B

MIT IN MOTION:
AN INTERACTIVE MULTIMEDIA
INFORMATION RETRIEVAL SYSTEM

by
Corinne Wayshak

Submitted to the Department of
Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements
for the Degree of ;

Bachelor of Science in Electrical Engineering
at the Massachusetts Institute of Technology

May 1989

Copyright (c¢) Corinne Wayshak 1989

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis in whole or in part.

/ /
Author - 7—; Z o3t AD e 2T '_
Department of Electrical Engineering and Computer Science

May 22, 1989

/
Certiﬁedby///ﬁ/ Zaa@ bﬂuﬁ”f}/ﬂ/?% 6//(/ /89

Glorianna Davenport
Thesis Supervisor

Accepted by

Leonard A. Gould
Chairman, Department Committee on Undergraduate Thesis

MIT IN MOTION:
AN INTERACTIVE MULTIMEDIA
INFORMATION RETRIEVAL SYSTEM

by
Corinne Wayshak

Submitted to the
_ Department of Electrical Engineering and Computer Science

May 22, 1989

in Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Electrical Engineering. '

ABSTRACT

Multimedia environments offer the ability to incorporate visual, textual and
aural material in a coherent and contiguous manner. While most systems
achieve a true multimedia presentation, many fail to utilize any media other
than text for active retrieval methods.

The system designed and implemented is an interactive cinematic guide to life
at M.LT. that incorporates visual and textual information for both program
material and active information retrieval. The interface design, developed for
an audience with limited computer background, eliminates the keyboard, and
navigation throughout the system is entirely mouse driven. The program
material consists of full-motion video segments of student life as well as stills
of buildings on campus, in Boston, and in Cambridge; the programmed
material utilizes HyperTalk and a Pascal-routine library for specialized
features. The non-linearity of the system will allow for user-specific voyage
through its contents, both visual and textual.

Thesis Supervisor: Glorianna Davenport
Title; Assistant Professor in Media Arts and Sciences

-3-
Acknowledgments

I would like to thank my thesis supervisor, Glorianna Davenport, foremost for
providing me the inspiration for my own project with her interactive
environment of New Orleans in Transition, 1983-1986. Her advice and
support have given me valuable insight.

I would also like to thank Hans Peter Brondmo for allowing me to use his
developmental version of the VISUAL Tools and for quickly ironing out bugs
and my complaints. His enthusiasm and support in answering my many
questions during the implementation of the system helped me enormously.

Many thanks go to Robert Kaynor and the MIT Planning Office for prbviding
me with the hardware and financial support without which this project could
not have been realized.

I would also like to thank Erik Schwartz for being my crew, subject, and
assistant during the filming of the videodisc material, and John Wang for
starting me on the right foot in HyperCard.

—

4.

Table of Contents

ABSTRACT
Acknowledgments
Table of Contents
List of Figures
Introduction

1. Background

1.1 Film as Art and Science

1.1.1 Historical Perspective

1.1.2 Hypermedia and the Multimedia Environment
1.1.3 Associative and Structural Linking -
1.1.4 Program Material Versus Programmed Material
1.1.5 Random-Access Image Storage
1.2 The Display Environment

2.2 Software
1.2.3 System Overview

2. Approach

2.1 Overview and Goals
2.2 The Preparation of the Videodise
2.2.1 NFovie as Story and Data
2.2.1.1 Linear Narrative Film as Data
2.2.1.2 Observational Moviemaking
2.2.1.3 Movie Chunks for Non-linear Viewing
2.2.2 Maps and Stills as Visual Tools for Surrogate Travel
2.3 Program Design for Intuitive Information Retrieval
2.3.1 Outlining Data
2.3.2 Spatial Relationships
2.4 Central Data Structure

3. Functional Description

3.1 Overview of Scope of Implementation

3.1.1 The Overall Scheme of Categorization
3.2 Means of Navigation

3.2.1 Categorical Travel

3.2.2 Related Information Retrieval

3.2.3 Navigation by Maps

3.2.3.1 Video Information Retrieval

3.3 Interface Design

3.3.1 Categorical Card Layers

3.3.2 The Information Card

3.3.3 Navigational Icons

3.3.4 The Movie Strip

3.4 The Centralized Database
3.4.1 Field Information
3.4.2 Data Handling Routines

4. Design Description
4.1 The Overall Organizational Structure
4.2 The Interactive Qutline
4.3 Means of Navigation
4.3.1 Related Information
4.3.2 Street Map Travel
4.3.3 Travel by T
4.4 Stack Scripts
4.4.1 Academic, Campus, and Entertainment
4.4.2 Maps
4.5 VISUAL Tools Incorporation
4.5.1 Initializing
4.5.2 Micon Painting
4.5.3 Micon Buttons
4.6 Central Data Base
4.6.1 General Data Handling Functions
4.6.2 Prototype Lookup Function
4.6.3 The Sorting Routines
4.6.4 The Automated Fill Routines

5. Future Modifications

5.1 Iconified Building Fronts
5.2 Video Linking

Conclusion

Appendix A. "Related Information" Programs

A.1 Academic Stack
A.2 Campus Stack
'A.3 Entertainment Stack

Appendix B. Academic Stack Script
Appendix C. Campus Stack Script
Appendix D. Entertainment Stack Script
Appendix E. Map Stack Script

Appendix F. VISUAL Tools: Play Segment Buttons

Appendix G. Central Data Base Stack Script

Appendix H. Boolean Operation Routines

H.1 Frame Add
H.2 Size of Table
H.3 Fixit

Appendix I. Rectangular Lookup Routine

39
39
41

43
44
45
46
46
47
48
48
48
49
49
50
50
51
51
52
53
53

55

55
56

58

60
62
64

70
72
77
79

85
85

88
89

Appendix J. Sorting Programs
dJ.1 Card Sort
J.2 ar Coordinate Sort
J.3 Name
J4T Rectangular Sort

Appendix K. Automated Fill Programs

K.1 Still Frame Fill
K.2 Map Frame Fill
K3 Mgg Card Fill
K.4 T Frame Fill

92
94
97
99

102

102
104
106
108

7.

List of Figures

Figure 1-1: Interactive Workstation Display Environment
Figure 2-1: An example of a general, top, and sublevel, bottom,
street map.
Fig'ur; 3-11: The Macintosh, top, and NTSC, bottom, monitor
splays.
Figure 8-2: Screen shot of the Central Database

17
28

40

-8-

Introduction

As early as 1945 the idea of using source material from varied media for
information retrieval and analysis was born.! Interactive multimedia
environments have the potential to simulate real-life learning experience, for
we assimilate data from a multi-faceted world around us. The potential
effectiveness of a multi-media, computer controlled environment lies in the
richness of presentational and navigational forms. The computer’s function
articulates the ways in which we make associations between different media

types allowing the user to intuitively explore related material.

The advent of the optical videodisc made the prospect of rapid access to
multimedia information storage a feasible reality. A CAV (Constant Angular
Velocity) videodisc can store up to 54,000 uniquely addressable video frames
(or thirty minutes of full-motion video.) In addition, there are two audio
tracks. The visual material can be in the form of stills, full-motion video,
computer generated graphics, or text, while the sound can range from music to

speech.

This thesis explores concepts and issues related to interactive
multimedia through the "design example"? of an information Kkiosk
implemented by the author. Visual Material functions as story, data type and
structural link to allow users to explore aspects of life at MIT as well as points

of interest in Cambridge and Boston. Documentary footage of students as well

1Janet Fiderio, A Grand Vision

2The Multimedia Lab, Apple Computer, Inc., Multimedia Production: A Set of Three Reports

-9-
as computer generated maps and 35mm stills of building fronts in Cambridge
and Boston and on the MIT campus were shot, edited, and mastered onto
videodisc, Entitled MIT: In Motion, an interactive system was designed and
implemented using HyperCard and a supplemental library of Pascal based
commands that allow use of miniature digital icons and movies., These visual
representations act as associative links which, through programming, become
active areas for information retrieval. The author uses documentary movies to
give an impression of life at MIT and incorporates maps and stills into a

surrogate travel type of interaction.

-10-

Chapter 1

Background

1.1 Film as Art and Science

1.1.1 Historical Perspective

The word "film", within the context of today’s culture, conjures up that
artistic medium by which Bogart and Bacall have been immortalized. In
recent years, the moving image has played a powerful role in shaping aspects
of our lives ranging from morality to politics. Despite film’s prominence as an
artistic form today, its origins are in scientific experimentation and
documentation. Eadweard Muybridge, the photographer who recorded live
action continuously for the first time, spent five years designing his
contraption that would document a race-horse’s gallop to determine if at some
point the race-horse lifts all four hooves off the ground. Muybridge’s technical
breakthroughs coupled with the discovery of the use of celluloid roll film as a
base for light-sensitive emulsions enabled the Edison Laboratories to invent
the Kinetograph, the first true motion picture camera.3 Other immediate
efforts to document real life included the Lumiere "films" of a sneeze and a

baby being fed.

Film is inherently a technological art and as such is constantly evolving
as new developments occur. "Every new development added to the cinema

must, paradoxically, take it nearer and nearer to its origin...the recreation of

3David Cook, A History of Narrative Film

11
the world in its own image, an image unburdened by...the irreversibility of
time."* Until recently, film has been only a linearly accessible media, that is a
filmmaker would create a work with a definitive beginning, middle, and end.
The structured ordered succession of frames once established could not be

varied.

The advent of the optical videodisc and CD ROM removes most of the
linear constraints film has. "With the introduction of optical videodiscs to the
market in 1979, the idea of an augmented information environment for
observational movies became feasible".5 One side of a constant angular
velocity (CAV) optical videodisc can store 54,000 still frames. This is the

equivalent of one half hour of movie information.

Most videodisc players have an RS232 port, a standard input/output port
used in computer communication. By connecting the player to a computer
workstation with RS232 communication capabilities, any frame on the disc can
be accessed. Today, access time between any two frames on a disc is less than
three seconds. "The viewer becomes an active agent and computer programs
serve as the intermediaries between that viewer and the film, as described in a
database . . . Filmic material can be seen as a vast archipelago of episodes
around which one can voyage in a more or less random fashion. Directed
passage comes from particular needs, at particular time, in accordance with

the idiosyncrasies of a particular viewer."6

4Andre Basin, The Myth of Total Cinema

5Glorianna Davenport, New Orleans in Transition, 1983-1986: The Interactive Delivery of a
Cinematic Case Study

6Nicholas Negroponte, The Impact Of Optical Videodiscs on Filmaking

-12-

Unlike other information media, such as many of the informational video
tapes that are on the market, interactive videodiscs can have the ability to
personalize a presentation and to direct a viewer’s attention to possible areas
of interest. Videodisc technology, then, has the potential to provide an
enhanced learning experience through sight and sound.

1.1.2 Hypermedia and the Multimedia Environment

The philosophy rooted in any hypermedia system can be traced back to
the concept of hypertext. In its most basic form, hypertext is an interactive
database management system that maintains associative links between
textual information. Words become the branching nodes for the hierarchical
structure. For example, if this paragraph were in a hypertext system, and a
user was intrigued or confused by the term "hypermedia” in the first sentence,
he would be able to retrieve information related to "hypermedia" by an
activation mechanism achieved in many mouse driven systems by simply
clicking on the word. He would then be presented with new textual
information, which in turn would contain words that would lead to further
informational branching.

Hypermedia integrates time dependent media and graphics with the
concept of “hypertext. The idea of combining several media types for
interactive knowledge acquisition has historical roots dating back to 1945,
when Vannevar Bush, President Roosevelt’s science advisor, envisioned an on-
line text retrieval system that contained not only post-war scientific literature
but also sketches, photographs, and personal notes. The machine, called a
MEMEX, would let you browse and make associative links between any two
points in the library. You would then be able to traverse them at will.

-18-

7 Although the machine Bush dreamed up was primitive, his schemes of
information organization and retrieval through associative links and browsing

lie at the heart of current interactive multimedia design.

1.1.3 Associative and Structural Linking

Means of information storage have significantly changed since 1945.
Photocells and microfilm have given way to magnetic and optical storage
media such as magnetic tape, videodisc, and CD-ROM. The capability of
storing a multitude of information generates the problem of orgam'zation for
retrieval. In a multimedia environment, ideas are represented by textual,
aural, and visual information which must be parsed into small discrete units;
each unit would then ideally represent a single concept. Attributes can then
be given to the discrete units of information, and relationships between ideas

can be extrapolated.

A far reaching goal of interactive systems is to mimic the brain’s ability
to store and retrieve information by referential links and intuitive access.
Hypermedia systems, however, have no artificial intelligence, so there exists
the inherent problem of the designer’s value judgments being imposed on the
system. To avoid a morass of meaningless and obscure connections and
references, the designer must create sound underlying data models. By
sensibly associating textual and visual information, the designer creates the

network of links that become the mode of transportation.

Links are classified by two distinctions: associative links and structural

"Janet Fiderio, A Grand Vision

-14-
links. Associative links allow the user to intuitively explore associative
material. For example, a user of a multimedia system may inquire about
director Billy Wilder and discover that Wilder, who grew up in Germany and
fled from Hitler, was influenced by another German born director Ernst
Lubitsch. An associative link that may exist is a text excerpt about the many
German artists that fled to Hollywood after the collapse of the Weimar
Republic. Alternatively, a user might choose to view scenes from Wilder’s and
Lubitsch’s work to compare visual directorial technique. The structural links
are what make such retrieval of information possible. They enforce mapping

between the interface and computer through use of software and hardware.

1.14 Prog‘ram Material Versus Programmed Material

Although less clear cut, a distinction can also be made in interactive
multimedia systems is between the program material and the programmed
material. The former consists of the mulitmedia information itself,
represented in the form of full-motion video, stills, music, textual articles, or
graphics. The latter or programmed material consists of the structural links,
software applications, and routines that make the system dynamic.
Programming can activate discrete portions of the program material by
interpreting“and acting on user actions. When this occurs, the program
material itself seems to be used as a browsing tool and the distinction between
program and programmed material becomes cloudy. It is through creatively
and coherently unifying artistic goals with scientific means that a designer

builds an interactive multimedia system.

-18-
1.1.5 Random-Access Image Storage

For program material containing full motion video, the CAV (Constant
Angular Velocity) optical videodisc format offers an alternative to the
material linearity of videotape. Because the video signal (and accompanying
audio signals) for each frame has its own addressable location on the videodisc,
any frame on a disc can be located and retrieved in any order with the use of a
computer controlled videodisc player. of full motion video.) Sections of these
frames may be played back linearly at varied speeds or held, frame by frame.

1.2 The Display Environment

1.2.1 Hardware

A MacintoshIl with the ColorSpace II Videographics Board
manufactured by Mass Micro Systems supports a variety of video input and
output devices. The board is designed around an Intel 82786 chip which
contains a memory controller, a programmable display processor, and a
graphics coprocessor. The board accepts any standard NTSC (National
Television System Committee) signal as an input signal .8

1.2.2 Software

The following software accompanies the ColorSpacell Board:?

e The Desktop Video Desk Accessory is used to control video
mixing features, and to select a key color that will be transparent
to video.

8Mass Micro Systems, Inc., ColorSpacell -- Pre-Production

9ColorSpacell: Programmer’s Reference

-16-

* The Digitizer Desk Accessory digitizes incoming video signals
in a variety of formats and speeds. It also performs image
processing tasks including color compression, filtering, HSV color
manipulation, and saving images to files or the Clipboard.

When the ColorSpacell board is provided with an NTSC video source signal,
desk accessories, can be used to digitize, store and manipulate video frames.
In addition, the Digitizer Desk Accessory can be customized by adding special

resources to the desk accessory file.

HyperCard is a data-oriented system, developed by Apple Computer,
Inc. and distributed with all Macintosh computers, in which a developer is able
to create environmental objects among which are cards, fields, and buttons. A
user can also extract chunk expressions and perform keyword searches and
Boolean functions. The programming language for HyperCard is HyperTalk.
Routines which are written in other languages, such as C or Pascal, can be
compiled and incorporated into HyperTalk. These specialized programs are
referred to as XCMDS (eXternal CoMmanDS).

1.2.3 System Overview

The system described in this thesis is shown in Figure 1-1 and uses the

following hardware and software components:
* a MaeintoshII with a 40 meg hard drive and 5 meg RAM working
under the Macintosh operating system, running
e HyperCard (version 1.2.2), and with

* a ColorSpacell Board, manufactured by Mass Micro Systems,
and software installed with

* a customized real-time video special effects library for the NTSC
digitizer!9, and

9peveloped by Alex Benenson

-17-

Speakers / ;

Multisy

Macll Computer 5. ¥ LD-¥4200 Yideodisc Player

Figure 1-1: Interactive Workstation Display Environment

* a specialized set of Pascal based routines, the VISUAL Tools1l,
that provide both computer control of the videodisc player and the
ability to "paint"” 80 x 60 color icons and digitized movies over the
HyperCard screen,

* a Apple 640 x 480 RGB color monitor,

*a Pioneer 4200 laser disc player with computer control
capabilities,

¢ a (13") NEC Multisync II monitor, and
* a pair of Aiwa active speakers.

11Written by Hans Peter Brondmo

-18-
An IBM AT with AT&T’s TrueVision Board with NTSC output and
Island Graphics TIPS software was used to generate titles and graphics that

were transfered to videotape and mastered onto videodisc.

Chapter 2

Approach

2.1 Overview and Goals

The overall goal of this project is to create an interactive cinematic guide
that would serve as an introduction to M.L.T. and its environs by incorporating
visual and textual data for both entertainment purposes and active
information retrieval in a kiosk environment. Because the system is developed
for an audience with limited computer background, the keyboard is eliminated
in the display coﬁﬁguration, and navigation throughout the system is entirely
mouse driven. The material is organized into four main categories:

Academics, Campus Life, Entertainment, and Map Information.

The implementation of this interactive project encompasses two
interdependent phases: firstly, the filming, editing, and computer generation
of the material to be mastered onto videodisc; and secondly, the computer
programming which integrates the material into an interactive environment.
From the outset, the data storage limit affected the way in which the author
thought about the program material. Namely, the creation of material for the
videodisc must reflect the design constraints and goal of the interactive
system. Analogously design of the system is dependent on the scope and depth
of the program material.

-20-
2.2 The Preparation of the Videodisc

Aimed at freshman and visitors, the material contained on the videodise
includes work and play images of student life and a series of visual
navigational aids for familiarization with the cultural surround of MIT. The
videodisc can easily store full motion (30fps) video, sound, still images, and
computer graphics. Each media, or data type, is best suited for portraying a
particular category of information. For instance, student life is best conveyed
by full motion video; still photography would show student actions and
interactions much less effectively. Conversely, spatial data, such as building
fronts and maps,:is most efficiently described by stills. Since most maps are
much too detajled-and complicated, local street maps, specifically designed for

this system, were generated using a computer graphics program.

2.2.1 Movie as Story and Data

The creation of video material that will be computer controlled poses a
set of issues not raised in traditional filmaking. One primary issue is the non-
linear nature of the viewing environment. Unlike a traditional linear film
where the chronological unfolding of events is fixed, in an interactive
environment, segments of movie will be viewed in an order which varies from
user to user. Cinematic material must therefore have the capability of being

subdivided into smaller discrete units that convey meaningful information.
2.2.1.1 Linear Narrative Film as Data
Full motion material for interactive videodisc systems have taken the

form of both narrative and documentary film. Members of Apple’s Multi-

Media Group have designed and implemented an interactive environment

-21-
using Life Story, a narrative film that dramatizes the race for the discovery of
DNA. Designed for high school students, the repurposed enactment film
allows users to compare behavior of two groups of scientists. The interactions
are structured to provide teachers with a resource of information from which

classroom exercises can be designed.

Enacted documentary and narrative films as data present problematic
issues. One difficulty is that the information presented by a narrative film is
highly dependent on the knowledge and integrity of the filmaker. . ‘Another
issue is the fact that the structure of the linear narrative inherently relies on
the organizational thought patterns of the creator. Given that each person has
his or her own way of interpreting and exploring material, this may unduly
constrain the premise that an interactive environment will offer unique voyage

of discovery to individual users.

2.2.1.2 Observational Moviemaking

Observational documeﬁtary filmaking offers a cinematic form where the
information has less dependency on the interpretation and subjectivity of the
creator. Although the filmmaker does impose a storyline and does determine
what information is relevant to include in the film, the material presented is
recorded reality. The artist has the power to distort or bias the film by
presenting one-sided arguments, but he or she is powerless to change such
important data as vocal tone, facial expression, or spatial relationships

without digital manipulation of the recorded data.

An example of a linear documentary work used as the base of an
interactive environment is A City in Transition: New Orleans, 1983-19886,

produced, directed, and edited by Glorianna Davenport. The Cinema Verite

-22.
approach encourages viewers to ask questions about the people and events
which are represented. The trick is to design the interface so that viewers can
move through and across issues and events as transparently as possible. Pop
up menus and icon browsers are used to select new scenes or background
information.!2 By opresenting us with recorded events, cinematic

documentation can offer insights into how people think and interact,13

2.2.1.3 Movie Chunks for Non-linear Viewing

The video material for MIT: in Motion is composed of twelve
independent shorts each designed to give a student perspective on life at M.I.T
and offer a glimpse of places which interest students in Boston and
Cambridge. The .movies are composed of documentary footage of students, and
as such primarily fall under the main categories of Academics and Campus
Life. The visual material in the remaining two main categories,
Entertainment and Maps, takes the form of stills of building fronts. This
postcard representation of Boston and Cambridge failed to render a
perspective on community life around the campus, so three short segments
were created which focus on showing people interacting about various
landmarks. For example, the movie on Boston opens with a touristy picture of
Paul Revere, across from Old North Church. A pan down reveals what people
really do near such monumental historic sites: three young boys are playing
baseball using the base of the statue as the catcher. As the batter hits the

pitch, one of them yells, "double, second and third,” and then proceeds to spit.

12The New Orleans system is currently being used in an introductory Urban Design and
Development class at M.L.T.

13China Altman Davenport Wants You as Film Pilot not Passenger

-28-
The full motion video segments included in each category contain subject

matter as follows:
¢ Academics: finals, libraries, labs, and freshmen class.

» Campus Life: intramural sports, late night studying, and dorms,
* Entertainment: Boston and Harvard Square.
* Maps: a ride on the T, the public transportation system.

Since all of the video pieces attempt to convey a broad perspective in a
limited amount of time, namely one to two minutes, the spectrum of the
material covered combined with the quick editing tends to make the segments
choppy. In the Intramural Sports segment, ten different sports are covered in
ninety seconds. One known method of smoothing abruptness at edit points is
to cut on motion or gesture; the two shots on either side of the edit point
become tied by completing, together, one full motion. Shots with repetitive
movement or framing can be juxtaposed to smooth transitions. In the Late
Night Studying segment, there is a shot that ends with a student, feet propped
on the desk, reading a book in his lap. There is then a cut to a similarly
framed shot of another student reading a book that is in the same part of the

image as in the shot before it.

Another technique used to unify the shots in the video segments is to cut
them to music. When shots are edited with a musical timing, the structural
changes of the music support visual edits. One specific way in which the
author used music was to set up a parallel content between picture and sound.
The Late Night Studying clip is cut to song performed by Teresa Brewer and
Duke Ellington entitled, "I'm Beginning to See the Light". To monopolize on
the possible double meaning of the title, every time Brewer sings the word
“light”, there is a cut to a clock advancing in time until the final instance when

a picture of dawn breaking over the Boston skyline is shown.

-24-

Two of the video segments are used as a framing device. Theoretically,
when a user first approaches the system, it will be idly running the opening
slide show (see Section 2.2.2.) When the user decides to interact with the
system, a short video segment on Rush and Orientation Week will play. When
the user chooses to end the session, the Graduation clip will play. By framing
the session with the first and last events a student going through the Institute
would experience, another attempt is made to give a student’s perspective of

MIT.

2.2.2 Maps and Stills as Visual Tools for Surrogate Travel

Early interactive video projects which implement surrogate travel
concepts include the Aspen Movie Map Project, undertaken in 1979 by the
Architecture Machine Group at MIT. All of the streets in Aspen were
systematically filmed in stop frame motion. This footage was then mastered
onto videodisc, and an interactive environment was implemented to allow a
user to drive around the streets of Aspen. At an intersection, he or she could
choose to continue down the same street or turn onto a new street. Overlays
such as directional signals and a stop control allowed a user to directly control

exploration through the city.

Another goal of MIT: In Motion is not so much a complete mapping of
MIT and its environs, but rather an introduction of Cambridge, Boston, and
the MIT campus both visually, through the use of stills of buildings, and
spatially, through familiarization of local street and subway maps. To this
end, approximately four hundred stills of building fronts were taken with a
35mm camera, transfered to videotape, and edited onto the footage that was

mastered onto videodisc. Although textual information, such as the name of

-25-
the building and its address, is associated with each picture, the stills succeed
in providing visual information but fail to render a spatial sense of the
buildings’ location and relative positioning.

To outline the spatial relationships both between buildings and between
areas of Boston and Cambridge, a series of maps were generated using AT&T’s
TrueVision board with Island Graphic’s TIPS software. Once again, the
program design is inextricably tied to the creative generation of the maps. For
instance, one way of navigating at the map level is to travel to different maps
bordering the map currently displayed; one example is in the map of the outer
region of Harvard Square, a user can go to a map of Central Square. To
visually indicate this option, a highlighted arrow pointed in the appropriate
direction and labelled with "Central Square” had to be graphically included
when creating the Harvard Square map. Most of fhe program issues relating
to graphics are easily resolved once defined (See Section 2.3.2 for a more
complete discussion), but several other aesthetic issues are confronted by

creating the maps.

One of the difficulties in creating maps for interactive implementation is
how to achieve a level of complexity, such that a substantial amount of
information-is shown, but to retain a level of graphic simplicity to ensure a
clear and uncluttered interface design. One problem that obstructs this goal is
the fact that many streets are not perfect lines but tend to curve and change
direction. Besides making the map complex, bends in streets create graphic
difficulties such as placing a name alongside the street. For this particular
application, the map of Harvard Square presented the challenge of
determining how far to simplify the map without destroying a real spatial

representation of where buildings are in relationto each other.

-26-

Another visual technique used to aid the user was to make the icons for
the buildings that appear on the street level maps as unique as possible.
Whenever a building has a distinct architecture, the icon mimecks its shape.
This technique is especially effective with the maps of the MIT campus, whose
buildings range from waves to triangles. By giving icons a distinct visual
signature, the system will help a user to remember icons he may have already
visited.

2.3 Program Design for Intuitive Information Retrieval

The second phase of MIT: In Motion involved designing computer
programs to inteérate the material mastered onto videodisc into an interactive
environment. The goal of the programming end is to create a system where
information retrieval and browsing of all media types is intuitive. The model
used for one of the schemes of navigation is a spatial mapping of MIT and its
environs by foot and by train. In addition to understanding where he is within
the system, at any time the user should also be aware of the scope of
information available for perusal and the type of media he can expect to view.
To achieve these goals, many navigational and interface design issues were

confronted...

2.3.1 Outlining Data

One of the inherent problems in many HyperCard applications is the
user’s inability have an overview of the scope and amount of information
present in the system. Depending on the way in which an application was
programmed, even though a user may return to a card previously visited, he

may have only traversed a small loop of information in the system.

-27-

To avoid a morass of obscure data paths, the various categories of
material available for information retrieval were outlined in a hierarchical
manner. For instance, the subcategory of "Restaurants" would fall under
"Entertainment”, one of the four main categories. Although by no means a
complete mapping of all the information, this outline attempts to demonstrate
many of the options available. In addition to textually presenting the scope of
the system, the outline should become active. As in a hypertext environment,
clicking on the text should retrieve more textual data. In this system,
however, the goal is to also bring up visual data. With this basic sketch and
ability to retrieve information directly from it, the user becomes more
knowledgeable about the system and can efficiently extract information from

specific categories.

2.3.2 Spatial Relationships

Another model used for traveling through the system is maps.
Navigation by this means is explicitly tied to the reality of place, so spatial
relationships between both local areas and the buildings in them can be
demonstrated. To break the problem down into discrete chunks of mapping,
Boston, Cambridge, and MIT were divided into sectional regions. For each of
these areas, a general street map was created. Each general street map was in
turn subdivided into several smaller maps which contain icons for each
building whose front is stored as a still on the videodisc. (See Figure 2-1) The
idea is that on the lowest level of maps, the user will be able to simulate
walking down a street by visually browsing through the area and clicking on
the building icons to see their fronts. The more general maps provide the user

with the relationships between the streets in any given area. In addition, to

.28-

Figure 2-1: An example of a general, top, and sublevel, bottom, street
map.

29

relate the locations of the general sections to each other, each of the
subdivided maps has directions that, through programming, allow a user to go
between sublevel maps of various areas located near each other. A user who is
exploring a region of Harvard Square might navigate himself to the outmost
region of the locale. On this sublevel map, he would find an arrow labelled
"Central Square" that would navigate him to the corresponding outer edge of
this sectional area of Cambridge adjacent to Harvard Square.

In addition to the street maps, a map of local stops on the public
transportation system, the "T", was generated. The stops on the T-map
correspond to subway stops shown on the sublevel street maps. By choosing a
particular stop oﬁthe train map, a user is transported to the sublevel street
map where he would arrive if he were to take the train to that particular stop.
In this way, a user can explore what is around particular subway stops.
Conversely, a user can choose on a sublevel map to go to the T-map by clicking
on a subway stop. The subway map is then used in the programming of the

system as another means to simulate travel between areas (see Section 3.2.)

2.4 Central Data Structure

The program material of the system consists of over thirty maps,
approximately four hundred stills, twelve video clips, and four stacks of
HyperCard cards. Each of these data points is interrelated in some way to
many other points. For example, each building has a picture associated with it
as well as textual information, and it is also located on at least one of the
maps. Drawing a schematic with lines attaching linked segments to

demonstrate the web of interlinking would only confuse the problem further. If

-30-
the data was all hand entered and even one of the parameters change, such as
receiving a new videodisc whose frame number are offset by even one frame,
the time involved with updating the system would become immense as the size

of the system grew.

To handle the large flow of information for this project, a centralized
data base was created which could keep track of essential parameters.
Discussed in detail in Section 3.4, the goal in creating such a central structure
is to be able to more easily handle updates. By automating data entry into the
four main stacks, the large amount of human error possible in manually
entering primarily long numbers is substantially cut down. Having a central
reference to all the links was a key concept in the implementation of the whole
program design.

-31-

Chapter 3

Functional Description

3.1 Overview of Scope of Implementation

Once the program material is mastered onto videodisc, any piece of it
can be accessed by computer within two seconds. Using HyperCard, its
programming language HyperTalk, and a library of Pascal based routines that
can be called from HyperCard, an interactive system that allows user-specific
voyage through its visual and textual contents was designed and implemented.
One of the mos{: difficult and challenging aspects of this project was the
organization of the large amount of visual and textual data and the cross-
referencing and possible associations of all the data. Another large
consideration was in the interface design. Since the only means of navigation
through the system is by moﬁse, the interface must offer a satisfactory number
of options to choose from while simultaneously remaining uncluttered and
understandable. The following sections describe the methodological processes
by which I organized the system, designed the interface for it and means of
travel through it, and created a centralized data base which serves to ensure

automated, thorough updates and consistency throughout the system.

3.1.1 The Overall Scheme of Categorization

As first mentioned in Section 2.1, data from all media types is
categorized into four main topics: Academics, Campus Life,

Entertainment, and Maps. These main categories have subcategories which

-32-
in turn occasionally have a third, and maximum, level of categorization. For
eiample, Entertainment has several categories, one of which is Restaurants
which in turn has another level of categorization by type of food, such as

Italian or Japanese.

Several factors lead to this categorical organization scheme. Topically,
the subject matter of each of the main categories handles the four pertinent
issues a perspective student or freshman must face: what is the academic
workload, what are the campus and students like, what can I do for fun, and
how do I get around? This fact suggested the broad divisions of material, and
interface and programming considerations lead to the continuation of such an
organizational séheme, for one of the main problems with HyperCard
applications is that they generally give no overview of the material contained
in the system. This problem is amplified by the elimination of the keyboard.
Dividing and subdividing the material in the system into éategories effectually
creates a skeletal outline that can be used to give the user both a general
sketch of what information is available for their perusal and one means of

getting there (as described in Section 3.2.1.)

3.2 Means of Navigation

The elimination of the keyboard imposes constraints on the ways by
which a user may travel throughout a HyperCard system. All of the means of
navigation in such an environment must be programmed or scripted. The
design of all four transport mechanisms transforms program material into
active data types or regions that allow the user to browse and access

information. The developmental goal for each navigational tool is to provide

-33-
intuitive voyage through the system. Two approaches were employed to
achieve this end: associative linking to suggest further topics for inquiry and
spatial mapping, where the feasibility of movement is tied to the reality of a

place.

3.2.1 Categorical Travel

MIT: In Motion, as an information kiosk aimed towards freshman and
visitors, is designed to answer commonly asked questions such as "What can I
do in town?" and "How do I get there?". The skeletal outline of the material is
used as the base of one means of user navigation. Shown graphically in
Section 3.3, all- four of the main categories are consistently displayed
throughout the system. The four labels not only give a descriptive overview
but are also active sites where the user, upon clicking in the region of the
word, accesses the sublevels of information associated with each main
category. The listings in these subcategories are in turn active regions which

may be used to access information in the system.

To illustrate the range of navigational options, let us follow the path of a
new user who has asked a friend to join him for a Saturday evening "on the
town.” After walking up to the display, they click on "Entertainment”, and a
list of options appears. Clicking on one such category, "Movie Theatres",
produces another level describing three types (vintage, foreign, and popular).
By clicking on "Vintage", the user would get information, both visual and
textual, on the Brattle Theatre in Cambridge, a vintage movie house that
screens classical films. In this way, the outline of the information contained in
the system functions as both associative and structural linking: textual data
made active through programming provides the user with many topics to

inquire into and the means of retrieving the information.

-34.
3.2.2 Related Information Retrieval

The two friends may not decide on the Brattle as the evening’s form of
entertainment, but want some similar suggestions. Clicking on the "Related
Information” area, they request added data related to the subject matter of the
information currently displayed on the monitors. In response to the users’
request for more information relating to the Brattle, a movie house that
screens classical films, textual and visual information will be retrieved about
Symphony Hall, a concert hall where classical music is played.

3.2.3 Navigation by Maps

The two users both agree they would like to go to Symphony Hall, but
they need to know how to get there. At all times in the system, two options are
visible that enable transport to either the street map corresponding to the
location of the most recently acquired information or to go to a map of the T,
the local subway system. Clicking on the active region denoted "Street Map",
the two friends bring up, on the NTSC monitor, the local street map of the
appropriate area where Symphony Hall is located. Clicking on any of the icons
brings up the textual and visual information associated with the building. By
clicking on several buildings on the map, the two users can acquire a visual
familiarity with the area before trying to find their way around the physical

location.

Alternatively, a user could click on the "T map" button. This option
would bring a local map of the subway system up on the NTSC monitor.
Clicking on any of the stops will bring up the local street map where the stop
is physically situated and graphically represented by a T subway icon. The T

-38-
map is conversely accessible by clicking on any of the T subway icons located
on several of the local street maps. Also included on the local street maps are
directions that allow the user to travel to another local street map that borders
the one currently displayed.

3.2.3.1 Video Information Retrieval

The fourth method of information retrieval and exploration is through
the full-motion video segments. Each main category has associated segments
that are always visibly accessible in the form of icon representations arranged
in a movie strip. (See Section 3.3.4) By clicking on any of the movie icons, the
appropriate short will be played on the NTSC monitor. The user in the
example used thfoughout this section would be able to see a short piece about
the Boston area. The textual information brought up on the associated card

may in turn lead to another area of inquiry.

3.3 Interface Design

The interface design of the system implemented and described in this
thesis is inextricably tied to navigational functionality considerations. Figure
3-1 shows an example display of the NTSC and Macintosh monitors,

3.3.1 Categorical Card Layers

As introduced in Section 3.2.1, part of the interface is devoted to aiding
travel by category throughout the system. A description of the material
available in outline form is consistently available on the right third of the
screen. The example shown in Figure 3-1 demonstrates a card with the deepest

layering of outline possible.

Tosci's

0 Academic
899 Main Street .
Cambridge, MA 02139 On Campus Life

ice cream Maps

Bookstores
Drama/Music
Hobbies

Movie Theatres
Record Stores

Releted I

Misc. -

Chinese
Indian
italian
Japanese
Mexican
Obscure

Infer mation I l'
Go to the b '

Street Map ‘

Fe ” The Macintosh, top, and NTSC, bottom. monitor displays.

-37-

The top level box is always present and contains the four main
categories. Clicking on any of these top four categories will cause the
appropriate second level box associated with the activated topic to appear.
The system contains four different second level boxes, each specifically
associated with one of the four main categories. Some of the topics in the
second level box will in turn lead to a third level of outline. At the lowest level,
whether it is the second or third, clicking on a category will bring up textual
and visual information relating to the topic chosen.

In order to know where you are within the outline, one of each category
in the boxes is outlined. For the example in Figure 3-1, the categories
Entertainment, Restaurants, and American are highlighted indicating the
user is retrieving information about a restaurant that serves American food, in
this case ice cream. Whether the user explicitly clicks on the outline or is
taken to the subject matter by automated means (as described in Sections
3.2.2 and 3.2.3), the outline will highlight the area of the system the useris in.

3.3.2 The Information Card

One of the few areas of the screen not programmed to be active is the
Informatiox:_n_Card. Located at the upper left corner of the interface (See Figure
3-1), this area gives textual information; for the Entertainment section, data
can include the name of a building or store, its location, phone number, and a
short description of what service or merchandise is available there, while for
the Academic Section, the area will reveal such information as an academic

department on campus, its headquarters, and a phone number for questions.

3.3.3 Navigational Icons

The three icons in the middle of the screen (See Figure 3-1) signal three
means of navigation. The top icon, labelled "Related Information", performs a
keyword search using the description in the Information Card to retrieve
related information to the current topic. The picture in the icon is a pair of
arms reaching into a card catalog. The middle icon, a miniaturized picture of a
street map, transports the user to the street map appropriate to his current
location in the system. For example, if he were looking at a restaurant,
clicking on the map icon would bring up the street level map where the icon for
the building appears. If the user were looking at an academic depaﬂ:ment, a
campus map would be retrieved. The middle icon is labelled "Street Maps" in
the Entertainment section and "Campus Maps" in the Academic and Campus
Life sections. The bottom icon, labeled "Take the T" brings up the map of the

subway system.

Although all other aspects of the interface remain consistent, these three
navigational icons vary with the main category. As stated above, there is a
switch in labelling the middle icon "Street Maps" or "Campus Maps". The
largest discrepancy, however, occurs in the Maps category. Since the skeletal
outline for ‘this section is a breakdown of the maps themselves, the "Street
Maps” icon is unneeded. Additionally, since the maps do not have
descriptions, the "Related Information" icon is eliminated. The "Take the T"

icon is present consistently in every category.

3.3.4 The Movie Strip

The left side of the screen is devoted to a graphic representation of a film
strip. In each "frame", a micon (moving icon) represents the various video clips
available under the current main category. A micon is a looped playback of
four seconds of digitized video. For each of the video clips, a short segment
with a distinct visual signature was chosen to represent the clip. Often this
visual aid is a cyclic gesture to make the transition from end to beginning of
loop not so abrupt. For example, the micon for Intramural Sports contains a
student hitting a tennis ball. The shot then pans with the ball to the opponent
who hits the ball which is again followed back to the first student. The motion
in the micon becomes a distinctive gesture which is repeatedly played.

3.4 The Centralized Database

To handle the immense amount of information in the system, a central
database was created with an associated set of update and sorting programs.
The main organizational problem the database solves is the need to be able to
assign a set of five parameters to each data chunk. The five parameters must

remain linked to to each other.

3.4.1 Field Information

The general organization scheme of the database is that for each street
map, there is a series of four cards in the database. Each of the four cards
contains almost the identical set of information, but each is sorted by a
different parameter since for different tasks and lookups, the information

must be in a different order.

-40-

In the upperleft corner is a field that describes information pertaining to
the map which the card is associated with. The example shown in Figure 3-2 is
for the "hav3" map, a label given to the street map with building icons for the
right half of the general Harvard Square map. This particular card of the
series of four is sorted by cards, as shown in line two. The next line contains
the frame number of the map associated with the card, 35472 in this case,
while the fourth line contains the name of the card in the Maps stack that is
associated with the map. The fifth line is used in the coordinate sorting and
lookup algorithm to let the program know how many lines of déta are
contained in the parameter fields.

pdava i card sort |[stiliframefill] (frame add) ﬁ
I 1.7 ¥ & D— F:;'_SLLmnframef"ﬂ@ize 57 table)
412 name sort||mapcardfili]

(Tremer)| @ | € ¥
(rectfind) (Trsort) [roors 0
4>

T:HAV2 {|737,425,776,448

MORE
Harvard Coop
The Bookcase
Ballinger Publishing Co.
Reading International
Revolution Books
Wordsworth

Paperback BookSmith .
ART

Charles Hotel

Tweeter

Bernheimer's Antique
Cambridge Artists Coop
Golden Temple Emporium
Kenmore Camera
UnderGround Camera
Brine Sporting Goods
Harvard Square Theatre
Brattle Theatre
LDiccaunt Bacarde

704,236,782,285
928,386,957,405
1114,352,1144,369
1143,312,1166,334
1183,258,1219,272
1017,108,1054,121
962,199,991,222
970,242,1002,264
1243,195,1268,235
1072,41,1131,56
957,153,995,173
1184,217,1208,240
1068,197,1086,216
1050,402,1084,416
1127,333,1158,353
815,210,845,227
1000,220,1026,240
1078,387,1111,402

1095,202,1114,223
272 22Q 7Q0Q 280

Figure 3-2: Screen shot of the Central Database

41-

The fields containing parameters, numbered from left to right, for each
data chunk are shown in Figure 3-2. The first field (leftmost) is the language
label given to each building or active region on the map. The next field
contains the name of the card associated with each line in field one. Field
three contains the frame number to access on the videodisc. Field four
contains the x and y relative coordinates for the upper left and lower right
points that define a rectangular region for each item in field one on the map.
The fifth field contains the number which describes the numerical order of
each still on the videodisc. In Figure 3-2, the Harvard Coop is associated with
card "Section310", is located at frame 34976 on the disc which is the fifth still
on the disc, and is defined by the rectangular region whose coordinates are
"928,386,957,405".

3.4.2 Data Handling Routines

The three sorting routines sort numerically by card number and
rectangular coordinates, and alphabetically by name. Each of the sorting
routines maintains the correspondence between the lines in each field. For
example if the items are sorted by card number, if lines one and two of the
field in which the card data is contained are switched, lines one and two of the

rest of the fields are also interchanged.

There is also a set of automated filling programs. The stillframefill,
mapframefill, and mapcardfill routines fill the appropriate parameters (still
frame numbers, frame numbers of the associated map, and card numbers for
the associated map cards) into a hidden fields on the cards in the main
category stacks. These hidden numbers allow for quick access to important

data needed by programs when the system is running.

42-

The rectfind routine is the lookup program that figures out where each

click of the mouse occurs, and if it is within the region of the NTSC monitor,
also determines where the system should go next. This program, with minor

modifications, is later added to the main category stacks.

The remaining programs are short routines which automate fills and
sorts. The frame add function is used when a new videodisc is to be
incorporated into the system. The program prompts you to enter the frame
number of the first still. It then goes through and fills the frame access
number field with the correct access numbers. The size of table function
simply finds the number of entries on each card. This information is needed
by the lookup algorithm used to identify the unique area within which the
mouse clicked. The tframefill and T rsort functions are analogous the the fill
and sort functions described above. Because the Tmap card in the database
uses only three of the five parameter fields and adds a different field, certain
lines in the program had to be changed. The fixit function is a short routine
that had to. be created when the second check disc for this project returned,
and two of the frames were put on one track creating an offset of one frame
after that point. The function simply went through the list of frame numbers

and fixed those that were incorrectly offset.

-43-

Chapter 4

Design Description

This chapter contains a general description of the system’s routines and
program structure. Except for short routines, the program scripts, which are
fully commented, appear in the appendices. All of the code for the system was
written in Hypertalk and employed various commands of the VISUAL Tools

software package.

4.1 The Overall Organizational Structure

To control the massive amount of information to be maintained, a highly
organized numerical scheme was created. The four main categories were
divided into four different stacks, each given a numerical labelling: 1) the
Academic stack, 2) the campus stack, 3) the entertainment stack, and 4) the
maps stack. The subcategories under each main category were assigned
numbers in the same way. As data was entered into each stack, the card
would be given a name reflecting the various categories under which it fell.
The card for the first entry in the Japanese restaurant section is labelled
"Section374"; the three represents the data is in the entertainment stack, the
seven that it is a restaurant, and the four that it is specifically a Japanese
restaurant. Subsequent entries under the same subcategory have a unique
alphabetic sequence following the numerical code; the second Japanese

restaurant would be labelled "Section374b".

4.2 The Interactive Outline

The necessity for the organizational scheme to be specifically numeric is
related to the program for the interactive outline. To allow the user to travel
through the information by clicking on the outline, the following program was

created:

Field num 1 ID 3 length 436 Hidden Text-lock name "level2"
--Find the line in this second level field
--where the mouse just clicked. Fill this
--in to the middle number of the card ordering
--and go to that card.
on mouseUp
set cursor to watch
get (item 2 of the clickLoc)-(item 2 of the rect of me)
put (it div (the textHeight of me)+1) into it
set LockScreen to true
go to card "Section3"&it&"0"
set cursor to hand
set LockScreen to false
end mouseUp

This specific example is from the second level of outline from the
entertainment stack. The same progz"am is used for all of the second and third
level fields of the outline in all four stacks. The only change for each specific

program is in the line:
go to card "Section3"&it&"0"

For the other three stacks, the "3" would be changed to the appropriate label
for the stack. For third level fields in the outline, it would be the last number
that needs to be modified, since while moving about a third level field, all
fields above it remain constant until they themselves are clicked. The line
shown above would be modified to:

go to card "Section36"&it

Since the top level in the outline will always be shown, it was

45
implemented as a graphic pasted onto the background with buttons over each

of the four words. The scripts for each of the buttons are as follows:

--Go to the first card of the entertainment stack.
on mouseUp

gotocard 1

go to card "Section300" of stack "Entertainment"

end mouseUp

--Go to the first card of the academic stack.
on mouseUp

gotocard 1

go to card "Section100" of stack "Academic"
end mouseUp

--Go to the first card of the campus stack.
on mouseUp

gotocard 1

go to card "Section200" of stack "Campus”
end mouseUp

--Go to the first card of the map stack.

on mouseUp

go tocard 1

go to card "Section400" of stack "Maps"

end mouseUp
For each card in all four stacks, the words in the outline under which the
information is categorized are highlighted by setting the "hilite" property of a

button covering it to true.

4.3 Means of Navigation

The three other ways of retrieving information in the system are by
related information, street maps, and train travel. These three functions were
implemented as scripts contained in hidden buttons underneath the digitized

picture icons for each.

4.3.1 Related Information

The code for this button, shown in Appendix A, performs a systematic
keyword search in all four stacks. Using the script for the button in the

entertainment stack as an example, the code performs the following tasks:

e The screen is locked so that the user will not see the see various
cards passing as the search is made.

* System messages are locked so that when the search starts at the
card following the current one, all of the commands executed on a
card opening, such as bringing up a new still associated with the
card, will not occur.

e The routine grabs the first descriptive word in the last line of the
information notecard at the top left corner of the screen. If the
word is in an itemized list, a comma will be attached to it, so the
routine checks for this and eliminates the comma if it is present.

o If the word is not found in the Entertainment stack, the Academic
stack is opened to be searched. If it is found in neither, the
Campus stack is opened. If the search fails, the original card is
unlocked, but at any time, if a match is found, the routine takes
the user to the new card and unlocks the screen and message

passing.
The related information button is used in the Entertainment, Academic, and
Campus stacks. Since the Map stack only contains names of the various maps
available, that stack neither has the "related information” button not is

searched when the button is activated from the other three stacks.

4.3.2 Street Map Travel

A program that allows the user to go to the appropriate street map for
the information currently showing was implemented as a script contained in

the hidden button underneath the digitized picture of a street map.

Bkgnd button id 19 = "steettravel”
--Find the appropriate street map for the information
--currently showing and go to it and its card.
--The frame of the appropriate map will be in line

--2 in field "links". The card of linked map will be

47-

-in line 3 in field "links"

on mouseUp

set lockscreen to true

global framel, card1

put item 1 of line 2 of field "links" into framel
put item 1 of line 3 of field "links" into card1
--Mimato "EXCEPT", "VIDEO", "FRAME", frame1l
go stack "Maps"

go card "Section"&card1

set lockscreen to false

end mouseUp

Once clicked, this program grabs the card number of the map on which the
information on the current card is physically located. This card number,
located in the second line of the hidden field "links", is filled in from the

information in the central data base.

4.3.3 Travel by T

A program that allows the user to go to the map of the T transit system
was implemented as a script contained in the hidden button underneath the

digitized picture of the T map.

Button num 11 ID 25 length 216 name "ttravel"
--Go to the map of the T
on mouseUp
set lockscreen to true
go stack "Maps"
go cd Section4100
--Mimato "EXCEPT", "VIDEQ", "FRAME", "36417"
set lockscreen to false
end mouseUp

Unlike the code for the "streettravel" button, this program does not need to
grab any information. Since the map for the T is card "Section4100", the script

simply opens the "Map" stack and goes to that card.

4.4 Stack Scripts

The scripts associated with each of the four main stacks are located in
Appendices B - E for Academic, Campus, Entertainment, and Maps,

respectively.

4.4.1 Academic, Campus, and Entertainment

The scripts for the Academic, Campus, and Entertainment stacks are
similar except for specific parameters particular to each stack. Each stack

script contains code for the following functions:

e When a stack is opened, the second level category field for the
stack is shown. An check for the VISUAL Tools is performed that
will initialize the tools if they are not already initialized, and will
paste the proper icons/micons on the screen. (See Section 4.5.2 for
a fuller explanation)

* Conversely, when a stack is closed, the second level field is hidden
and the micons for the stack are removed.

¢ When a card is opened, line one of the hidden field "links" that
contains the frame number of the still associated with the card is
grabbed, and that still is then retrieved and displayed on the
NTSC monitor.

e A function named "playsegment” is defined that primarily serves
as an alias that plays video segments.

4.4.2 Maps

The script for the Map stack is more complicated than that of the other
three since it must be able to handle rectangular coordinate lookups for the
NTSC monitor for each of the street maps. In addition to the functions shown
in the previous section for the other three stacks, the Map stack script also
contains a lookup function derived from that in the Central Data Base and
described fully in Section 4.6.2. The functionality of the two are the same, and

to compare differences in code, refer to Appendices I and E.

49-
4.5 VISUAL Tools Incorporation

A set of routines was created to handle the various color icons and

micons in all four main stacks.

4.5.1 Initializing

To have a standard initialization procedure for each time the system is

brought up, a hidden button was created in the Entertainment stack:

Button num 5 ID 15 length 132 name "Tools"
--This button is used to
--initialize the VISUAL tools.
on mouseUp
Mimato "Edit"
end mouseUp -

After the tools have been initialized, another hidden button brings up the icons

and micons for the Entertainment stack:

Field num 4 ID 16 length 38 name "links"
--This button puts up all the still

--and moving icons for the entertainment
--stack.
on mouseUp
global refresh
mimato ADD, MICON, "boston", "15,190"
mimato ADD, MICON, "havsq", "15,277"
mimato ADD, 1con, "cardcat”, "211,147"
mimato ADD, 1con, "tmap", "294 272"
mimato ADD, icon, "streets”, "251,209"
put false into refresh
end mouseUp

If at any time, the VISUAL tools are exited, the above procedure should be
repeated.

4.5.2 Micon Painting

As mentioned in Section4.4.1, when a stack is opened, a check is
performed to see what icons and micons must be painted. An excerpt of the

Entertainment stack’s script demonstrates the procedure:

--The micons associated with the Entertainment
--Stack are painted.

Mimato "Open”, "VSEG", "Ent segments"
mimato ADD, MICON, "boston", "15,190"
mimato ADD, MICON, "havsq", "15,277"

--If the previous stack was the Academic or Campus Stack,
--then the icons do not need to be repainted. Ifit the
--previous stack was Maps, then repaint the icons.

if refresh is true then

mimato ADD, icon, "cardcat”, "211,147"

mimato ADD, icon, "tmap", "294,272"

mimato ADD, icon, "streets", "251,209"

put false into refresh

end if

The first set of lines paints the micons belonging to the stack that is opened.
In this example, the Boston and Harvard Square micons are displayed. The
next set of lines checks to see if the icons that represent the means of travel
need to be changed. They remain the same for the Academic, Campus, and
Entertainment interfaces, but are different for the Map stack screen. The
global variable "refresh" is used to indicate whether the icons need to be
changed: the Map stack changes the status to true, so every time one of the
other three stacks are opened after the Map stack, the icons are refreshed, and

the variable is set to false again.

4.5.3 Micon Buttons

Underneath each of the micons lies an invisible button that contains a

script similar to:

-51-
--Play the video segment on finals.
on mouseUp
playSegment "finals"
end mouseUp
It is the button code that activates the playing of a video segment. Appendix F

contains the code for each of the segments in the four main stacks.

4.6 Central Data Base

The Central Data Base as described in Section 3.4 stores the large
amount of data for the four main stacks. It also serves as a base for several

programs used to update and maintain the four main stacks.

4.6.1 General Dafa Handling Functions

The database, being a stack itself, has a stack script (see Appendix G
associated with it that contains two main programs, only one of which may be
used at any given time. The program that is usually active is a version of the
prototype lookup function that is described in Section 4.6.2. Its function in the
database script is to test specific maps without actually leaving the map;
instead of transporting the system to the card and frame parameters grabbed,

the program returns them in variables that can be checked.

The second program is used when defining the rectangular regions on a
map. When uncommented, the code prompts the user if he would like to enter
coordinates. If the answer is yes, on the next click, the two coordinate location
of the mouse relative to the upper left corner of the HyperCard window is
automatically entered as the first two items in the first line of the "rect" field.
The next click’s location will be entered in the third ané fourth item spot on

the same line. Continuing to click will cause coordinates to be entered the line

.52-
below. In this way, by systematically clicking on the upper left and then lower
right corners of building icons on the maps on the NTSC monitor, a list of
defined active rectangular regions is generated. When several maps are

present, this process is done for the card associated with each map.

In addition to the large functions described below, several routines were
quickly created to aid the adjustment and analysis of data. Shown in
Appendix H these functions perform automated Boolean operations on data.
The "Frame Add" and "Fixit" routines adjust frame numbers for accurate
videodisc image retrieval; the "Size of Table" rqutine counts the number of
entries in a field. Since operations of this type are usually repeated many

times, it is often worthwhile to write such automation scripts.

4.6.2 Prototype Lookup Function

Appendix I contains the code for the prototype lookup function
implemented in the "Rect Find" button in the Centralized Data Base. Each of

the various forms of the lookup program work in the following way:
e The two coordinates of the location of the click relative to the
upper right corner of the HyperCard window are separated and
put into two variables.

¢ The maximum number of lines in the current table is obtained and
put into another variable.

e The first and third items of the first line of the "rect” field, i.e. the
two horizontal points defining a building’s rectangle, are put into
variables. The horizontal coordinate of the click is tested to see if
it lies in the range of the first building’s coordinates.

e If it does not lie in the span of the current entries, the iteration is
repeated for the next line.

e If it does lie in the horizontal span, a test is performed to see if the
coordinate lies in the corresponding vertical range for the building
icon.

o If the coordinate’s horizontal and vertical components lie in the

range, the click has been located uniquely within a building and
the appropriate parameter, such as the card number to go to, is
grabbed from the same line in the "card" field as the coordinate
was found on in the "rect" field.

o If the coordinate’s components do not lie in the current range
being tested, the iteration continues until the last line of the field
is reached.

e If a match is not found, the click did not take place in an active
region and no action is taken. If a match is found, the routine
returns the associated parameter values, and may go to a new
point in the system (as is done in the Map stack script case).

4.6.3 The Sorting Routines

The code for the four sorting routines is located in Appendix-J. Each
program sorts th_e fields alphabetically or numerically by a particular
parameter - card, coordinate position, or name. The function of each script is

similar:
* The first line of the field for the parameter to be sorted is grabbed
and compared to the line following it.

o If the first line should alphabetically or numerically appear before
the line after it, the two are in proper sequence, and the next two
lines are compared.

o If the lines are not in proper sequence, all the parameters for the
two lines must be loaded into variables and interchanged. The
line is then compared to the one before it to check if it needs to be
moved nearer to the beginning of the list. Once it reaches a
position where is it properly in place, the next pair of lines is
compared.

¢ This iteration is continued until the bottom of the fields is reached,
upon which time the lines of the field will be sorted by the chosen
parameter.

4.6.4 The Automated Fill Routines

Code for the series of automated fill routines is shown in Appendix K.

Each of the programs works by systematically going down the list of data on a

-54-
card. By extracting the card number and the information to be filled from

each line, the program can go to each card in one of the four main stacks and

fill in the required data into hidden fields.

Chapter 5

Future Modifications

This section describes two features that were designed for the system

during the process of structuring MIT: In Motion but were not implemented.

5.1 Iconified Building Fronts

In the current implementation, when a user chooses to go to a street
map, the appropriate map is retrieved, but no indication of the exact location
of the building just viewed appears. Conversely, when a user clicks on a street
map, the textual and visual information is presented, but the map on the
NTSC monitor is replaced by the still of the building front. The user can go
back to the map by clicking on the "street map" button, but this process can
become cumbersome if the user simply wants to become familiar with the

buildings on a certain map.

Iconified representations of building fronts would greatly improve
navigation by maps. Ideally, a user who chose to travel by the "street map"
option would-go to a map, either by clicking the map button or directly going to
the Map category. The new design would allow a user to visually browse the
buildings on a street level map. Each time he clicked on a building, a digital
icon of the its front would appear next to the building. The textual
information on the Macintosh screen would also change, so that even though
the icon may be too small to visually recognize, the text in the information box

on the HyperCard interface would indicate the exact name of the building. If

-58-
at any time the user chose to look at the full screen picture of the building, he
could simply click on the building icon.

Two obstacles exist to implementing this design for map travel. The
first is that the VISUAL tools package does not provide the ability to place
icons or micons on the NTSC monitor through scripting. The second problem
is that the Colorspace Overlay board lacks the ability to perform real-time
digitization, so each of the stills of the building fronts would have to be
digitized stored. In a system, such as MIT: In Motion, where large numbers of
stills would have to be stored, memory space quickly runs out. Both of these

difficulties are relatively minor and could be overéome in the near future.

5.2 Video Linking

One of the features of the VISUAL tools package currently under
development is the creation of a "linking tool” that would create a link in a

video segment to another pie.ce of data.

The icons and micons [would be] used as link indicators. Links in video
are created by dragging the chosen link indicator on top of the video and
defining an in and out point for it within the segment we are linking from.
On consecutive playings of the segment, the link indicator will appear
spatially where it was placed and temporally when the "link in" was defined.
The indicator will disappear at the "link out" point.14
While an indicator is visible, a user will be able to click on it to go to the

related information.

With such a linking tool available, MIT: In Motion would have the
potential to become much more dynamic. During video segments, links to

relevant information could appear. For example, during the Late Night

14Brondmo, Davenport, Creating and Viewing the Elastic Charles - a Hypermedia Journal

-57-
Studying video segment, several shots of dorm rooms appear. During these
shots, a link to the Dorms video segment could be used to indicate that more
information about student life in derms is available. A link indicating static
information could also direct the user to the Campus Life stack subcategory of
dorms. With the availability of a dynamic linking tool, the flow of information

between different media forms would become more instinctive and natural.

-58-
Conclusion

MIT: In Motion, an interactive multi-media information retrieval
system, has been designed and implemented. Through referential linking and
intuitive access, the system provides the user with the ability to explore MIT,
Boston, Cambridge. Full motion video provides a perspective on student life,
while stills of building fronts allow a visual familiarization of MIT and its
environs through extensive mapping of the areas. Visual and textual
information can also be retrieved about academics, campus 'life, and

entertainment.

To maintain and update the large amount of data, a centralized
database was built and a set of automated routines was created. Using the
VISUAL tools and the Color Space II Overlay board, digital icons and moving
icons were incorporated into the design to become active areas. In this way,
MIT: In Motion uses visual and textual data for both program material and

interactive information retrieval.

The evolution of this project from concept to product generated a set of
practical and aesthetic decisions which may prove useful to other interactive
designers. The decision of what visual material to choose became inexplicitly
tied to the design of the whole system. For example, the interactive
environment and the half hour limitation demanded that video material have
the capability of being parsed into small, meaningful sections. For MIT: In
Motion, this fact led to the decision of creating short music videos on various
aspects of student life. These segments, in turn, presented the structural issue

of how to distinguish various media types. While other projects will find other

-59-
solutions, the issues of granularity and media representation will face all

designers.

The design of the interface offered the challenge of creating a clear and
content suggestive front end with consistent symbolism. One methodology
which was useful in this project was to develop a set of questions a user might
have. By focusing on the demands of the user, a set of criteria for navigational
means and their implementation in an understandable interface were

developed.

One issue not completely resolved is how to handle large amounts of
data. Although many functions were created to automate updates and
manipulation of Qarious parameters, basic components of the data had to be
hand entered, an extremely time consuming process. Additionally, all links for
this system had to be generated by the author. The hope is that in the near
future, computer parsing algorithms will have the ability to detérmine visual
content. Objects could then be given a set of attributes that would cross the
boundaries of textual and visual media to create a truly multimedia

environment.

-60-

Appendix A
"Related Information" Programs

A.l1 Academic Stack

Button num 12 ID 27 length 2172 name "more"
--This routine performs a keyword search across
--the four different stacks. It picks off the
--first word, and if that is not found, it returns
--to the original card.

on mouseUp

global look1, original, new, goframe

put word 1 of line 6 of field "info" into look1
put the number of this card into original
set lockscreen to true

set lockmessages to true

go next cd

set lockmessages to false

--The if statement will remove a comma if it is there.
if last char of look1 = "," then

delete last char of look1

end if

find look1 in field "info"

if the result is empty then

put the number of this card into new

--If a card number is found AND it is not the same card,
--then go to that card.

if new <> original then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

--If a card is found AND it is the same card, go to
--another stack.

else

go to stack "Entertainment”

find look1 in field "info"

--For each of the other 2 stacks (the map stack is not
--included in the search), if a card is found,

--go to the card and it’s frame. If a card is not
--found, cycle through the rest of the stacks until

-81-

--the first is reached, and then return to the original
--card.

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Campus”

find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false -

else

go to stack "Academic”
go to card original

set lockscreen to false
end if

end if

end if

else

go to stack "Entertainment”
find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Campus”

find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe
Mimato "EXCEPT", "VIDEQ", "FRAME", goframe
set lockscreen to false

else

go to stack "Academic”

go to card original

set lockscreen to false

end if

end if

end if

end mouseUp

A.2 Campus Stack

Button num 5 ID 18 length 2172 name "more"
--This routine performs a keyword search across
--the four different stacks. It picks off the
--first word, and if that is not found, it returns
--to the original card.

on mouseUp

global look1, original, new, goframe

put word 1 of line 6 of field "info" into look1
put the number of this card into original
set lockscreen to true

set lockmessages to true

go next cd

set lockmessages to false

--The if statement will remove a comma if it is there.
if last char of look1 = "," then

delete last char of look1

end if

find look1 in field "info"

if the result is empty then

put the number of this card into new

--If a card number is found AND it is not the same card,
--then go to that card.

if new <> original then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEQ", "FRAME", goframe
set lockscreen to false

--If a card is found AND it is the same card, go to
--another stack.

else

go to stack "Entertainment”

find look1 in field "info"

--For each of the other 2 stacks (the map stack is not
--included in the search), if a card is found,

--go to the card and it’s frame. If a card is not
--found, cycle through the rest of the stacks until
--the first is reached, and then return to the original
--card.

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEQ", "FRAME", goframe
set lockscreen to false

else
go to stack "Academic"”
find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Campus"”
go to card original
set lockscreen to false
end if

end if

end if

else

go to stack "Entertainment”
find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Academic"

find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe
Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Campus"

go to card original

set lockscreen to false

end if

end if

end if

end mouseUp

A.3 Entertainment Stack

Button num 12 ID 27 length 2172 name "more"
--This routine performs a keyword search across
--the four different stacks. It picks off the
--first word, and if that is not found, it returns
--to the original card.

on mouseUp

global look1, original, new, goframe

put word 1 of line 6 of field "info" into look1
put the number of this card into ongmal
set lockscreen to true

set lockmessages to true

go next cd

set lockmessages to false

--The if statement will remove a comma if it is there.
if last char of look1 = "," then

delete last char of look1

end if

find look1 in field "info"

if the result is empty then

put the number of this card into new

--If a card number is found AND it is not the same card,
--then go to that card.

if new <> original then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEQ", "FRAME", goframe
set lockscreen to false

--If a card is found AND it is the same card, go to
--another stack.

else -

go to stack "Academic"

find look1 in field "info"

--For each of the other 2 stacks (the map stack is not
--included in the search), if a card is found,

--go to the card and it’s frame. If a card is not
--found, cycle through the rest of the stacks until
--the first is reached, and then return to the original
--card.

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else
go to stack "Campus”
find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe

Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Entertainment"
go to card original

set lockscreen to false

end if

end if

end if

else

go to stack "Academic"”
find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe ‘
Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else

go to stack "Campus"

find look1 in field "info"

if the result is empty then

put line 1 of field "links" into goframe
Mimato "EXCEPT", "VIDEO", "FRAME", goframe
set lockscreen to false

else '

go to stack "Entertainment"”

go to card original

set lockscreen to false

end if

end if

end if

end mouseUp

-66-

Appendix B
Academic Stack Script

Stack script
--The hidden field in upper right corner is "links"

--The following lines remove the second level field

--and moving icons that are associated with the Entertainment
--Stack when a message is passed in the system that the stack
--is closing.

on closeStack

--play "click" tempo 180 c5e c6
hide bkgnd field "level2"
--mimato remove, icon, all
mimato remove, MICON, all
end closeStack

--The following lines initiate the VISUAL tools if not
--already initiated.

on openStack

global isInited, refresh

show bkgnd field "level2"

if isInited is empty then

Mimato "Init"

Mimato "Config"

put true into isInited

end if

--Then the micons associated with the Entertainment
--Stack are painted.

Mimato "Open", "VSEG", "Ent segments"

mimato ADD, MICON, "lib", "15,132"

mimato ADD, MICON, "finals", "15,205"

mimato ADD, MICON, "lab", "14,280"

mimato ADD, MICON, "class", "105,280"

--If the previous stack was the Academic or Campus Stack,
--then the icons do not need to be repainted. Ifit the
--previous stack was Maps, then repaint the icons.

if refresh is true then

mimato ADD, icon, "cardcat”, "211,147"

mimato ADD, icon, "tmap"”, "294,272"

mimato ADD, icon, "streets", "251,209"

put false into refresh

-87-

end if
end openStack

--The following lines check the hidden "link" field when
--a card opens. The frame number of the visual image
--associated with the card will be grabbed, and that frame
--will be brought up on the videodisc player.

on openCard

global frame2

put item 1 of line 1 of field "links" into frame2

if frame2>0 then

Mimato "EXCEPT", "VIDEO", "FRAME", frame2

end if

end openCard

on closeCard
end closeCard

--This is a function definition. The function "playsegment"
--i8 used to control video segments and appears in several
--buttons on the background.

on playSegment segmentName

global recentVList, recentCList, recentCount

if recentVList is empty then put 1 into recentCount

else put recentCount + 1 into recentCount

if recentCount is 25 then

delete last item of recentVList

delete last item of recentCList

end if

put segmentName&","&recentVList into recentVList

put name of this cd&","&recentCList into recentCList
Mimato "Play", "VSEG", segmentName

end playSegment

-88-

Appendix C
Campus Stack Script

Stack script
--The hidden field in upper right corner is "links"

--The following lines remove the second level field

--and moving icons that are associated with the Entertainment
--Stack when a message is passed in the system that the stack
--is closing.

on closeStack

hide bkgnd field "level2"
mimato remove, MICON, all
end closeStack

--The following lines initiate the VISUAL tools if not
--already initiated.

on openStack

global isInited, refresh

show bkgnd field "level2"

if isInited is empty then

Mimato "Init"

Mimato "Config"

put true into isInited

end if

--Then the micons associated with the Entertainment
--Stack are painted.

Mimato "Open”, "VSEG", "Ent segments"

mimato ADD, MICON, "light", "15,130"

mimato ADD, MICON, "dorm", "15,204"

mimato ADD, MICON, "im", "15,279"

--If the previous stack was the Academic or Campus Stack,
--then the icons do not need to be repainted. Ifit the
--previous stack was Maps, then repaint the icons.

if refresh is true then

mimato ADD, icon, "cardcat", "211,147"

mimato ADD, icon, "tmap", "294,272"

mimato ADD, icon, "streets", "251,209"

put false into refresh

end if

end openStack

-69-

-The following lines check the hidden "link" field when
--a card opens. The frame number of the visual image
--associated with the card will be grabbed, and that frame
--will be brought up on the videodisc player.

on openCard

global frame2

put item 1 of line 1 of field "links" into frame2

if frame2>0 then

Mimato "EXCEPT", "VIDEO", "FRAME", frame2

end if

end openCard

on closeCard
end closeCard

--This is a function definition. The function "playsegment"
--is used to control video segments and appears in several
--buttons on the background.

on playSegment segmentName

global recentVList, recentCList, recentCount

if recentVList is empty then put 1 into recentCount

else put recentCount + 1 into recentCount

if recentCount is 25 then

delete last item of recentVList

delete last item of recentCList

end if

put segmentNamed&","&recentVList into recentVList

put name of this cd&","&recentCList into recentCList
Mimato "Play", "VSEG", segmentName

end playSegment

-70-

Appendix D
Entertainment Stack Script

Stack script
—The hidden field in upper right corner is "links"

--The following lines remove the second level field

--and moving icons that are associated with the Entertainment
--Stack when a message is passed in the system that the stack
--i8 closing.

on closeStack

hide bkgnd field "level2"

mimato remove, micon, all

end closeStack

--The following lines initiate the VISUAL tools if not
--already initiated.

on openStack

global isInited, refresh

show bkgnd field "level 2"

if isInited is empty then

Mimato "Init"

Mimato "Config"

put true into isInited

end if

--Then the micons associated with the Entertainment
--Stack are painted.

Mimato "Open", "VSEG", "Ent segments"

mimato ADD, MICON, "boston", "15,190"

mimato ADD, MICON, "havsq", "15,277"

--If the previous stack was the Academic or Campus Stack,
--then the icons do not need to be repainted. Ifit the
--previous stack was Maps, then repaint the icons.

if refresh is true then

mimato ADD, icon, "cardcat”, "211,147"

mimato ADD, icon, "tmap", "294,272"

mimato ADD, icon, "streets"”, "251,209"

put false into refresh

end if

end openStack

71-

--The following lines check the hidden "link" field when
--a card opens. The frame number of the visual image
--associated with the card will be grabbed, and that frame
--will be brought up on the videodisc player.

on openCard

global frame2

put item 1 of line 1 of field "links" into frame2

if frame2>0 then

Mimato "EXCEPT", "VIDEO", "FRAME", frame2

end if

end openCard

on closeCard
end closeCard

--This is a function definition. The function "playsegment"
--is used to control video segments and appears in several
--buttons on the background.

on playSegment segmentName

global recentVList, recentCList, recentCount

if recentVList is empty then put 1 into recentCount

else put recentCount + 1 into recentCount

if recentCount is 25 then

delete last item of recentVList

delete last item of recentCList

end if

put segmentName&","&recentVList into recentVList

put name of this cd&","&recentCList into recentCList
Mimato "Play", "VSEG", segmentName

end playSegment

72.

Appendix E
Map Stack Script

Stack script
--The hidden field in upper right corner is "links"

on openStack

--The following lines initiate the VISUAL tools if not
--already initiated.

global isInited

show bkgnd field "level2"

if isInited is empty then

Mimato "Init"

Mimato "Config"

put true into isInited

end if

Mimato "Open", "VSEG", "Ent segments"
--Remove all of the unused icons.
mimato remove, icon, cardcat

mimato remove, icon, streets

mimato remove, icon, tmap

--Add all of the appropriate icons for the
--Map stack.

mimato ADD, icon, "tmap2", "263,270"
mimato ADD, MICON, "tride", "15,276"
end openStack

--The following lines remove the second level field

--and moving icons that are associated with the Entertainment
--Stack when a message is passed in the system that the stack
--i8 closing.

on closeStack

global refresh

hide bkgnd field "level2"

mimato remove, icon, all

mimato remove, MICON, all

--Put true into the indicator to let the next

--stack know it will need to refresh the three

--icons for travel.

put true into refresh

end closeStack

-73-

--The following lines check the hidden "link" field when
--a card opens. The frame number of the visual image
--associated with the card will be grabbed, and that frame
--will be brought up on the videodisc player.

on openCard

global frame2

put item 1 of line 1 of field "links" into frame2

if frame2>0 then

Mimato "EXCEPT", "VIDEO", "FRAME", frame2

end if

end openCard

on closeCard
end closeCard

--This is a function definition. The function "playsegment"
--is used to control video segments and appears in several
--buttons on the background.

on playSegment segmentName

global recentVList, recentCList, recentCount

if recentVList is empty then put 1 into recentCount

else put recentCount + 1 into recentCount

if recentCount is 25 then

delete last item of recentVList

delete last item of recentCList

end if

put segmentName&","&recéntVList into recentVList

put name of this cd&","&recentCList into recentCList
Mimato "Play", "VSEG", segmentName

end playSegment

--The following is the lookup program. For each click of

--the mouse, the location is tested and if it is within

--the region of the colorspace screen, the building is determined
--and the system goes to the appropriate card and frame.

--The following is for the configuration when the addition of
--the card loc with the upper left colorspace coordinate = 667,14
--and the lower right coordinate = 1253,448.

on mouseDown

global rect, rectl, rect2, rect3, rect4, lookup, lookup1, lookup2
global linel, line2, i, size, index, location, imin, imax

global choice, resultl, answerl, check, cardl

--put the location of the click into variable check

put the clickloc into check

put item 1 of check into lookup1

--adjust for the position being relative to the upper left

-74-

--corner of the hypercard card.

put lookup1l + (item 1 of the loc of card window) into lookup1
--Check to see if the horizontal coordinate is within the
--bounds of the colorspace region.

if 667<lookupl and lookup1<1253 then

put item 2 of check into lookup2

put lookup2 + (item 2 of the loc of card window) into lookup2
--If it is within the bounds of the colorspace region,
--then check to see if the vertical coordinate is also

--in the vertical bounds of the colorspace board.

if 14<lookup2 and lookup2<448 then

put line 2 of field "links" into size

if size is empty then

--For debugging purposes to ensure all maps have the
--gize of the lookup table in line 2 of field "links"
--uncomment the following line:

--answer "no table size specified in "links" field" with "ok"
exit mouseDown

end if .

--Put the maximum and minimum line numbers of field
--entries into imin and imax.

put 1 into imin

put size into imax

put 1into1i

--Put the horizontal coordinates from the hidden field
--"rect" on the map stack background into variables.
put item 1 of line i of field "rect" into rect1

put item 3 of line 1 of field "rect" into rect3

--Keep repeating while still in the possible range

--of field entries.

repeat while i<=imax

--If the first coordinate is less than the first coordinate
--in the lookup table, there is nothing to be done.

if lookupl<rectl then

put 0 into-answerl

exit repeat

else

--If the first coordinate is between the two horizontal
--coordinates that define the area of a building, put
--the vertical coordinates of the building into variables.
if rectl<=lookupl and lookupl<=rect3 then

put item 2 of line i of field "rect" into rect2

put item 4 of line i of field "rect" into rect4

--If the vertical coordinate is also between the
--vertical coordinates that define a building,

-75-

--the building has been found, so grab the card
--number of the building from the same line in
--the "card” field, also hidden on the map stack
--background.

if rect2<=lookup2 and lookup2<=rect4 then
put line i of field "card” into cardl

exit repeat

else

--The vertical coordinate does not lie in the
--span of the current entries in the field, so
--go to the next line and try again.
puti+lintoi

put item 1 of line i of field "rect" into rectl
put item 3 of line i of field "rect" into rect3
end if

else

--The horizontal coordinate does not lie in the
--span of the current entries in the field, so
--go to the next line and try again.
puti+lintoi

put item 1 of line i of field "rect” into rect1
put item 3 of line i of field "rect" into rect3
end if .

end if

end repeat

else

--The vertical coordinate does not lie in the range of
--possible vertical coordinates. For debugging purposes
--uncomment the following line:

--play boing boing boing

exit mouseDown

end if

else

--The horizontal coordinate does not lie in the range of
--possible horizontal coordinates. For debugging purposes
--uncomment the following line:

--play boing boing

- exit mouseDown

end if

--When and if a card number is retrieved, find the appropriate

-76-

--stack to go to be the first number of the card. Go to the
--stack, and then go to the appropriate card.

if char 1 of cardl = 1 then

go card "Section"&card1 of stack "Academic"

else

if char 1 of cardl = 2 then
go card "Section"&card1 of stack "Campus"
end if

if char 1 of card1 = 3 then
go card "Section"&card1 of stack "Entertainment"
end if

if char 1 of cardl = 4 then
go card "Section"&card1 of stack "Maps"
end if

end if

--For debugging purposes, place this song in the script at a
--trouble spot to figure out what’s going on.

--twinkle, twinkle

--play "boing" tempo 200 "a a e5 e f# f# eh"

--dqd c# c# b4 b aw"

--If the coordinate was within the bounds of the area, but
--was not within a specific building, then nothing is to be
--done.

if i=imax+1 then

put inactive into resultl

--As an aid in debugging, uncomment the following lines to
--know or verify why nothing happened.

--doom march

--play "boing" tempo 500 "ch. ch ¢ ch. ebh d dh ¢ ch b3 c4w"
exit mouseDown

end if

--Uncomment the following line to help let you know if things
--went as planned.

--play "boing"

end mouseDown

77-

Appendix F
VISUAL Tools: Play Segment Buttons

For the Academic Stack:

--Play the video segment on finals.
on mouseUp

playSegment "finals"

end mouseUp

--Play the video segment on labs.
on mouseUp

playSegment "lab"

end mouseUp

--Play the video segment on libraries.
on mouseUp

playSegment "lib"

end mouseUp

--Play the video segment on freshman classes.
on mouseUp

playSegment "class"

end mouseUp

For the Campus Stack:

--Play the video segment on dorms.
on mouseUp

playSegment "dorm"

end mouseUp

--Play the video segment on intramural sports.
on mouseUp

playSegment "im"

end mouseUp

--Play the video segment on late night studying.
on mouseUp

playSegment "light"

end mouseUp

For the Entertainment Stack:
--Play the video segment on Boston.

-78-

on mouseUp
playSegment "boston"
end mouseUp

--Play the video segment on Harvard Square.
on mouseUp

playSegment "havsq"

end mouseUp

For the Maps Stack:

--Play the video segment on the T.
on mouseUp

playSegment "tride"

end mouseUp

-79-

Appendix G
Central Data Base Stack Script

Stack script
-- The following two commented blocks are used to get
--the summation of the position of the card and the
--uppper left and bottom right clicks on a building
--located on a map on the videodisk. When uncommented, the
--program will sequentially enter the upper left and lower
--right coordinates into a line and then move to the next line

--****IMPORTANT***]line 1 of field "map" must always
--be the end of the card name.

--For Example: for chavl, rhavl, nhavl, and havi,

-- the title of field map must be HAV1 !

--on openCard

answer "find loc" with "yes" or "no"
set lockScreen to True
if it is "no" then

set lockScreen to False
exit openCard

else if it is "yes" then
global z, ¢, ind

put O into z

put O into ¢

put true into ind

end if

set lockScreen to False
--end openCard

--on MouseDown

global ¢, z, color, hyper, x, y, col, co2, ind

if ind is true then

global mouseState

--The next two lines do not need to be umcommented...
--They are from when the "on idle" needed to be used
--because the VISUAL tools could not pass a mouseDown.
--if mouseState is empty then put up into mouseState
--get the mouse

--if it is down and mouseState is up then

if z = 0 then put 1 into z

if ¢ = 0 then put 1 into c

--put the mouseloc into color

put the clickloc into color

put the loc of ¢cd window into hyper

put item 1 of hyper into x

put item 2 of hyper into y

put item 1 of color into x1

put item 2 of color into y1

put x + x1 into col

put y + y1 into co2

ifc =1 then

put col into item 1 of line z of field "rect”
put co2 into item 2 of line z of field "rect"
putc+lintoc

else

put col into item 3 of line z of field "rect”
put co2 into item 4 of line z of field "rect"
put lintoc

put z+1 into z

end if ‘

end if

--end if

--put it into mouseState

--end mousedown

--The program below is almost identical to that in

--the map stack’s script. It is used here to test and

--debug problems with the maps.

--The following is the lookup program. For each click of

--the mouse, the location is tested and if it is within

--the region of the colorspace screen, the building is determined
--and the system goes to the appropriate card and frame.
--The following is for the configuration when the addition of
--the card loc with the upper left colorspace coordinate = 667,14
--and the lower right coordinate = 1253,448.

on mouseDown

global rect, rectl, rect2, rect3, rect4, lookup, lookup1, lookup2
global linel, line2, i, size, index, location, imin, imax

global choice, resultl, answerl, check, card1

--put the location of the click into variable check

--adjust for the position being relative to the upper left
--corner of the hypercard card.

put the clickloc into check

put item 1 of check into lookup1

put lookup1 + (item 1 of the loc of card window) into lookup1
--Check to see if the horizontal coordinate is within the
--bounds of the colorspace region.

if 667<lookupl and lookup1<1253 then

-81-

put item 2 of check into lookup2

put lookup2 + (item 2 of the loc of card window) into lookup2
--If it is within the bounds of the colorspace region,
--then check to see if the vertical coordinate is also
--in the vertical bounds of the colorspace board.

if 14<lookup2 and lookup2<448 then

put line 5 of field "map" into size

--For debugging purposes to ensure all maps have the
--size of the lookup table in line 2 of field "links"
--uncomment the following line:

--answer "no table size specified in "links" field" with "ok"
--if size is empty then

-- answer "no table size specified in map field"

-- play "boing" ¢6 ¢7

-- exit mouseDown

-- end if v

--Put the maximum and minimum line numbers of field
--entries into imin and imax.

put 1 into imin

put size into imax

put linto i

--Put the horizontal coordinates from the hidden field
--"rect” on the map stack background into variables.
put item 1 of line i of field "rect” into rectl

put item 3 of line i of field "rect" into rect3

--Keep repeating while still in the possible range

--of field entries.

repeat while i<=imax

--If the first coordinate is less than the first coordinate
--in the lookup table, there is nothing to be done.

if lookupl<rectl then

put 0 into answerl

exit repeat

else

--If the first coordinate is between the two horizontal
--coordinates that define the area of a building, put
--the vertical coordinates of the building into variables.
if rectl<=lookup1 and lookupl<=rect3 then

put item 2 of line i of field "rect” into rect2

put item 4 of line 1 of field "rect" into rect4

--If the vertical coordinate is also between the
--vertical coordinates that define a building,
--the building has been found, so grab the card
--number of the building from the same line in
--the "card" field, also hidden on the map stack

-82-

--background.

if rect2<=lookup2 and lookup2<=rect4 then
put line i of field "frame" into answerl

put line i of field "card" into cardl

exit repeat

else

--The vertical coordinate does not lie in the
--span of the current entries in the field, so
--go to the next line and try again.

put i+1 into i

put item 1 of line i of field "rect” into rectl
put item 3 of line i of field "rect" into rect3
end if :

else

--The horizontal coordinate does not lie in the

--span of the current entries in the field, so

--go to the next line and try again.

puti+lintoi

put item 1 of line i of field "rect” into rectl

put item 3 of line i of field "rect” into rect3

end if

end if

end repeat

else

--The vertical coordinate does not lie in the range of
--possible vertical coordinates. For debugging purposes
--uncomment the following line:

play boing boing boing

exit mouseDown

end if

else

--The horizontal coordinate does not lie in the range of
--possible horizontal coordinates. For debugging purposes
--uncomment the following line:

play boing boing

exit mouseDown

end if

--if answer1>34972 then

--Mimato "EXCEPT", "VIDEQO", "FRAME", answer1l

--When and if a card number is retrieved, find the appropriate
--stack to go to be the first number of the card. Go to the
--stack, and then go to the appropriate card.

if char 1 of card1 = 1 then
go card "Section"&card1 of stack "Academic"
else

if char 1 of card1 = 2 then
go card "Section"&card1 of stack "Campus"
end if

if char 1 of cardl = 3 then
go card "Section"&card1 of stack "Entertainment”
end if

if char 1 of cardl = 4 then
go card "Section"&card1 of stack "Maps"
end if

end if
--end if

--For debugging purposes, place this song in the script at a
--trouble spot to figure out what’s going on.
--twinkle, twinkle

--play "boing" tempo 200 "a a e5 e f# f# eh"
--dqd c# c#b4d b aw"

if answer1=0 then

put inactive into resultl

--twinkle, twinkle

play "boing"” tempo 200 "a a e5 e f# f# eh"
-dqdc# c#b4a b aw"

exit mouseDown

end if

--If the coordinate was within the bounds of the area, but
--was not within a specific building, then nothing is to be
--done.

if i=imax+1 then

put inactive into resultl

--As an aid in debugging, uncomment the following lines to
--know or verify why nothing happened.

--doom march

play "boing" tempo 500 "ch. ch ¢ ch. ebh d dh ¢ ch b3 c4w"
exit mouseDown

end if

--Uncomment the following line to help let you know if things
--went as planned.

~play boing”
play "boing

end mouseDown

-85-

Appendix H
Boolean Operation Routines

H.1 Frame Add

Button num 6 ID 18 length 1754 name "frame add"
--Aaaarrrggghhhh!!! On the disc, frames ordered 71 and 72 are only on
--one frame so0, everything after 72 is a frame ahead ie 73 is actually
--72nd....s0 moved everything before 72 up one frame...ie 1 is now 2
--80....to get proper frame number, this program modified so that it
--subtracts one off of the prompt "first frame #' and adds that to
--everything to offset by one.
on mouseUp
global u, v, order, frame, order2, frame2
putOintou
--ask "what is the number of the first still?"
answer "do you really want to do this?" with "yes" or "cancel”
if it is empty then exit mouseUp
else
--The program can be modified...it can either ask for the first
--still or the number of the first still, in this case 34973-1=
--34972, can be entered.

--putit-1intov

put 34972 into v

-- The following line was added to compensate for disc error
put v-1into v

end if

if u = 0 then put 1 into u

--The maximum number of still associated with each card is two,
--80 put them into two variables.

put item 1 of line u of field "order” into order

put item 2 of line u of field "order" into order2

repeat until order is empty

--If the card does not have a specific still, put "none" in
--field "frame".

if order is "none" then

put "none" into frame

else

--Offset the order by the proper amount.

put order+v into frame

end if

-86-

--Add the frame number to the frame table.
put frame into item 1 of line u of field "frame"

if order2 > O then

put order2+v into frame2

put frame2 into item 2 of line u of field "frame"
end if

put u+lintou

put item 1 of line u of field "order" into order
put item 2 of line u of field "order" into order2
end repeat

--Make a sound to indicate the program has finished.
play "boing"

end mouseUp

-87-

H.2 Size of Table

Button num 16 ID 32 length 790 name "size of table"
--This routine simply finds the number of entries in the
--tables on the card, and puts that number is the fifth
--line of the information field.
on mouseUp
global rect, rectl, rect2, rect3, rect4, lookup, lookup1, lookup2
global linel, line2, i, size, index, location, imin, imax
global choice, resultl, answerl

answer "Do you really want to do this??" with "yes" or "NO"
if it is "NO" then

exit mouseUp

else

--The following lines get the number of lines in the table and put
--it into line 5 of field map.

put 1 into size -

put line size of field "rect" into rect

repeat until rect is empty

put size+1 into size

put line size of field "rect” into rect
end repeat

put size-1 into size

put size into line 5 of field "map"
end if

end mouseUp

H.3 Fixit

Button num 17 ID 33 length 1230 name "fixit"
--This is meant to fix the problem on the videodisk
--Aaaarrrggghhhh!!! on the disc, frames ordered 71 and 72 are only on
--one frame so, everything after 72 is a frame ahead ie 73 is actuaily
--72nd....so moved everything before 72 up one frame...ie 1 is now 2
--80....to get proper frame number, this program modified so that it
--subtracts one off of the prompt "first frame #' and adds that to
--everything to offset by one.
on mouseUp
global a, f1, 2
put linto a
put item 1 of line a of field "order" into f1
put item 2 of line a of field "order" into 2
repeat until fl is empty
if f1 > 0 then
--If the frame order is greater than zero but
--less than 72, add one to properly offset it.
if f1 < 72 then
put f1+1 into f1
put fl into item 1 of line a of field "order"
end if
end if

if 2 > 0 then ' »

--If the frame order is greater than zero but
--less than 72, add one to properly offset it.
if f2 < 72 then

put f2+1 into f2

put f2 into item 2 of line a of field "order"
end if

end if

put a+1linto a

put item 1 of line a of field "order" into f1
put item 2 of line a of field "order" into f2
end repeat

--Play a sound to indicate the program is finished running.
play boing

end mouseUp

-89-

Appendix I
Rectangular Lookup Routine

Button num 15 ID 31 length 3986 name "rect find"
--The following is a prototype for the lookup program used
--in the map stack to lookup building locations for various
--maps. In this version, after the button is clicked, it
--prompts for a two coordinate number. If this number represents
--the coordinates within a building’s space on the map on the
--videodisc, then the building is determined and the appropriate card
--or frame number is grabbed. This program remains useful in
--debugging problems within a particular map.
on mouseUp
global rect, rectl, rect2, rect3, rect4, lookup, lookup1, lookup2
global linel, line2, i, size, index, location, imin, imax
global choice, resultl, answerl

ask "what is the 2 coordinate number?"

if it is empty then exit mouseUp

else

--put the coordinate into the variable lookup
put it into lookup

--Which info associated with the building do you want
--grabbed, i.e. the card or frame number.
ask "which field for line info result1?”

if it is empty then exit mouseUp

else

put it into choice

end if

end if

--The following lines get the number of lines in the table. This
--function is uneeded in the final version.

--put 1 into size

--put line size of field "rect" into rect

--repeat until rect is empty

-- put size+1 into size

-- put line size of field "rect" into rect

--end repeat

--put size-1 into size

--play "boing"

-90-

---Here {8 the look up function: ****Must get the loc of cd
—--window and add to the coordinates before looking up.
put line § of field "map" into size

if size is empty then

answer "no table size specified in map field"

play "boing" ¢6 c7

exit mouseUp

end if

--Put the maximum and minimum line numbers of the filed
--entries into imin and imax

put 1 into imin

put size into imax

put 1intoi

--Put the horizontal coordinates from the field

--"rect" into variables.

put item 1 of lookup into lookup1l

put item 2 of lookup into lookup2

put item 1 of line i of field "rect" into rectl

put item 3 of line i of field "rect” into rect3

--Keep repeating while still in the possible range

--of field entries.

repeat while i<=imax .

--If the first coordinate is less than the first coordinate
--in the lookup table, there is nothing to be done.

if lookupl<rectl then

put 0 into answerl

exit repeat

else

--If the first coordinate is between the two horizontal
--coordinates that define the area of a building, put
--the vertical coordinates of the building into variables.
if rect1<=lookup1 and lookupl<=rect3 then

put item 2 of line i of field "rect” into rect2

put item 4 of line i of field "rect” into rect4

--If the vertical coordinate is also between the
--vertical coordinates that define a building,

--the building has been found, so grab the chosen
--information for the same line in the appropriate
--field.

if rect2<=lookup2 and lookup2<=rect4 then

put i into answerl

exit repeat

else
--The vertical coordinate does not lie in the

-91.

--span of the current entries inthe field, so
--go to the next line and try again.
puti+lintoi

put item 1 of line i of field "rect” into rectl
put item 3 of line i of field "rect” into rect3
end if

else

--The horizontal coordinate does not lie in the
--span of the current entries inthe field, so
--go to the next line and try again.
puti+lintoi

put item 1 of line i of field "rect” into rectl
put item 3 of line i of field "rect” into rect3
end if

end if

end repeat

--The following' two if statements are used in debugging.
--Different songs are played for different conditions.

if answer1=0 then

put inactive into resultl

--twinkle, twinkle

play "boing" tempo 200 "a a e5 e f# f# eh"
--dqdc#c#bab aw"

exit mouseUp

end if

--If the coordinate is within the region of the colorspace
--board but not within a defined building space, then the
--doom march is played.

if i=imax+1 then

put inactive into resultl

--doom march

play "boing" tempo 500 "ch. ch ¢ ch. ebh d dh ¢ ch b3 c4w"
exit mouseUp

else

put line answerl of field choice into resultl

end if

play "boing"
end mouseUp

—

-92-

Appendix J
Sorting Programs

J.1 Card Sort

Button num 9 ID 24 length 2226 name "card sort"
--This program sorts the five fields by the order of the cards.
on mouseUp
global tryl, try2, namel, name2, 11, 12, rectl, rect2, orderl, order2
global framel, frame2
put lintol1
--Put the first line of field "card" into the variable tryl and
--the second line of field "card" into the variable try2. Compare
--the two variables.
put line 11 of field "card” into tryl
put 2 into 12
put line 12 of field "card" into try?2

--Repeat until the end of the entries in field "card".
repeat until try2 is empty

--If tryl is less than or equal to try to, then move down and
--compare the next two lines.

if tryl <= try2 then

putl1+1linto 11

put 12+1 into 12

put line 11 of field "card” into tryl

put line 12 of field "card" into try2

else

--If tryl is greater than try2, then grab all of the other
--four parameters, and switch all five parameters around.
if try2 < tryl then

put line 11 of field "name" into namel

put line 12 of field "name" into name2

put line 11 of field "rect” into rectl

put line 12 of field "rect” into rect2

put line 11 of field "order" into order1

put line 12 of field "order" into order2

put line 11 of field "frame" into framel

put line 12 of field "frame" into frame2

put namel into line 12 of field "name"

put name?2 into line 11 of field "name”

put tryl into line 12 of field "card"

-93-

put try2 into line 11 of field "card"

put rectl into line 12 of field "rect"”

put rect2 into line 11 of field "rect"”

put orderl into line 12 of field "order"

put order2 into line 11 of field "order”

put framel into line 12 of field "frame"

put frame2 into line 11 of field "frame"

--If the current line is the first, no need to
--go back any further, so compare the next two
--lines.

if 11=1 then

put 1141 into 11

put 12+1 into 12

put line 11 of field "card” into tryl

put line 12 of field "card" into try2

else

--Go back a pair of lines and check to see if
--the switched line is in the proper spot or if
--it needs to be moved further up the list.
put11-1linto 11

put 12-1 into 12

put line 11 of field "card" into tryl

put line 12 of field "card" into try2

end if

end if

end if

end repeat

--The following noise mdmates the sort has been completed.
play "boing"

end mouseUp

J.2 Rectangular Coordinate Sort

Button num 8 ID 23 length 3220 name "rect sort"
--This program sorts the rectangular coordinates by the upper left
--horizontal coordinate.
on mouseUp
global cardl, card2, namel, name2, orderl, order2, framel, frame2
global tryl, try2, a, b, temp1, temp2
put linto a
put2into b
put lintoi
--Put the first coordinate of lines one and two into the variables
--tryl and try2, respectively.
put item i of line a of field "rect" into tryl
put item i of line b of field "rect" into try2
--Repeat until the end of the entries in field "rect".
repeat until try2 is empty
--If tryl is less than try2, no switch is necessary, so go
--to the next two lines to compare them.
if tryl < try2 then
put 1intoi
put a+linto a
put b+1into b
put item i of line a of field "rect” into tryl
put item i of line b of field "rect" into try2
--end if
else

--If tryl is greater than try2, put all the other four
--parameters into variable and switch all five parameters
--around.

if try2 < tryl then

--To debug, the following lines are not essential
--to the program so comment from here******
put line a of field "card" into cardl

put line b of field "card" into card2

put line a of field "name" into namel

put line b of field "name" into name2

put line a of field "order" into orderl

put line b of field "order" into order2

put line a of field "frame" into framel

put line b of field "frame" into frame?2

put namel into line b of field "name"

put name2 into line a of field "name"

put cardl into line b of field "card"

put card?2 into line a of field "card”

-95-

put orderl into line b of field "order”

put order2 into line a of field "order"

put framel into line b of field "frame"

put frame2 into line a of field "frame"

--to here*********

put line a of field "rect" into temp1

put line b of field "rect" into temp2

put templ into line b of field "rect"

put temp2 into line a of field "rect"

--If the current lines are the first and second, no need
--to go back any further, so go to the next two lines
--for a comparison.

if a=1 then

put a+linto a

put b+1into b

put linto i

put item i of line a of field "rect" into try1

put item i of line b of field "rect" into try2

else :

--If the lines are not the first two, back up a pair
--of lines to compare the switched line to the previous
--line to see if it needs to be moved further near the
--beginning of the table.

puta-lintoa

put b-linto b

put linto i .

put item i of line a of field "rect" into tryl

put item i of line b of field "rect" into try2

end if

end if

--If the coordinates of the two lines are equal, compare
--the next set of coordinates, i.e. if the first coordinates
--are equal, compare the second set.

if tryl = try2 then

ifi < 4 then

puti+lintoi

put item i of line a of field "rect” into tryl

put item i of line b of field "rect” into try2

else

--If the coordinates happen to be equal, which is
--theoretically impossible, just leave them in the
--same places, and move onto the next pair of coordinates.
ifi = 4 then

put 1linto i

put a+lintoa

put b+1 into b

-96-

put item i of line a of field "rect” into tryl
put item i of line b of field "rect"” into try2
end if
end if
end if
end if

end repeat.

--Play a sound to indicate the sort is over.
play "boing"

end mouseUp

J.3 Name Sort

Button num 7 ID 21 length 2260 name "name sort"
--This program sorts the five parameter fields alphabetically
--by name.
on mouseUp
global tryl, try2, 11, 12, card1, card2, rectl, rect2, orderl, order2
global framel, frame2
put linto 11
--Put line 1 of field "name" into tryl and line 2 into try2.
put line 11 of field "name" into tryl
put 2 into 12
put line 12 of field "name" into try2
--Keep going until the last entry in the "name" field.
repeat until try2 is empty
--If tryl is less than or equal to try2, the two are in proper
--Sequence, so move onto the next line pair to compare.
if tryl <= try2 then
putll+lintoll"
put 12+1 into 12
put line 11 of field "name" into try1
put line 12 of field "name" into try2
else
--If tryl is greater than try2, load up the other four
--parameters into variables, and switch the order of all
--five parameters.
if try2 < tryl then
put line 11 of field "card" into card1
put line 12 of field "card" into card2
put line 11 of field "rect” into rectl
put line 12 of field "rect” into rect2
put line 11 of field "order" into order1
put line 12 of field "order" into order2
put line 11-of field "frame" into frame1l
put line 12 of field "frame" into frame2
put tryl into line 12 of field "name"
put try2 into line 11 of field "name"
put cardl into line 12 of field "card"
put card2 into line 11 of field "card"
put rectl into line 12 of field "rect”
put rect2 into line 11 of field "rect”
put orderl into line 12 of field "order"
put order2 into line 11 of field "order"
put framel into line 12 of field "frame"
put frame2 into line 11 of field "frame"

--If the two lines of comparison are the first two, there

-98-

--is no reason to back up to do further comparison, so move
--on to the next two lines.

if11=1 then

put 11+1 into 11

put 12+1 into 12

put line 11 of field "name" into tryl

put line 12 of field "name" into try2

else

--If the two lines are not the first two, then go back a
--pair of lines to check the switched line against the one
--before it to see if it needs to be moved further up the
--table.

putll-lintoll

put 12-1 into 12

put line 11 of field "name" into tryl

put line 12 of field "name" into try2

end if

end if

end if

end repeat

--Make this sound to indicate the sort is over.

play "boing"

end mouseUp

J.4 T Rectangular Sort

Button num 10 ID 25 length 3460 name "T rsort"
--This script sorts the rectangular coordinates of the T stops.
on mouseUp
global cardl, card2, namel, name2, orderl, order2, framel, frame2
global tryl, try2, a, b, temp1, temp2, stationl, station2
put linto a
put 2into b
put 1intoi ,
--Put the first coordinate of lines one and two into the variables
--tryl and try2, respectively.
put item i of line a of field "rect" into tryl
put item i of line b of field "rect” into try2
--Repeat until the end of the entries in field "rect".
repeat until try2 is empty
-If tryl is less than try2, no switch is necessary, so go
--to the next two lines to compare them.
if tryl < try2 then
put 1lintoi
put a+1l into a
putb+lintob
put item i of line a of field "rect” into tryl
put item i of line b of field "rect" into try2
--end if
else
--If tryl is greater than try2, put all the other four
--parameters into variable and switch all five parameters
--around.
if try2 < tryl then
--To debug, the following lines are not essential
--to the program so comment from here*****#**
put line a of card field "stationmaps" into station1
put line b-of card field "stationmaps" into station2
put line a of field "name" into namel
put line b of field "name" into name2
put line a of field "order" into orderl
put line b of field "order"” into order2
put line a of field "card" into cardl
put line b of field "card" into card2
put line a of field "frame" into framel
put line b of field "frame" into frame?2
put namel into line b of field "name"
put name2 into line a of field "name"
put stationl into line b of card field "stationmaps"
put station2 into line a of card field "stationmaps"

-100-

put orderl into line b of field "order”

put order?2 into line a of field "order"

put framel into line b of field "frame"

put frame2 into line a of field "frame"

put cardl into line b of field "card"”

put card2 into line a of field "card"

__to here*********

put line a of field "rect” into temp1

put line b of field "rect” into temp2

put templ into line b of field "rect"

put temp2 into line a of field "rect"

if a=1 then

put temp2 into line a of field "rect"

--If the current lines are the first and second, no need
--to go back any further, so go to the next two lines
--for a comparison.

put a+linto a

putb+lintob

put lintoi

put item i of line a of field "rect” into tryl

put item i of line b of field "rect" into try2

else

--If the lines are not the first two, back up a pair
--of lines to compare the switched line to the previous
--line to see if it needs to be moved further near the
--beginning of the table,

put a-linto a

putb-lintob

put linto i

put item i of line a of field "rect" into tryl

put item i of line b of field "rect” into try2

end if

end if

--If the coordinates of the two lines are equal, compare
--the next set of coordinates, i.e. if the first coordinates
--are equal, compare the second set.

if tryl = try2 then

ifi < 4 then

puti+lintoi

put item i of line a of field "rect” into tryl

put item i of line b of field "rect” into try2

else

--If the coordinates happen to be equal, which is
--theoretically impossible, just leave them in the
--same places, and move onto the next pair of coordinates.
ifi = 4 then

-101-

put linto i

put a+1linto a

put b+1linto b

put item i of line a of field "rect” into tryl
put item i of line b of field "rect” into try2
end if

end if

end if

end if

end repeat
--Play a sound to indicate the sort is over.

play "boing"
end mouseUp

\

-102-

Appendix K
Automated Fill Programs

K.1 Still Frame Fill

Button num 12 ID 27 length 2328 name "stillframefill"
--This is the program to fill in still frame numbers into line 1 of
--each hidden link box on the hypercards by going down the list of
--cards associated with each map
--It does not itemize...just overwrites, since for cards with
--more than one picture, the two frames are entered in one line.
--For most efficient fill, USE THE CARD SORTED TABLES, since for
--those entries, such as T indicators, there is no unique card and
--still.

on mouseUp

global a, mapname, cardl, framel

--For updates, it is not necessary to go through the whole
--list if the only change is near the end. The next line
--prompts the user for the line to start the fill on.

ask "What line should I start on?"

if it is empty then exit mouseUp

put it into a

--Put the name of the map into a variable to the program
--understands which card to return to!!!

put line 1 of field "map" into mapname

put item 1 of line a of field "card" into card1
put line a of field "frame" into framel

repeat until cardl is empty

--If the first char is 0, nothing needs to be done. Ifit

--is 1-4, go to the appropriate stack, then go to the card
--and fill in the still frame number into line one of field
--"links". Then return to do the next entry of the table.

if char 1 of card1 = 1 then

go card "Section"&card1 of stack "Academic"”
put framel into line 1 of field "links"

go card "c"&mapname of stack "Map data"

else

if char 1 of cardl = 2 then

go card "Section"&card1 of stack "Campus"
put framel into line 1 of field "links"

go card "c"&mapname of stack "Map data"
end if

if char 1 of cardl = 3 then

go card "Section"&card1 of stack "Entertainment”
put framel into line 1 of field "links"

go card "c"&mapname of stack "Map data”

end if

if char 1 of cardl = 4 then

go card "Section"&card1 of stack "Maps"
put framel into line 1 of field "links"

go card "c"&mapname of stack "Map data"
end if :

end if

--Once back at the card sort card in the map data stack,
--go to the next line to perform the next still frame fill.
put a+1into a

put item 1 of line a of field "card"” into cardl

put line a of field "frame" into framel

end repeat

put a-linto a

put item 1 of line a of field "card" into card1
put line a of field "frame" into framel
--Play this noise to indicate the fill is over.
play "boing"

end mouseUp

K.2 Map Frame Fill

Button num 11 ID 26 length 2454 name "mapframefill"
--This is the program to fill in map frame numbers into line 2 of each
--hidden link box on the hypercards by going down the list of
--cards associated with each map.
--It does not itemize.. just overwrites. It can itemize by
--uncommenting lines as shown below.
--For most efficient fill, USE THE CARD SORTED TABLES, since for
--those entries, such as T indicators, there is no unique card and
--still.
on mouseUp
global a, mapname, cardl, i, i2, mapframe
--For updates, it is not necessary to go through the whole
--list if the only change is near the end. The next line
--prompts the user for the line to start the fill on.
ask "What line should I start on?" '
if it is empty then exit mouseUp
putitintoa
--Put the name of the map into a variable to the program
--understands which card to return to!!!
put line 1 of field "map"” into mapname
--Put the frame number of the map into the variable "mapframe"
put line 3 of field "map"” into mapframe
put item 1 of line a of field "card" into card1

repeat until cardl is empty

--If the first char is 0, nothing needs to be done. Ifit

--is 1-4, go to the appropriate stack, then go to the card
--and fill in the map frame number into line two of field
--"links". Then return to do the next entry of the table.

if char 1 of card1 = 1 then
go card "Section"&card1 of stack "Academic”
else

if char 1 of cardl = 2 then
go card "Section"&card1 of stack "Campus”
end if

if char 1 of card1 = 3 then
go card "Section"&card1 of stack "Entertainment”’
end if

-108-

if char 1 of card1 = 4 then

go card "Section"&card1 of stack "Maps"
end if

end if

--If there is already something in field "links", this program will
--itemize and not overwrite

--To overwrite, comment the lines below

-- put item 1 of line 2 of field "links" into i2

--if i2 is empty then

put mapframe into line 2 of field "links"

go card "c"&mapname of stack "Map data”

-- else

- putOintoi

-- repeat until i2 is empty

- puti+lintoi

-- putitemi of line 2 of field "links" into i2
end repeat

-- put mapframe into item i of line 2 of field "links"
-- put linto 1

--go card "c"&mapname of stack "Map data"

--end if

--Once back at the card sort card in the map data stack,
--go to the next line to perform the next still frame fill.
put a+1linto a

put item 1 of line a of field "card"” into card1

end repeat

--Make a sound to indicate the fill is over.
play "boing"

end mouseUp

K.3 Map Card Fill

Button num 13 ID 28 length 2500 name "mapcardfill"
--This is the program to fill in map card numbers into line 3 of each
--hidden link box on the hypercards by going down the list of
--cards associated with each map
--It does not itemize.. just overwrites. It can itemize by
--uncommenting lines as shown below.
--For most efficient fill, USE THE CARD SORTED TABLES, since for
--those entries, such as T indicators, there is no unique card and
--still.
on mouseUp
global a, mapname, card1, cardname, i2, i, fill
--For updates, it is not necessary to go through the whole
--list if the only change is near the end. The next line
--prompts the user for the line to start the fill on.
ask "What line should I start on?"
if it is empty then exit mouseUp
putitintoa
--Put the name of the map into a variable to the program
--understands which card to return to!!!
put line 1 of field "map" into mapname
put item 1 of line a of field "card" into card1
--Put the card number of the map into the variable "cardname".
put line 4 of field "map" into cardname

repeat until cardl is empty

--If the first char is 0, nothing needs to be done. Ifit

--i8 1-4, go to the appropriate stack, then go to the card
--and fill in the still frame number into line one of field
--"links". Then return to do the next entry of the table.

if char 1 oi'cardl = 1 then
go card "Section"&card1 of stack "Academic"
else

if char 1 of cardl = 2 then
go card "Section"&card1 of stack "Campus"
end if

if char 1 of cardl = 3 then
go card "Section"&card1 of stack "Entertainment"
end if

-107-

if char 1 of cardl = 4 then

go card "Section"&card1l of stack "Maps"
end if

end if

--If there is already something in field "links", this program will
--itemize and not overwrite

--To itemize, uncomment the lines below

--put item 1 of line 3 of field "links" into i2

--if i2 is empty then

put cardname into line 3 of field "links"

go card "c"&mapname of stack "Map data"

-- else

--put 0 into i

--This is for stills/cards that appear on more than one map
--repeat until i2 is empty

--put i+1 into i

--put item i of line 3 of field "links" into i2

--end repeat

--put cardname into item i of line 3 of field "links"
--put 1linto i

--go card "c"&mapname of stack "Map data"
--end if

--Once back at the card sort card in the map data stack,
--go to the next line to perform the next still frame fill.
put a+linto a

put item 1 of line a of field "card” into cardl

end repeat

--Make a sound to indicate the fill is over.
play "boing"

end mouseUp

-108-
K.4 T Frame Fill

Button num 14 ID 29 length 1672 name "tframefill"
--This is the program to get the card and frame numbers
--for each of the maps under each station on the TMAP
--For each station, a list of the frame numbers
--and hypercard numbers of the associated maps are
--filled into to the card and frame fields

--The numbers are input by hand originally into the
--individual cards for each "cmap" in the map data section.

--When a user clicks on the TMAP, the rect will be found and the system
--will go to the appropriate hypercard card for the map... '

--all that is really needed is the card number since the map card will
--store the frame number and open the appropriate map

on mouseUp

global a, mapname, cardl, framel, linecheck, i

ask "What line should I start on?"

if it is empty then exit mouseUp

putitintoa

put item 1 of line a of cd field "stationmaps” into mapname
put line a of cd field "stationmaps" into linecheck

put lintoi

--Keep going until the last entry in the table.

repeat until linecheck is empty

repeat until mapname is empty

go card "c"&mapname

put line 3 of field "map" into framel

put line 4 of field "map" into card1

-- go card rTMAP

--For testing purposes: use rTMAP2 and comment line above
go card rTMAP2

put framel into item i of line a of field "frame"
put cardl into item i of line a of field "card"

puti+lintoi
put item i of line a of cd field "stationmaps" into mapname

end repeat
--Go to the next line.
put a+1 into a

-109-

put linto i

put item i of line a of cd field "stationmaps” into mapname
put line a of cd field "stationmaps” into mapname

end repeat '

--Play a sound to indicate the program has come to an end.
play "boing"

end mouseUp

.
~

-110-

References

[Altman 88] Altman, China.
Davenport Wants You as Film Pilot, Not Passenger.
Tech Talk , March, 1988.

[Basin 67] Basin, Andre.
The Myth of Total Cinema.
University of California Press, Berkeley, CA, 1967.

[Brondmo, Davenpeort 89]
Brondmo, Hans Peter and Davenport, Glorianna.
Creating and Viewing the Elastic Charles - a Hypermedia
Journal.
May, 1989.
MIT Media Laboratory.

[Cook 81] Cook, David.
A History of Narrative Film.
"W W Norton and Co., New York, 1981.

[Davenport 87] Davenport, Glorianna.
New Orleans in Transition, 1983 - 1986: The Interactive
Delivery of a Cinematic Case Study.
August, 1987.

[Fiderio 88] Fiderio, Janet.
A Grand Vision.
BYTE , October, 1988.

[Mass Micro 88] ColorSpacell - Programmer’s Reference
Pre-Production edition, Mass Micro Systems, 1988.

[Multimedia Lab 88]
The Multimedia Lab, Apple Computer, Inc.
Multimedia Production: A Set of Three Reports.
Technical Report 14, Apple Computer, Inc., November, 1988.

[Negroponte 79] Negroponte, Nicholas.
The Impact of Optical Videodiscs on Filmaking.
June, 1979.

