodisk, one that is amiable to

disparate user groups.

Results

~ The progress so far has been limited by a thorough understanding
of Macintosh graph primitives. | have written a skeleton program that

does basic interfacing to the Macintosh operating system (ie. windows and

menus), as well as the basic data types and their operators to be used in
the application (ie. segments). The problem has been in implementing the
jcon notion with respect to segments: saving them, drawing them, and
dragging them around the screen. This is a problem that will hopefully be
solved soon; | have writted code to do this that sAow/d work, but still
must be debugged. Once this is resolved | should be able to get a simple
system up fairly soon. With this accomplished, | will add more features

and sophistication.

conclusi L

The future of picture and sound editorial clearly lies in the
direction of random and, as nearly as possible, instantaneous access to the
material at hand. | have attempted to exp;lore new possiblities for the
human interface to these media, using contemporary, widely-available,
low-cost computer technology. While my success was limited by a
combination of technical and time limitations, it is my conviction that the
next generation of media editors will be working in an environment

similar to the one | have described.

The problems of accessing large databases of picture and sound
information will be compounded with the advent of muitimedia storage
systems such as Interactive Compact Disk. With this vartiety of elements

at his disposal, the editor (or, perhaps as appropriately, the author) will

10

require an interface that transcends the traditional film and videotape
paradigms. The challenge will be to allow access to and organization of
these elements in spatial and temporal dimensions. These are the tasks at

hand for media system designers.

uo11eINBLIUOD suempley Wa}sAS Jo wedbelp | sanbiLd

ISIPOApPIA

(o)

¢ mocumnj
/c lul Z\

J51p0ap1A

XNW [E1Jas

Joliuow

J8UITIMS

AydJedsiy syjy Jo |aas| ybiy e 1e Aejdsip usaJos ajduwegs g aJnbl

g 1oy vi 110d
7 110y
Ol l1oyd ¢ 110y

- OO

1N0AR| U33JIS |B31YdJeda1y Jo aiduwex] ¢ aunbid

S9U0D
/| 8u3as

mﬁmg:xu_a.:occmz Hv

<D0>

/'b
*/
Sinclude <Mike.H>»

Cwsor‘hmdiing

F
* Cursor Tables

*/

static Cursor vs_curs =
{0x0000, O0x0000, 0x0100,
0x0380, 0x0380, OxOFEO,

0x0000, 0x0000, 0x0100,
0x0380, 0x0380, OxOFEQ,

8, 7);

static Cursor hs.curs =
{Ox0000, 0x0000, 0x0000,
OxIFF8, Ox0C30, 0»0420,

0x1FF8, OxOC30, 0x0420,

?, 8};

static Cursor grow_curs =
{0x0000, 0x0000, Ox3F00,
Ox03E4, Ox01FC, OxOOFC,

0x0000, 0x0000, Ox3F00,
0x03E4, Ox01FC, OxOOFC,

8, 8};

static Cursor scrawl_curs =
{0x000C, 0x0012, Ox0021,
0x0920, Ox1240, 0x2480,

0x000C, OxO01E, OxOO3F,
OxOFEQ, Ox1FCO, Ox3FS0,

14, 0};

0x3E00,
0x007C,

Ox3E00,
0x007C,

00059,
0x%C900,

O0x007F,
OxFFOO,

static CursHandie edit_crs_hand;
static CursHandie wait_crs_hand;

f*
* INIT_CURS() - Initialize
e

Cursors

// Vertical scroller cursor
0x07C0, OxOFEQ, 0x0380,
0x0380, 0Ox0100, 0x0000,

0x07C0, OXOFEQ, 0x0380,
0x0380, 0x0100, 0x0000,

0x0380,
0x0000,

0x0380,
0x0000,

// Horiz. scroller cursor

0x0420,
0x0000,

0x0420,

0x0000,

O0x3E00,

0x3E00,

0x007C,

OxO0O0BR,

0xO0OFE,
OxFEDO,

Ox3F00,
0x00FC,

0x3F00,
Ox00FC,

Ox0114,
0x8400,

0x01FC,
0xFCOO,

Ox IFF8,
00000,

Ox IFF8,

0x0248,

0x03F8,
OxF800,

Ox3FFC,
0x0000,

Ox3FFC,
0x0000,

0x27C0,

0x27C0,
0x0000,

0x0490,
0xF800,

0x07F0,
0xF800,

* Sets the cursor initially to the arrow, and loads the |-beam
* and watch cursors from the system resource.

*/
initcurs()
{

short w_part, c_part;
ControiHandie ch;

*GetMouse(&cpt);
8 ocalToGlobal (&cpt);

®initCursor(); /7 Start off with the arrow
edit_crs_hand = {CursHondle Y*GetCursor(1); // Load |-beam
*HNoPurga(&adi t_crs_hand); // Make not purgable
wai t_crs_hand = (CursHand!e >*GetCursor(4),; // Load watch
;l-l*longe(&mit_crsJuxd); // Maoke not purgable
Fed
* UPD_LURS(> — Change cursor shape depending on where it is
*
* This routine changas tha cursor as it is moved around the
* screen. Changes occur only if the cursor in in the frontmost
* {active) window. If it's @ scrawl window, the do_scrawl routine
* is also called.
*/
upd_curs()
{
Point cpt;
HindowPtr cwp;

/{ Mouse loc. (local coord's?
// Convert to global coord's;

w_part = (short)Findiindow(&cpt, &cwp); // Where in what window?

ifCcop == NULL || cwp != dwp—>wp)
{

#|nitCursor();
return;

}

’

/f Cursor in live front window.
ry

sui:d'l(u_pwt)

case inDesk:
case inMenuBar:
case inSyslindou:
cose inGoflway:
case inDrag:
#ini tCursor();
break;

case inGrow:
*SetCursor(&grow.curs);
break ;

case inContent:
#Global Tolocal (&cpt);

i f(dwp—>te_handlie == NULL)
{
*SetCursor(&scrawl_curs);

do_scrawl();
break;

/¢ 1f not in live front window

// Cursor is the arrow

f// Dispateh on what part of desk

/¢ Out on the Desktop
// Menu Bar

/} Desk Accessory

// Go gway box

// Drag region

l¢ ... all use the fArrow

/7 Grow region
// Use grow cursor

// Content region ...

// Conveart back to local coord's
/7 1 f scrawl window

// Show scrawl pencil

// DO SCRAULING HERE!!
{7 and that's it.

}

if(SPtinRect(&ept, &((*(dwp—>te_handie))->viewRect)))
sSetCursor(*edit_crs_hand); // |-Beom if in editable text

else{ // Must be in a scroller
*FindControl(&cpt, cep, &ch); // Which control?
if(ch == dwp—>vs_handla) // If vertical scroller
8SetCursor(8vs_curs); // Use vertical arrows
else if{ch == dwp->hs_handle) // If horiz scroller
#GatCursor(&hs_curs); // Use horiz arrows
else ‘ // Noman's land ...
#initCursor(); // Use the arrow
breqk;
defaul t:

#ni tCursor();

m
Herwa functions
*/

%include <Mike.H>

/*
* SETUP_MENUC) - Initialize menu system for this progrom
.
¥ Fills in an array of menu handies. Not used in this version
* of the program, but may be useful for controlliing the appearance
* of menus at run—time.
*/
sett;p..nenu()
#|ni thenus();
#insertMenu(menus [APPLE] = (MenuHand|e)#*GetMenu(APPLE_ID), 0);
#AddRestenu(menus [APPLE], 'DRUR’);
SinsertMenu(menus[FILE] = (MeruHandla)*GetManu(FILE_ID), 0);
#|nsertMenuimenus [EDIT] = (MenuHandie >*GetHenu(EDIT-ID>, 0J;
#|nsertMenu(menus[MISC] = (MenuHandie)#GetMenu(MISC_ID), 0);
*DrawMenuBar();
}

DO_MENUC) - Handle menu selection

input:
Result longword from MenuSelect or MenuKey

****}

*/
do_menu(resul t)
unsigned result;

{

unsigned short memu_id; // Resource |D of selected menu

unsigned short item_no; // |tem number selected

char item_nomel64]; // |tem nome (for desk acc.)

Ptr dp; // Dialog pointer for “"about ..."

unsigned short item hit; // Dialog item that was hit

if(result == 0 /f Just for safety with MerwKey
return; // lgnore zero results

meru_id = (short)®Hilord(resul t); // Use toolbox for example

item_no = (short)*_ clord(resul t);

swi tchimenu_id>
{
case APPLE_[D: 7 "Ppple” menu
ifCitemno > 12 // |f desk accessory
{
$Gat| tan(menus [APPLE], item_no, item_name);
$0penDeskAcc(i tem_name);
}
else // Our Rbout ... dialog
{
dp = %GetNewDialog(RBOUT_ID, @, -15; // Bring in dialog to front
#SetPort(dp; // Hook QuickDraw up to dialog

®ModalDialog{0, &item_hit); // Do the dialog return item ® hit
#DisposeDialog(dp); // Close & free heap space
}

break;

case FILE_.ID: /f File menu
suit{.ch Citem_no)
case FM_NEN:
curr.edit = macedit_window C);
break;
case FM_OPEN:
break;
case FM_CLOSE:
printf ("%s", "Now in CLOSE section\rin");
make_picture (J;
break ;
case FM_EXIT:
$Exi tToShel 1(); // Ugly exit
break;

break ;

case EDIT_ID:

i
// First wa must hand off any daesk-accessory edit coamands.

// Note the comments in Demo.H regarding implicit assumptions

/7 in numbering items in the Edit menu (boo).

2

if(sSystemEdit(item_no ~ 132 // Relies on itea numbering!!
break;

/7
// Do the raquested edit function only if this is an editing

// window and there is a window open.

4
// NOTE: In reality, the edit options should be dimmed until

// a live editing window is in front and active.

I

if(dwp == NMULL || (dwp—>te_handle) == NULL) // Ignore if not editing window
break;

#SatPort{(dup—>up’; /7 Arm QuickDraw for this window

switch{item.no>
{
case EM_LUT:
STECut(dwp—>te_handie);
break;

case EM_COPY:
STECopy(dwp—>te_hondle);
break;

case EM_PASTE:
*TEPaste(dwp->te_handie);

break;

case EM_CLEAR:
#TEDelete(dwp—>te_handle);
break;

t}iefaul t:
break;

case MISC_ID:
switch(item.no)

case MM_PLAY:
break;

case MM_PICTURE:
scrawl _window ();
break ;

case MM_TEXT:
editwindow ();
break ;

default:
}
break;
?efaul t:

*Hi | i teMenu(0);
}

/7 Turn off highlighted title

Common definitions
*f

/{ Turn off implicit toolbox trap nome recognition

* gptions -N

% include <MacDefs. H>
% include <QuickDraw. H>
include <Control.H>
® include <Events.H»

% include <Menu.H>

% include <TextEdit.H>»
® include <MacCDefs.H>

define MAX_WINDOWS 8
% define MAX_MENUS 8

#® dafine TRUE 1
® define FALSE 0
% define NULL g

// segments - basic units of hiémrcry

typedef struct seg
{

struct seg *sons, *previous, *next; // pointers to other Segments

short type;

int frame;

int duration;
PicHandle picture;
RgnHandle region;
} Segaent;

/7 wch - WHindow Control Block

struct wcb
{
HindowPtr wp;
Rect drag-rect;
Rect grow_rect,;
TEHand e te.handle;
Point te_origin;

ControlHandle wvs_handie;
ControlHandle hs_handle;
short type;

?egment *segments;

¥

!*

Data allocation definitions
*/

% define MAX_SEGHENTS 1000

/{ Segment type

/¢ beginning frame

/¢ tength of segament

/7 identifying picture

/{/ region associated with the segment

// Pointer to window record in heap
// Dragging limits

/f Window size limits

// Handle to textEdit record in heap
/! Text origin

/{ Vertical scroller’s handie

/{ Horizontal scroller's handle

// Hindow type

/{ Pointer to list of segments

// global data
i fndef GLOB_DATA

extern struct wch dwiMAX_NINDOWS]; // Our window contexts

extern struct wcb *dwp;
extern unsigned n_windows;
extern struct wch *curr.edit;

extern EventRecord Event;
extern short EvType;
extern WHindowPtr Evllindow;

/7 ——> Current doc-window
// Number of open windows
// pointer to the current edit window

/7 Our event record (duh?
// Event resuit type
// Event window

extern Segment segments[MAX_SEGMENTS]; // segment allocation

extern Segment *free_segments;
extern Segment *temp_segment;
aextern Segment *curr_segment;
extern Handle curr_picture;

extern WHindowPtr tty window;

axtern MenuHondle menusli];
® define APPLE 1
® define FILE 2
% define EDIT 3
® define MISC 4

% else

struct wcb dw(MAX_WINDOWS];
struct wcb *dep = NULL;
unsigned n_windows = 0;
struct web *curr_edit = NULL;

EventRecord Event;

short EvType;

WindowPtr Evlindow;
MenuHandle menus [IMAX_MENUS];
Segment segments[MAX_SEGMENTSI;
Segment *free_segments;
Segment *temp_segment;
Segment *curr_segment;
Handle curr_picture;
HindowPtr tty window;

* endif

r*

/7 list of free segments

// temporary segment pointer
// current segment

/7 current picture to saue

/¢ Our manu contaexts

/f Our window contexts

// —> Current doc-window

// Number of open windows

// pointer to the current edit window

// Our event record (duh)
/7 Event result type
/{ Event window

/7 Our menu contexts

// segment allocation
// list of free segments

// temporary segment pointer

Resource |D's of menus in resource file.

*/
define RPPLE_ID 1

® define FILE_ID 256
define EDIT_ID 257
% define MISC_ID 238

/*
File menu item numbers

*/

define FM_NEW

define FM_OPEN
#® define FM_CLOSE
#® define FM_EXIT

‘.-‘*
Window type definitions
*/

& define EDIT_HINDOW 0
define SCRAWL_IINDOW 1
® define TEXT.HINDOW 2

'J‘*
Edit menu item numbers

*/

define EM_UNDO
define EM_CUT

define EM_COPY
define EM_PASTE
define EM_CLERR

1
Misc menu assignments
*/

* define MM_PLAY 1
® define MM_PICTURE 2
® define MMTEXT 3

& W -

LR N IR]
U bW -

f*
Other resource ID's

*7

& define ABOUT_ID 256
® define WINDOW.ID 236
® define EDIT_HINDOW._ID 257

r*

External function declorations
*7

extern Segment *alloc_segment (O;
extern struct wcbh *macedit window ();

*
Basic data types and their operators

*/

"\ % include <mike.h?

Segment *cut_segaent (sagment)
register Segment *segment;

{

if ({'segent)

if (segment->previous)
t-rprevious—->next
if (segment->next)
segeent->next->previous
r}‘etwn (segment);
else
} return (-1);

segment->next;
segaent->previous;

cut_segments (start, end>?
register Segment *stort, *end;
{
if (start & end)

{
if (start->previous)
start->previous->next = end->next;
if (end—>next)
end->next->previous = start->previous;
return (start);

}
else

return (-1);
}

Segment *paste_segment (segment, where)
register Segment *segment, *where;
{
if ({segent &% *where)
segment->previous = (kwhere)-’previous;
segment->next = *where;
(*where)->previous = segment;
}

else if (segment)
*where = segment;

else
return (-1);

return (0);

-
Segment *poste_segments (start, end, wvhere)
reg}ster Segment *start, *end, *where;
if (start && end %& where)
{

start->previous = where—>previous;
end-*next = where;
where->previous = end;

return (start);

}
else
return (-1);
}
init_segments ()
{

register int index;
fill (0, segments, sizeof (Segment) * MAX_SEGMENTS);

for (index = MAX_SEGMENTS; index > 0; index—-)>
segments|index] previous = &segmentsilindex - 1];

) free_segments = &segments [MAX_SEGMENTSI];
}

Segment *al loc_segment ()
iegister Segment *free;
if (free_segments)

§ree = free_segments;

#® jfdef NEED_ERROR_HANDLER
if (!free->picture)

{
free = 0;
break;
}
® endif
free_segments = free—>previous;

}

else
free = 0;

return (free);

}

) free_segment (segment)
r‘egi{sta Segment *segment;

if ({segpent)
#DisposeRgn (segment->region);
*illPicture (segment->picture);
fill (0, segment, sizeof (Segment));
segment->previous = free_segments;
;‘ree_segnents = segment;

fill {value, addraess, bytes)

chor value, *address;
int bytes;
{
ohile (bytes— *> 0)
*qddress++ = value;
}

_/‘

*
*

HikeRsrc
RSRCXXXX

TYPE WIND
,256

50 50 300 450
Visible GoRway
o
0

,257

100 20 250 470
UVisiblie GoRway
0
(1]

TYPE MENU
,1
\i4
About Mike ...
(_

,296
Segment
New
Open

Close

Quit

L 297
Edit
(Undo /Z
(_

Cut/X
Copy/C
Paste/V
Clear /0

,258
Options
Play
Picture
Text

TYPE DLOG
,256

54 145 203 376

Visible NoGoRway

1
o
256

TYPE DITL
» 290
2

. button
) 116 58 142 174
RESUME MIKE

staticTaxt Disabled
g9 9 105 228
MacEdit \OD ++
Mike Tindeli

™
*/
%incliude <Mike.H>»

Hundow functions

., static int pen_down = FALSE;
) static Point pold = {0,0};

Fad
* EDIT_HINDONC) ~ Create an "edit window™ with all of the usual junk
*
* Al locates a UCB, creates the window from a resource template,
* complete with scrollers, grow box, go-away box, etc. Sets
* the window as the current one and activates it.
*/
edit_window(>
{
Rect view_rect; : /7 TextEdit view r
Rect bounds_rect; // Bounds
Rect dest_rect
Rect *pr; £

dest_rect.top = 4; /¢ temp
dest_rect. left = 4;

dest_rect.bottom = 1000;

dest_rect.right = 300;

-

if((dwp = (struct wcb *)get_wcb()) == NULL)>
return; £

H
// The following sets up the window's basic dimensions and
/? rect's. The rest of the code drives off of the basic

) /7 window dimensions.
tf
dwp—->type = TEXT_WINDOW;
dwp—>wp = (HindowPtr)*GetNewlindow(HINDON_ID, 0, -1); // Get a copy of the window

SetlTitlel(dop—up, “\013Text\0"); // Hack the title
#SatRect(&dwp->drag-rect, 4, 24, 308, 338); /7 Fixed values in example
#SetRect(&dwp->grow_rect, 100, 60, 512, 302);

#SetPort(dup->uwp); 7
'

1/ Set up TextEdit in the window

I

// For this program, the destRect is an arbitrary size

// large enocugh to demonstrate horizontal and vertical

// scrolling. The viewBect is set to the window's portRect

{7 less 4 pixels "bleed” on the left side and 15 pixels on the
/# right and bottom for the scroll bars (thanks to cale_wvrect()).

/7
pr = &((dwp—>wp)->portRect);
calc_vrect(pr, &view.rect); /# Calculate viewRect

dup—>te_handle = (TEHandle)*TENew(&dest rect, &view_rect),
dup—->te_origin.v = dwp->te_origin.h = 4;

t '
/7 Add the scroll bars. Dynomically calculated from window
/7 dimensions. Nota that tha controls must overlap the

/7 window boundaries. Start controls out hidden, activate will

// drow thea.
/H
bounds_rect.top = pr—>top ~ 1;
) bounds_rect. left = pr—>right - 15;

bounds_rect . bottom = pr—*bottom - 14;

bounds_rect.right = pr->right + {;

dwp->vs_handla = (ControlHandla)¥NaewControl(dwp->wp, &bounds_raect,
=", TRUE,
dest_rect.top, dest_rect.top, dest
scrol IBarProc, 13;

Syal idRect(&bounds_rect);

bounds_rect. top = pr->bottom - i5;

bounds_rect.left = pr-rleft - {;

bounds_rect.bottom = pr—>bottom + 1{;

bounds_rect.right = pr—>right - 14;

dwp—>hs_handle = (ControlHand!e)®NewControl (dep—>wp, &bounds_rect,
", TRUE,
dest_rect. left, dest_rect.left, de
scrol IBarProc, 1);

gl idRect(&bounds_rect);

/
// Finally, draw in the "grow icon”
/¢
*0rawGrow | con{dwp—>wp);
n_windows++;
}
7
) * SCRAL_WINDOW - Create a "scrawl” window
I 71
scraul_ni{ndou()
if((dwp = (struct wcb *)get_wcb()) == NULL>
return; /i
/
// See comments above ...
/7

dwp—> type = SCRAWL_WINDOW;

dup—>wp = (HindowPtr YGetNewldindow(WINDOW.ID, O, -13; // Get a copy of the window
*SetlTitlie(dep—>wp, "\01SPicture\0”); 7/ Hack the titile
#SetRect(&dwp—>drag.rect, 4, 24, 508, 338), /{ Fixed values in example
#SetRect(&dwp—>grom_rect, 100, 60, 512, 302);

#SetPort(dwp—>wp?; /7 hook back up tc
#BackPat(&(Q0->white)); // Background is black
SPanPat(&(0D->black 33; /7 Pan is white (redundant
*PenSize(2,2; /f 2x2 pix
SEraseRec t(&(dwp—>wp—>portRect)’,; // Establish new background

n_windows++;

temp_segment = al loc_segment ();
temp_segment->picture =

(PicHandie Y*0penP icture (&((H{indowPeek){(dwp—>wp)i->contRgn);

#ShowPen (); /7 OP call hides ¢
curr_picture = dep->wp—>picSave;
dwp—>wp—>picSave = 0, // stop saving calls as picture
return(0);
}

r*
Make an edit window

*/

struct wehb *macedit_window)
{
i f((dwp = (struct wcb *)get_wcb()> == NULL)

return; /¢
dwp—> type = EDIT_HINDOU;
dup—>wp = (WindowPtr ¥GetNewlindow(EDIT_HINDOW_ID, O, -1); // Get a copy of the windc
#SetlTitlel(dep—ep, “\O1SEdit"); /7 Hack the title

#SetRect(&dwp—>drag.rect, 4, 24, 308, 338); // Fixed values in example
#8SetRect(&dwp~>grow_rect, 100, 60, 512, 302);

*SetPort(dwp~>wp); /7 hook back up tc
#BackPat (&(0D->white)); /7 Background is white
PenPat(&(OQD->black)); // Pen is black (redundant
*PenSize(2,2); {7 2x2 pix
#EraseRec t(&(dwp—-rwp->portRect’); // Establish new background

n_windows++;

return (dep);
}

DELETE_WINDOWC) - Remove window from screen & dispose of all structures

inputs:
dp ——» HCB of the window to delete

Outputs:
none

i*ﬂ'*‘;

* Calls the ®Disposelindow service to remove the window from the screen
* and release all associated data structures, inciuding tha window

* record. NOTE - assumes window was created with record on heap.

* Then frees up the HCB associated with the window.

*/

delete_window(dp>

struct wc{b *do;

i f(dp->te_handle != NULL) i 1f edit window
{

}

OQutputs:

*********‘;

*f
content_c{l ick(>

®TEDisposeldp—>te.handle),;
?p-)te_hmdle = NULL;

#0isposellindow(dp->uep);
dp—>wp = NULL;

n_m i ndows——;

CONTENT_LLICK()> - Handla mousa down in window content region

Inputs (global variables onlg)‘

-3 HCB of window in which mouse was clicked

dwp
Event.where Mouse-down location (global coordinates?

No explicit outputs

unsigned short ext;
ControlHandla ch;

unsigned short port;
long foo;
Rect *_wr;

int scroll_up();

int scroll_down();

i

// Mouse—down in scrowl window changes the “old™ position
// to the current position before allowing drawing. Then
// it turns on the pen—down flag.

i

i f(dwp—>type == SCRANL_WINDOW) 74 1f this is a "scrawl”
{

else if

fGetMouse(&poid);
pen_down = TRUE;
return(0j;

}
(dwp->type == TEXT_HINDOW)
{

i

2/ We have a mouse-down in content of an edit window.

¢

/1 it’s in the viewRect, do the TEClick. Othersise, handle
// the click in a control.

!

#G|obalToLocal (&Event where);

foo = ®PtinRect(&Event. where, &((*(dwp—:te_handle))->viewRect));

if(foo)

elsae

// Return TE recor
£ Mark TE inactiv

// Dispose of the
/:

/¢

(verified)

window

/7 Convert coordinates to

STEC| ick(&Event .where, 0, dwp—>te_handle); // 0 should be “"ext”

{
part = (short)*FindControl (&Event . where, Evllindow, &ch);

switch(part)
{

case inUpButton:
sTrackControl (ch, &Event where, scroll_up);
break;

case inDownButton:
$TrackControl (ch, &Event. where, scroli_down);

break;
case inPagelp:
page_scrol i{part, ch, -1);
break;
case inP :
page_scrol I (part, ch, 1);
break;
case inThumb:
#TrackControl(ch, &Event.where, 0);
edit.scroll();
}
}
}
else if (dwp—>type == EDIT_HINDOW)
{
Segment *szegments;
unsigned long location;
segments = dwp->segments;

location = O;

while (segments>
{

printf ("\r\nSegments region %x", sagments->region, "\r\n");
if ('Ptlr{lﬂgn (&Event where, segments—->region’)
focation = (unsigned long)*DragGrayfgn
(segments->region, &Event.where,
& (¢ ((UindowPeek Y(dep—>uwp))->contRc
&(*((HindowPeek Y(dwp—~>wp))>->contRc
0, 0);
l;rmk;

segments = segments-’previous;
printf ("\r\nSegments previous %x", segments->previous, "\r\n");
}

else

printf ("\r\n8s", “Out of first while\r\n");

if (llocation)

{
segments = dwp->segments-’next;

printf ("\rinSegments 8x", segments, "‘gr\n:‘);
whila (segments)
{

printt (yriynoegmentis region ax , segeents—/region, \ryn ;;
if (*PtlrERm (&Event where, segments->region))

location = (unsigned |ong)*DragGrayRgn
: (segments-’region, &Event.
&(*((HindowPeek Y{dwp—>wp):
&(*((UindowPeek)(dwp->wp:
0, M;
break;
}
elsa
segments = segments-rnext;
;;rintf ("\rinSegments next 8x", segments->next, "\r\n");

;})rintf ¢*\r\nfs~, “Out of second while\r\n");

if (location)

/f reposition region
}
printf ("Done with content click in edit window\r\n Location &i", location);

}
alse;
lil"lWG; // hook back up to dwp
F o
* CONTENT_RELERSE() - Release of mouse in content region
*
* Only if scrawl window, toggle the draw/move flag
*/
content_releagse(>
{
i f(dwp=>type == SCRANL_HINDOW)
pen_down = FALSE;
return(0);
*
* DO_SCRAML(> - Handle scramling
*

* This is actually called fro the cursor handling

* routine, since it is needed whether or not the mouse
* js down.

*f

do_scrawi ()

{
Point p;

sGatMousal(p);
if{{pold.vhi0] ==
return;
poid.vhi0]
pold.vhi1]

i f{pen_down?}

.vhi01)> & (pold.vhit]l == p.vhi1]1)

.vhiO);
.vhi1l;

p
p
p

1

dep-rwp—>picSave = curr_picture;
$LineTo(p.vhi1],p.vhiOl);
?up—>op—>pic8we =0,

else
{
dwp—>wp-rpicSave = curr_picture;
#oveTolp.vhiil,p.vhiOl);
gup->-p->pic3we = 0;

/%

* ACT_HINDC) - Do activate stuff for window

*/

act_wind(wp?>

NindouPtrE wp; // Hindow

struct wcb *find_mcb();
struct wcb *dp;

ifC(dp = find_wcb(wp)l) == NULL) // Nake this the current
return0); Y
$SetPort(wp); /7 This is
i f{dp—>type == SCRAWL_WINDOW) Jf/ 1If it's a scrawl window
{ -
/¢ Nothing for now
H
else if (dp—>type == TEXT_HINDON) /7 Do textedit window
{
*0rawGrowi con(wp); // Drow activated
#TEActivate(dp->te_handle); /7 Turn on text editing
#ShowControl (dp->us_handlie), // Draw in scrollers
;ShouControl(dp-ms_hmdle);
else if (dp->type == EDIT_WINDOW? // Do edit window
{

printf ("8s", "Now in actwind EDIT section\r\n™);
if (dp->segments)
{

Segment *segments;
segments = dp—>segments;
while (segments->previous?
iDrmPictwe (segments->picture, segments->region);
&}'»egnents = segments—>previous;
segments = dp->segments;

while (segments->next)
{

Tt AW L WA e Aegiielibe TP eV =,

segaents = segments->next;

Tomd 71 SgiWwiils,

}
}
else;
}
else;
dwp = dp; /t
}
ft
* DEACT_HIND()> - Do deactivation stuff for window
*/
deact_wind(wp)
UindowPtr wp;
{

struct wch *dp;
struct web *find_wcb();

if((dp = find_wcb(uwp)> == NULL)>
return{0);

#SatPort(wp);

/{ Find our WCB for this window
/¢

l/ This is
/7 If it's a scrawl window

if(dp->tl?pe == SCRAUL.INDOW)

return(0’;
}

else if (dp—>type == TEXT_WINDON> /7 Do textedit window
{
#DrawGrow i conup);
#TEDeactivate(dp->te_handle);
#HideControl (dp—->vs_handle);
#HideControl (dp—>hs_handle);
}

else if ({dp—>tupe == EDIT_WINDOW)

}

/7 Draw deactivate
/7 Turn off text editing
/{ Hide scrallers

// Do edit window

else;

?‘FD="M-L; it

!*

* UPD_WIND()> - Update window

*

* Note that this may be called whether or not the window
* is the front window and/or active. This must not change
* our assumptions about the front window.

%

* More interesting is the fact that this routine gets called

* continuously for each window. |[f BeginUpdate sets the visRgn to
* anything but the empty region, something gets drown.

*/

upd_wind{wp)

HindowPtr wp;

1
struct wchb *findwcb();
struct wcb *dp;

if((dp = findwcb(wp)) == NULL) /7 Get the WCB for this window
return(0); {1
#Begintpdate(wp); /¢ Fudge «
$SatPort(wp); // Hook up
i f(dp—>type == SCRAWL_WINDOW)> /I it's a scrawl window
SEraseRect(&(wp—>portRect); /¢ Just wipe it clean
else if ({dp—H.gpe == TEXT_NINDOW)> // Do edit window
*Drawbrowlcon(wp); // Draw the grow i
#DrasControlis(wp); /7 Oraw all contrc
/7

// Note the syntax for addressing the rgnBbox of the window's
// grafPort’'s visRgn. This is the recommended Rect to use
// when calling TEUpdate. Hho says C is easy to read?

/7
STEUpdate(&((*(wp—>visRgn))»>rgnBBox), dp->te_handle);
}

else if ({dp->t',pe == EDIT_UINDON)

}

else;

;Enclupdate(wp); /{ Restore visRgn
/*
* DO_GROW() - Hondla grow/resizae operations on window
E
* Inputs:
% (G dwp —> WCB of current window .
* (G Event Event record for click in grow box
« .
* Dutputs:
* none
%)

* Much of this code is skipped for a scrawl window. The operations
* done here generate an update event for the window. Keep this in mind

¥ gand try to avoid redundant drawing. Above all — avoid redrawing the
* entire window ... it's just too crude for the Mac.
*/
do_grow(>
{
Rect *pr;

Rect temp_rect;

unsigned long grow_result;
unsigned short height, width;

H
// Do the grow operation while mouse is held down. UWhen it is

df TRIGUHQREU, MK KW IIKIgIIL WKW WiIUdWUE U Uie WU W E TSlwwieu
/7 packed in a longword. Note that a zero result indicates no
// changa, and we caon skip this whola thing.
f
grow_result = %Growdindow(dwp->wp, &Event .where, Sdwp—>grow_rect);
if(grow.result == 0)

return;
height = (unsigned short)*Hilord(grow_result);
width = (unsigned short) _ollord(grow_resul t);

#SetPort(dep->wp); o /¢ Hook up

pr = &((dwp—>wp)->*portRect); // pr —> new portRect of

if(dup—>§e_hmdle 1= 0) // TextEdit window
7

// The scroll bars must ba manual ly accumulated into the update

// region. See the window manager manual for a fairly lucid

/! explanation of this. HWe also have to invalidate the size box.
// Note we are making assumptions here obout tha size and location
/! of the scrollers. This stuff handles the case where the window
// enlarges. The calis to DrawControls and DrowGrowicon in the
// update event handler take care of the shrink case.

/7

tamp_rect. top = pr—>top;

temp_rect.bottom = pr—>bottom;

temp_rect.right = pr->right;

temprect.left = temp_rect.right - 16; // Right hand 16 pixels

#|nvalRect(&temp_rect); f/ Rdd it to the o
temp_rect.top = temp_rect.bottom - 16; // Size box

#EraseRect(&temp_rect); // Erase size box
temp_rect. left = pr->left; // Bottom 16 pixel
#|nvalRect(&temp_rect); // Rdd it to the v
}

i
// Now we re-size ond set update on the winbdow. Then move and

// resize the controls. Finally, update the text-edit “viewRect”.

'
#Sizelindow(dwp—>wp, width, height, TRUE); // Resize & start update rgn

i f(dwp->te_handle i= 0> /7 Only for TextEdit windc
{

#oveControl (dep->vs_handle, pr—>right - 13, pr—3>top - 1);
#SizeControl (dwp->vs_handle, 16,(pr—>bottom - pr—>top - 13));

StoveControl (dep->hs_handle, pr->ieft - 1, pr—>bottom - 15);
#5izeControl (dwp—>hs_handle, (pr->right - pr—>left - 13>, 16);

/f
Z¢ Note the direct access to TE's view rect via the handle

// wa stored in our WCB.

i
calc_vrect(pr, &((*(dwp~>te_handie))->viewRect));
}

B et PR AR MW it et s T ilwWittTaimh PR W Wt Wi

*
* Inputs:
* pr - Hindow's portRect
* vr s where to fill in viewRect
*
* Qutputs:
* ur—>toplaft and vr—>botRight are filled in
*
* The TextEdit viewRect is set up to provide 15-pixel strips along
* the right hond and bottom edges of the dditing window (for scrollers
* and the size box. It also provides a 4-pixel "bleed” at the left edge.
* and at the top.
*/
cale_vrect(pr, vr)
Rect *pr;
Rect *ur;
{
vr—>top = pr->top + 4;
vr—2>left = pr->left + 4;
vr—>bottom = pr—>bottom - 13;
vwr->right = pr-»right - 15;
}
J
* PAGE_SCROLL()> - Scroll a page per indicator
* .
* Inputs: '
* part Part code where first clicked down
* ch control handle
* dir direction (-1 = up, +1 = down?
*
* Qutputs
* none
*/ :
, page_scrol I{part, ch, dir)
" short part;
ControlHandle ch;
short di?;
Point cur_pt;
short amount;
Rect *ur;
i

/7 First, calculate the "page size® in pixels. For VU scroll, it is
// the viewRect height less the line height. For H scroll, it is
/7 half the width of tha viewRect.

174

vr = &((*(dwp->te_handie))->viewRect); // wr -> current ViewRect

if(ch == dep—>us_handle) /7 1f this is the
amount = yr—>bottos - wr—>top - (shortiget_Ih();

else

amount = (vr—>right - vr->left) / 2;
amount *= dir; // Change

/7

f¢ ITFW Wa HHlalds W@l "TTVETET= W= PN FIF el ® 387 ot

1/ Guidelines. Look closely at this code and note what it really

// doas .
t
® {
#GetMouse(&cur_pt); // Get current mou
i f({short)sTestControl(ch, &cur_pt) != part) /7 | f out of original part
continue; /e
sSetCtIValue(ch, #GetCtiUalue(ch) + amount); // Page control value
adit_seroli(); // Page tt
} while(®StiliDown());
}
*
* SCROLL_UP() - Scroll up a text edit window
*

* This routine is called back from the toolbox with (naturaliy>
* Pascal-flavored arguments on the stack. |'ve taken this

* opportunity to demonstrate inline assembly language and how
* to act like @ Pascal procedure.

*

* Note that the scrolled amount is equal to tha lina height as
* stored in the TextEdit record for both vertical and horizontal

* serolling.
*/
scrol | _up()
{
Sasm
Inputs
4(sp) Part code (int>
6{sp> Control handle {(address)

NOTE: | have done the unforgivable & extracted the trap values
from the trap definitions rether than include the D file.

LI S S Y L O R Y

1'm impatient ...
Link ab,*0
Move W 8(ab),d0 ; DO = part code (W)
Beq e ; (0 means out of part rec
Move.l. 10¢{ab>,-(sp?) ; Push control handle (for later)
Cir. H -(sp) ; Gets control value
Move.L 10¢(ab?>,-(sp> ; Push control handle
DC.H $A060 ; GetCtiValue (value on stack)
Jsr get_ih ; DO = text line height, pixeis (easier ir
Sub.U{ do, (sp) ; (SP) = new control value
Bge €0 ; Cok, its positive)
Cir.W (sp) ; Stop control at O value
€0: OC.H $R063 ; SetCtiValue
Jsr edit_scroll ; call C text scroller
et
Unlk ab ; "standard” Pascal routir
Move.l (spX,al
fAddq *6,sp

Jup <a0)

* SCROLL_DOWNC)> - Scroll doen a text edit window

*

* This routine is called back from the toolbox with (naturaliy)
* Pascal-flavored argusents on the stack. See comments above.

4(sp) Part code Cint)
6(sp?> Control handle (address)
Link ab, *0 ; no local automatics
Move.H 8(ab>,d0 : ; U0 = part code (W)
Beq 21 ; €0 means out of part rec
Move.L 10¢ab>,—(sp) ; Push control handle (for later)
Cir.H -(=p) , ; Gets control value
Move.L 10Cab),-(sp> ; Push control handle
DC.W $A960 ; DBetCtlUalue (value on stack)
Jsr get_Ih ; D0 = text line height, pixels (easier ir
Add.W do, (sp> ; (SP) = new contro! value
DC.U $R063 ; -SetCtiUgiue
Jsr edit_scrol | ; call C text scroller
Unlk ab ; “standard™ Pascal routir
Move.l (sp¥,ad
fAddq *6,sp
Jmp Cal>

* EDIT_SCROLL() - Scroll edit window per control values

*/

scrol | _down()>
{

Sasm

* Inputs

e1:

fendasa
H

7

*

* |Inputs:

*

*

*

* Qutputs:

*

*

*/

edit_scroll() _

{

Current value of te_origin in the UCB
Current values of the scrollers

Origin points in the WCB are updated
Enforces a low limit of 0 on the controls

short int dh, dv;

dh =

dwp—>te_origin.h — (short int)*GetCtiValue(dup->hs_handle);

i f(dh <= dwp—>te_origin.h)

else

dwp->te_origin.h —= dh;

dwp—>te origin.h = 4;

e whys o whemems T et e s e amn = e e e s m s n T T s Ty TeresE hamm el e s
if(dv <= dep—>te_origin.v) i
dep—->taorigin.v -= dv;

else
dwp—>teorigin.v = 4;
STEScrol i (dh, dv, dwp->te_handie’;
}
*
* GET_LH() ~ Raturn text lina haight per TextEdit record
*
* {nputs:
* dep —> current HCB
*
* Outputs:
* returns text line height for scrolling
*/
get_th()
{
;etwn((*(dw—&e.hmdle))—ﬂind-leight); /* Easy in CHil %/
*
* GET.HCB(> - Al locate a HCB for a new window
*
* Inputs:
* none
*
* Qutputs:
* Returns ——> allocated HCB or NULL if none left
*/
get_wcb()
{
int i;
for(i=0; i<MAX_MWINDONS,; i++d
if¢dwlil.wp == NULL)>
{
delil. te_handle = NULL; ' /7 tark editing not ready this wir
return{(&dwlil);
}
return(0);
}
=
* FINDCB(> - Find window control block for given window
*

* Returns WCB pointer or 0 if given window pointer does not
* belong to one of our HCB's.
*/
find_wch(wp)
WindowPtr wp;
{

int i;

for(i=0; i<MAX_MINDOUS; i++>

return(&delil);

raturn0);
}
"#
\, Complete g picture
*/

nd(e_pic:we 1@

if (curr_edit && temp_segment)

{
dwp—>wp-rpicSave = curr—picture;

#ClosePicture ();
delete_window (dwp);
act_wind (curr_edit->wp);
OrowPicture (temp_segment-’picture,
({HindowPeek Y{curr_adi t->wp>)->contRgn);
SOrawP icture (temp_segment->picture,

((lindowPeek Ytty_mindow)->contRgn); // dit
temp_segment-*region = (RgnHondle)®NewRgn ();
#SatRectRgn (temp_segment->region, 125, 200, 225, 300);
#DrawPicture (temp_segment—’picture, temp_segment->region};// for real
paste_segment (temp_segment, &curr_edit->segments);
temp_segment = NULL;
}
elise; /! error

return (0);

) }

