Database Maintenance

for a Video Editing System

by

Andria H. Wong

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements
for the Degree of
Bachelor of Science in Electrical Science and Engineering
at the
Massachusetts Institute of Technology

May 1986

The author hereby grants to MIT permission to reproduce
and to distribute copies of this thesis document in
whole or in part.

Signature of Author AT s e NS L AN
Department of Electrical Eng1neer1no anqscbmputer gyience
-~ May , 1986
Certified by o _ Y
/. . - Gloridnna Davenport

Thesis Supervisor

-

Accepted by

David Adler
Chairman, Department Committee

JUN 1 8 1986
Lleruﬂ;l“‘c‘6

Archives

ABSTRACT

This thesis works with the data maintenance mode of
a video editing system. The editing system we are
concerned with consists of three modes : the Maintenance
Mode, the Preview Mode, and the Execute Mode. The
Maintenance Mode takes care of the video database, namely
the edit decision list; the Preview Mode allows one to
preview the result of edit decisions, and finally the
Execute Mode does the actually editing. Data maintenance
is done entirely 1in software. Utility programs are
written to retrieve and modify information in the
database, display sequences of edit decisions, and

interact with other modes.

ACKNOWLEDGMENTS

I would 1like to express my sincere thanks to my
thesis supervisor, Glorianna Davenport, for allowing me
to participate in this project of the film/video group at
the MIT Media Laboratory. Many thanks also go to project
directors Keishi Kandori and Russ Sasnett for their
technical guidance along the way. I also wish to show my
appreciation to all other members in the group for their
efforts in making this project possible.

I am indebted to my parents for their love and
financial support throughout my four years of college,
and to my brothers and sisters for their encouragement as
I undergo various difficulties and pressure.

Finally, I wish to express my deepest gratitude to
the Father, whom I love dearly, and who has been helping
me in every way he could to keep me growing in his love

and mercy.

Table of Contents

1. OVERVIEW

Introduction
Data Maintained For Video Editing
SMPTE/EBU Time Code

o
L] . []
w N

2. EDL CLOSE-UP

Introduction
CMX Format And Its Data Fields
Our EDL Limitations

NN
wN -

3. IN PREPARATION FOR EDL ENTRY UTILITY

Introduction
MakeEDL

3.
3.
3.3 Talk

w N =

4., EDL ENTRY UTILITY

Introduction

Edlentry

EDL Edit Mode

Future Expansions For Edlentry

SRR

.
L
.
°

RGN NS

5. CONCLUSION

5.1 Standardization
5.2 Conclusion

APPENDIX A : MakeEDL.c
APPENDIX B : Talk.c
APPENDIX C : Edlentry.c

REFERENCE

OCWVWW W NV U WHKH

N N e
W HFORW W

NN
ww

Chapter 1
OVERVIEW

1.1 Introduction

Since the advent of computer-controllable video
machines, TV post-production has gained much attention
and has become very important in the television industry.
One aspect of video production that has undergone
tremendous progress is video-editing and post-production.
Video-editing is no more the crude "cut and splice" of
earlier days; it has become a sophisticated computerized
craft, in which the entire post-production process is
performed in a computerized editing bay. ATl the
information that describes how the raw footage is to be
transformed into a polished TV program is maintained in a
database. This thesis describes how the information is
represented, and explores ways to improve the editing
process by making it easy for a human editor to create

such a data base.

1.2 Data Maintained For Video Editing

There are two parts in the process of videc editing.
They are offline editing and online editing. They both
maintain information in one of a number of similarly
organized formats which are represented as Edit Decision
Lists (EDLs). The offline editing process is when the
editor has to choose the preferred takes from all the
footage and to figure out how these sources are arranged
to give a desirable output. This process is usually done
in a small inexpensive offline system, after which the
editor enters the offline edit decisions by hand. These
offline EDLs have a less restricted format that suit the
taste of the individual editor. It may only require the
time code of the "edit-in" point and the scene duration
as far as the location of the source is concerned. — It
may also 1include some verbal description of the take as
well, The online editing preocess is done in a
sophisticated computerized editing bay, where all the
information in the EDLs must be clearly specified. This
is usually a rather expensive process due to the hardware
involved and its requiring the presence of a trained
operator. Recently the distinction between offline and
online editing becomes less obvious because some offline
systems have been developed to such sophistication that
an online EDL may be generated in the offline process.
In general, the online EDLs include all the data listed

below.

- Edit numbers for each shot, numbered
consecutively.

- A reel number for each shot.

- The edit mode (audio-only, video-only, or audio
and video) plus the number of the audio track
on which audio edits will be recorded.

- The transition type (cut, dissolve, wipe, key
etc).

- The time code of the edit start point and end
point.

- The time code of the record start point and end
point.
For the rest of this paper, we will only look at the
online EDLs and its details will be discussed at length

in the following chapters.
1.3 SMPTE/EBU Time Code

One major progress in the video industry 1is the
advent of SMPTE/EBU (Society of Motion Picture and
Television Engineers / European Broadcasting Union) time
code. This 1is a standard format, set up by the SMPTE
Committee, in which each individual frame address 1is to
be represented. A SMPTE time code is a string of binary
signals recorded along an audio track of a video tape or
in the vertical interval between two fields which make up
a video frame so that each frame or field has a wunique
code. As far as the time code in the EDL is concerned,
it is represented as a string of eight digits. SMPTE

time code is indexed in hours, minutes, seconds and

frames with 30 frames per second in NTSC (National

Television Standards Committee).

10

23

42

.0
| =
1N

HR : MIN : SEC : FR

NTSC time code readouts range from 00:00:00:00 to
25:59:59:29 , recycling at each 24-hour interval.
SMPTE time code is essential to computerized video

editing for the following reasons :

1. Accuracy and repeatability. Time code permits
edits that are accurate down to one frame or
field, and that are repeatable. Edit points
can also be adjusted in one frame increments.

2. Precise time reference. The duration of a
selected scene can be determined with frame
accuracy, simply by subtracting the "edit-in"
point from the "edit-out" point. Time code
also gives editors frame-accurate running
times throughout the editing process.

3. Interchangeability between editing systems.
Editors can perform their offline editing on a
low-cost equipment and then input the results
to a high quality online editing system. This
is a money saving strategy.

4, Precision synchronization of one VTR to

another. Time code allows an editing system

.0 bring two or more tapes into exact sync

automatically. This means perfect frame-to-

frame match-ups at the edit points with no

video breakups.

Video editing industry owes a major part of its
advancement to the standardization of this frame indexing
technique. In a later chapter, we shall 1look at how

SMPTE time code is utilized in the EDL database.

Chapter 2
EDL CLOSE-UP

2.1 Introduction

Although SMPTE has formed a committee to work on
establishing a standardized industry-wide format for
computerized edit decision 1lists, no single standard
exists today. The most widely used EDL format 1is the
ASCII format (American Standard Code for Information
Interchange) or more commonly referred to as the CMX
format.

This chapter describes the structure of this format,
the details of its data fields, and discusses the EDL

limitations in our video editing system.
2.2 CMX Format And Its Data Fields

The CMX format of EDL consists of ten discrete areas

of information or data fields.

1. Field 1 contains the edit event number. This
indicates the numerical order by which the
edits in the list will be performed. In the

case of a two-line edit, the two lines of
information should both contain the same event
number.

2. Field 2 indicates the source of the edit.
This may be a reel number or abbreviations
such as "AX" for auxiliary, "BL" for black or
"1SO" for isolated camera.

3.

5.

Field 3 indicates the edit mode. This may
include : "AV", designation for audio/video;
"Al" or "A2", designatin for audio-only plus
the specification of the audio track ; "V",
designation for video-only edits.

Field 4 designates the edit transition type.
This may include any of the following
letter/number combinations :

- C
CuT

- D
DISSOLVE transition. This is a two-line
edit with the first line indicating the
outgoing scene.

- Wk*x*%
WIPE transition. This 1is a two-line
edit. The three asterisks stand for a
three digit wipe code sp2cifying which
wipe configuration the video switcher
should periorm.

- KB
KEY transition. The B indicates that it
is the first line of a two-line edit and
it is the background source.

- K
KEY-IN transition. This is the second
line of a two-line edit and it 1is the
foreground source.

- KO
KEY-OUT transition. This is the second
line of a two-line edit, and it is the
foreground source that will be on when
the edit starts and eventually fades out
after a prescribed duration.

Field 5 is a three digit number in frames
indicating the duration at which the
transition between the two sources of a
two-line edit should take place. It is blank
for a one-line edit, namely a CUT.

Field 6 <contains the start time of the
playback VTR, designated in SMPTE time code.

10.

Field 7 contains the stop time of the playback
VTR, designated in SMPTE time code.

Field 8 contains the start time of the record
VTR, designated in SMPTE time code.

Field 9 may either contain the stop time of
the record VTR or the duration of the edit.

Field 10 contains the carriage-return which is
not actually printed in the edit decision list
readout.

2.3 Our EDL Limitations

There are a number of differences between the

CMX

format and the EDLs supported by our editing system.

Some of these are considered 1limitations because

our

scheme for data maintenance has not been developed to

such sophistication.

Field 2 :

A reel number is represented by a number
instead of a short character string, and we do
not support "ISO" (isolated camera).

Field 3 :
We use "B" , which stands for "Both", instead
of "AV" to designate an audio/video edit.

Field 4 :

Instead of having "KB" and "KO", "K" by itself
stands for a key transition with the first line
specifying the background source, and the
second line, the foreground source.

Field 5 :

Instead of a three digit frame count of
transition duration, we use the format of 02:08
to indicate a duration of two seconds and eight
frames. For the convenience of reading EDL, we
append the duration of 00:00 in place of the
blanks.

Field 9 :

This field always contains the SMPTE "edit-out"

point for the stop time of the record VTR.

Aside from these 1limitations, our EDLs follow the
CMX specifications. However, many features need to be
added to our database management to take full advantage
of the computational environment. Some possible

expansions will be discussed in chapter 4.

Chapter 3
IN PREPARATION FOR EDL ENTRY UTILITY

3.1 Introduction

In preparation for the EDL entry utility, two other
programs weré written. They are respectively MakeEDL and
Talk. All software 1is written in C and run in a UNIX
FIVE environment on a Hewlett-Packard Bobcat. This
chapter describes in detail these two programs and
discusses their limitations and ways in which they could

be improved.

3.2 MakeEDL

MakeEDL creates a list of edit decisions and saves
it in a file called "sample.edl". This is a
straight-forward program that generates 512 edit
decisions solely to be experimented upon by the next two
programs, Talk and Edlentry. The information in the list
is largely "dummy" data, containing no significant
meaning at all. Nevertheless ,it does demonstrate all of
the various types of edits, which a real list might not
provide. This is important for error-checking.

The EDL begins with the playback and record start

times at 1 hour (01:00:00:00). Each subsequent event

10

line of the edit list has a duration of 10 frames. This
is done by incrementing the integer array newtc by 10
frames every time makenewts is called.

Events 1 to 5 are each two-line edits with
audio/video mode and a dissolve transition.

Events 6 to 9 are also two-line edits in audio/video
mode with a wipe transition of the 101 wipe
configuration.

Events 10 to 99 are all CUTs with the edit mode of
audio track 2.

Events 100 to 512 are also CUTs with video-only edit
mode.

The source code of MakeEDL can be found in Appendix

A and a simplified EDL sample of 12 events is also

_appended for reference at the end of the program listing.

3.3 Talk

This program accesses the file “sample.edl" and
reads or modifies the information it contains wupon
receiving an appropriate command from the terminal. Talk
starts with an infinite loop by busy-waiting for a
request typed by an operator at the keyboard. It accepts
an input string, and tries to match it against each of
the three valid commands. If there is no match, it gives
an error message and returns to the waiting mode.

The valid commands are : SE#*, RE1l#* and RE2#* ('*'

stands for an event number).

11

SE#* is a command for reading a specified event.
Talk will test for the wvalidity of the event number,
which must be between 1 and 512 inclusive. If it is
valid, Talk searches the file "sample.edl" for the
specified event number. Once it is found, the whole line
of information appended to the string "be#*" is printed
on the terminal (2 lines in the case of a two-line edit).

RE1#* and RE2#* are commands for modifying the EDL
and are somewhat more complicated to deal with than SE#%,
because the old event or the new event can be either a
one-line or two-line edit. REl signifies that the new
event consists of one line, while RE2 1is that of two
lines. After the event number has passed the validity
test, we must check and see what category of replacement
the request belongs to. There are altogether four
categories. We call the replacement of a one-line edit
by a two-line edit a "1->2 replacement”. So the meanings
for the categories of "1->1 replacement”, "2->2
replacement” and "2->1 replacement" are obvious. The
operations for 1->1 and 2->2 replacements are simple.
Talk accepts the new event from the terminal and writes
it in the file where the old event is to be replaced. In
the case of a 2->1 replacement, the second line of the
old event must be deleted, while in the case of a 1->2
replacement, the second line of the new event must be

inserted. These operations are done in the routine

12

updatef in which a temporary file is created. Sample.edl
is copied into this tempfile up to the point where
deletion or insertion should take place. In the case of
deletion, the unwanted line in sample.edl is skipped;
while in the other case, the wanted line is added to
tempfile. Then the rest of the EDL is copied until
end-of-file 1is reached. Finally, a system call is
executed to move the contents of tempfile into
sample.edl.

One limitation of this program is that it assumes
sample.edl is a complete file, in that it contains all
edit events from 1 to 512. It will not function if the
event to be accessed is missing. Nevertheless, this
limitation can be removed by further checking the EDL and
by giving appropriate operations.

Talk can be made to work more efficiently if instead
of accessing the file for every valid request, it copies
the whole file into an array and operates on the array
alone. In such case, the 1->2 and 2->1 EDL replacements
can be handled more easily and rapidly. Then wupon exit
of the program, sample.edl can be updated by simply
writing the array back into the file. This method is
used in the next program Edlentry.

The source code of Talk is listed in Appendix B, and

we will proceed with Edlentry in the next chapter.

13

Chapter 4
EDL ENTRY UTILITY

4.1 Introduction

The major program written for database maintenance
is Edlentry. This EDL entry utility allows the editor to
create a new file of EDL or modify an existing one with
ease. Since much attention has to be given to the aspect
of human interface, the distinguished feature of window
management supported by the HP-Bobcat seems especially
helpful. Since .the entire EDL is composed of text, no
special graphic features are necessary. A window package
designed for text called "curses" from the standard UNIX
support is enough to provide a nice editing environment
on the HP terminal. We will soon be able to appreciate
the convenience it brings as we come to understand how it
is being utilized. The details of Edlentry and its

limitations will be discussed in the following sections.
4.2 Edlentry

Edlentry is a rather large and complex program. 1In
order to keep it modular, I have the major routines
called by the main program stored in separate files.

This modular characteristic can be seen by studying the

14

main program in the file "edlentry.c". Since the window
package "curses" will be used extensively many portions
of the program, the file "curses.h", which makes the
necessary declarations and which contains the standard C
i/o header file "stdio.h", 1is included in almost all
files. Common variables shared by different files are
defined in "edldef.h" and declared in "edlentry.c".
"locdef.h™ is another header file that contains the
definitions of EDL data locations on the menu window
which will be explained later.

One systematic way to understand Edlentry is to walk
through the main loop. The main loop is a simple program
that calls a number of subroutines. The first four are
curses functions that set up the terminal configuration
such as clearing the screen.‘_ng_next routine called is
menudisp which opens a window (menuwin), using curses, on
the terminal to display a menu. This menu consists of a
number of entry items for information that make up an
edit decision. This window acts as an editing screen
when we are in the edit mode. The next routine is edlcmd
which opens another window (cmdwin) at the bottom of the
terminal and prompts the wuser for the EDL file to be
accessed. If it is a new file, it is created. If it |is
an old file, it 1is read and copied into some memory
allocated upon the calling of the next routine readedl.

Readedl keeps an array of pointers edlptr[] to each line

15

of edits.

third window

The main loop then calls edldisp which opens a

(edlwin) and places it between menuwin and

cmdwin. Edldisp displays the first 20 lines of edits in
the file designated by the user onto the edlwin. In the
case of a new file, edlwin remains empty. The next
routine called 1is edledit which 1is the most complex
portion of the program and it deserves separate
discussion. In short, it is where we enter the edit mode

in an infinite loop. Within

EDLs, delete

Upon the exit of edledit, main calls

this mode, we can create new

unwanted EDLs or modify the old contents.

the 1last function

endwin which 1is a curses
windows created and sets the

text mode.

4.3 EDL Edit Mode

At the moment we enter

the terminal divided into
contains the EDL entry items.

edit decisions.

(It may be blank in the case of

routine that destroys all

terminal back to the normal

the routine edledit, we have
three windows. Menuwin
Edlwin has a listing of 20

a newly

created empty file.) Cmdwin shows the filename the user
just entered, and this window 1is no 1longer in use.
Inside the edit mode, all of the user's designated

operations are done in the menuwin.

the changes the wuser has

Therefore, this window must be updated whenever there

Edlwin only reflects

made 1in the EDL buffer.

is

16

a modification or an addition in the database. The first
job edledit does is to read the first event from the EDL
buffer, break it down 1into pieces of information and
place them in their respective designated locations
(defined in "locdef.h") on the menuwin. Duration of each
edit is also calculated and displayed. (This procedure is
skipped in the case of a new file.)

Edledit has now entered an infinite loop where it is
waiting indefinitely for the user to enter a command.
Once a valid command is received, appropriate procedures
will be called. Usual operations requested by the user
may be displaying a selected event on the menuwin,
changing the information in the edit, saving the modified
event, or just entering new events to build up a list of
edit decisions, saving iEmpg_hard disk etc.

Specific commands that edledit accepts are the

following :

A) Edit mode selections :

1., 'y' -———- audio/video
2, 'u' --—-- audio 1 or audio 2
3. "1t ————- video-only

When any of these keys is pressed, the parameter on
the menuwin takes the appropriate value automatically.
In the case of audio-only, the user is prompted for

select—ion of audio track at the bottom of the menuwin.

B) Transition type selection

1. 'p' ---
2. '[" ---
3. '1" ——-
4. "\' --—-

When any of these keys is pressd, the

the menuwin takes

17

parameter on

the appropriate value automatically.

In the case of a WIPE, the user is prompted for a wipe

code.

C) VTR selections :

l. 'a' ---
2. 's' ---
3. 'd' ---
4. '"f' ---
5. 'g' ---
6. 'h' ---
7. '3' ---
8. 'k' ---
9. '1' -—-

When any of these keys is pressed, the cursor is

moved to the appropriate location of the menuwin, and its

*y-coordinate

is remembered.

cursor is at R-VTR.

The default position of the

18

D) Time code inputs :

1, '"x' ----- SET IN (set start time tc)

2, 'c' ----- SET OUT (set stop time tc)

3. 'z2' —-—-- DURATION (set duration of edit)

4, 'v' ----- TRIM IN (modify present start time
tc by an offset)

5. 'b'" —-——-- TRIM OUT (modify present stop time

tc by an offset)

When either SET IN or SET OUT is requested, the user
is prompted for a SMPTE time code which can be entered
with or without colons. Since the user has to select a
VTR in advance, edledit knows where the code belongs.

When either DURATION or TRIM 1IN or TRIM OUT is
requested, the user is prompted for a duration either in

the form of "second:frame" or just the number of frames.

In the case of a negative TRIM IN or a negative TRIM OUT,
a minus sign must precede the duration input. When any
time code is changed, a new duration is calculated and
displayed. If the present data is invalid such as having
time-in greater than time-out, the duration is left

blank.
E) Other functions :

1. '8'" ~————- OPEN END. The time out and duration
columns are erased.

2. 'l -———- Select event number for display.
This is the same procedure as the first job
done by edledit. If the event does not exist,

19

the event number is simply placed in the right
entry location, and the user can start filling
in informations.

3. CTRL(L) ----- SAVE EVENT. Check to see if the
present data make a legal edit. Prompt for
source 1, =csource 2 and a transition duration
if it is a two-line edit. Save the event in
the EDL buffer, update the edlwin and make
menuwin ready for a new EDL input.

4, ', —-—-———- DELETE EVENT. Prompt the user for
unwanted event number and remove it from the
EDL buffer.

5. '6' ————- SAVE DATA ON DISK. Write the
contents of the EDL buffer back on to the
original file. Acknowledge when operation is
over.

6. 'Q'" -———- QUIT. Ask if the user wants to save
the data on disk. (This prevents the user from
exiting the program without wupdating the
file.) Confirm the user's decisicn to quit.

For the commands listed above, most of the keys with
their corresponding functions follow the CMX keyboard
configuration. For those commands that prompt for
inputs, a carriage-return aborts the operation. This
saves the user from performing an unwanted operation upon
mistakenly hitting a key. Edledit either prints out an
error message when it receives an illegal input or just
ignores it totally without echoing on the menuwin.

Edledit supports the most basic operation necessary
for the Edlentry program. At this stage, I will point
out some of its major limitations. A well-prepared EDL

automatically updates its record time codes such that, as

you go down the 1list, the time-out of one event is

20

exactly the time-in of the next event, and that event is
now ready for actual video editing. In our case, after a
SAVE EVENT or a DELETE EVENT operation is performed, the
feature of record time code flow may have been disturbed.
To solve this problem, we can write a procedure, ripple,
to be called after a save or delete cperation, which
updates the record in/out time codes down the list, from
the point where a disturbance is made, maintaining the
specified duration of each edit but re-calculating the
time codes of the record fields.

Another limitation 1is within the procedure SAVE
EVENT. Since the duration of record time code must be
equal to the duration of playback time (or sum of the
playback durations in the case of a two-line edit). The
information entered by the user is_é}}gyed to have a
number of unknowns. A smart program can be made to
calculate the unknowns from the data given. This
involves much more checking and 1is another area the
program can be expanded. So far, our progaram requires
all information to be given for the source VTR (VTRs) as
well as requiring the user to input the time code of the
record start time. Lacking any of those the program will
signal an error and will give up on the operation. The
functions of the program are limited. No doubt that the
program can be expanded much further, and some

suggestions are presented in the next section.

21

A simplified table of keys and their functions

and

the source code of Edlentry can be found in Appendix C.

4.4 Future Expansions For Edlentry

In addition to the suggested modifications of the

functions already implemented, there are many features

one can introduce to the Edlentry program.

1.

Some recommended expansions are the following :

Edit mode designation

Since multiple-audio-track VTRs are becoming
common in video post-production, the EDL field
3 may be expanded to include a combination of
video and multiple audio track designations.
For instance, V12 may represent an edit for
recording video and audio tracks 1 and 2.

Format for entering time code

The hour and minute fields of a record time
code wusually remains the same for a number of
consecutive edits. The editor might get tired
of punching in the same sequence after a
while. It may be helpful to implement a
feature that allows the user to store such a
repeated sequence in register and only enter
the second and frame fields as inputs to
functions that alter time codes.

Record time sorting

Our Edlentry program assumes all edits are
entered by the consecutive ascending order of
their event numbers (field 1). It would be a
problem if we want to insert an edit between
two consecutively numbered events. A record
time sorting function can be implemented to
rearrange the 1list so that the edits are
ordered by their record time. Since the event
lookup routine, findev, called by many
functions, require the event numbers to be in
an ascending order, this record time sorting
function should also be made to fix the event
numbers so that the 1list still meets the
requirement for findev.

22

4, Record showtime
A parameter displayed on the menuwin indicates
the duration of recording since the beginning
of all edits. This is just the sum of edit
durations until the present moment.

5. Event highlighting
The particular event which the editor is
working on in the edit mode can be highlighted
on the edlwin so that it stands out and looks
good on the terminal screen. Curses provides
commands that do the highlighting.

6. Direct change of data on menuwin

All implemented functions that require data
from the wuser prompt for the input on a
special input line at the bottom of the menu
window, and updates the menuwin upon receiving
valid data. Another way to implement this is
to move the cursor to the right position where
the corresponding command is issued allowing
for direct input at the point so that no
updating is necessary.

7. EDL format variations
In the future, the EDL format may need to be
expanded as to include data to set up and
activate digital video effects devices, to
identify special features of video and audio
switching equipment and to control variable
speed motion features.

There are certainly many more ways one can improve
the EDL entry utility. The scope of possible expansion

continues to grow as the video production technology

continues to develop.

23

Chapter 5
CONCLUSION

5.1 Standardization

The Society of Motion Picture and Television
Engineers (SMPTE) has formed a number of study groups to
work on the standardization of various hardware and
software features in video production and post-production
processes. One example is the SMPTE time code which has
been successfully established. The purpose of
standardization is to keep individual components
compatible with one another. A proposal for editing list
standards has been—drafted by the SMPTE committee on
video recording and reproduction technology. As yet no

single format has been adopted as universal.
5.2 Conclusion

There are a number of different things I have
learned throughout this undergraduate thesis experience.
Having no previous knowledge of the video world, this
project seemed to be a tremendous challenge to undertake.
My thanks go to the seminar, given by the film/video
group last semester, which has provided me enough
background and thus the confidence I need to plunge

myself into working on this project.

24

Another precious experience has been working on the
HP-Bobcat which is a relatively new system that just
arrived at the Media-Lab this semester. Despite a number
of bugs it has, the system supports some features that
make it very convenient for writing software. Its window
system allows one to work on a few files on the terminal
at the same time. The sub-package "curses" offers a lot
of routines necessary for the Edlentry program. The VI
editor is fast and is easy to use. The fact that it uses
the UNIX operating system gives me the chance to practice
programming and become proficient in C.

One last thing I would 1like to mention 1is the
opportunity, that I have gained from being a member of
this experimental film/video group, to attend the NaB
show (National Association of Broadcasters) held in
Dallas, Texas, in April 1986. Even though the many
audio, video systems presented by a large number of
companies really seemed overwhelming, film/video remains
a very fascinating and a challenging world which I may

want to re-experience in the future.

APPENDIX A

/* makeEDL.c */
/* This program creates a list of dummy edit decisions and */
/* saves it in the file "sample.edl" */

#include <stdio.h>
#define CAT2SPACES fprintf (fp," ")

FILE =fopen(), *fp;
int oldtc[4], newtc[4];

main()

{
int i, hr, min, sec, fr; /* variables that make up the SMPTE tc */
char *filename;

filename = "sample.edl”;

it ((fp = fopen(filename, "w")) == NULL) {

printf("can’t open %s.\n", filename);

}

hr = 1;

min = sec = fr = 0;

newsc[0] = hr;

newtc[1] = min;

newtc[2] = sec;

newtc[3] = fr;

/* event 1 to b are 2-line edits with a DISSOLVE transition */
for (i = 1; i < 6; i++) {

araycpy(oldtc, newtc);

makenewtc (newtc) ;

fprintf(fp, "00%d 00%d B C 00:00 ", i, i);
teput1();

araycpy(oldtc,newtc) ;

makenewtc (newtc) ;

fprintf(fp. "00%d 00%d B D 00:29 ", i, i+1);
teput1();

}

/* event 6 to 9 are 2-line edits with a WIPE tramsition */
for (i=6; i<10; i++) {

araycpy(oldtc, newtc);

makenewtc (newtc) ;

fprintf(fp, "o0%d 00%d B C 00:00 ", i, i/2);
teput1();

araycpy(oldtc, newtc);

makenewtc (newtc) ;

fprintf(fp, n00%d 00%d B w101 00:29 ", i, i/2+1);
teput1();

}

/* event 10 to 99 are all CUT’s with edit mode of audio track 2 */
for (i = 10; i < 100; i++) {

araycpy(oldtc, newtc);

makenewtc (newtc) ;

fprintf(fp, "0%d 003 A2 C 00:00 ", i);

tcputi();

}

/* event 100 to 512 are one-line edits with video-only edit mode */

for (i = 100; i < 513; i++) {

araycpy(oldtc, newtc);

makenewtc (newtc) ;

fprintf(fp, "%d 006 V C 00:00 ", i);
teput1();

}

fclose(fp);
}

/* print the playback and record time codes by calling tcput2 */

tcput1()

{
tcput2(fp, oldtc);
CAT2SPACES;
tcput2(fp, newtc);
CAT2SPACES;
tcput2(fp, oldtc);
CAT2SPACES;
tcput2(fp, newtc);
fprintf(fp, "\n");

}

/* print a time code in the right format */

tcput2(fptr, tc)
FILE *fptr;
int tcl];

int i;
for (i = 0; i < 3; i++) {
if (tc[i] < 10) fprintf(fptr, "O");
fprintf (fptr, "%d", tclil);
fprintf (fptr, ":");

if (tc[3] < 10) fprintf(fptr, "O");
fprintf (fptr, "%d", tc[3]);
}

/* copy array newtc to oldtc */

araycpy(oldtc, newtc)
int oldtc[], newtc[];
{
int 1i;
for (i=0; i<4; i++)
oldtc[i] = newtc[i];

/* create a newtc by an increment of 10 frames */

makenewtc (tc)
int *xtc;
{
int hr, min, sec, fr;
hr = tc[0];
min = tc[1];

sec = tcl[2];

fr = tc[3];

fr += 10;

if (fr == 30) {
sec++;
ifr = 0;

}

if (sec == 60) {
min++;
sec = 0;

}

if (min == 60) {
hr++;
min = O;

}

tc[C] = hr;

tc[1] = min;

tc (2] = sec;

tc[3] = fr;

/* Here is an example of EDL that
version of makeEDL.c.

001
001
002
002
003
003
004
004
005
005
006
007
008
009
010
011
012

001 B
002 B
002 B
003 B
003 B
004 B
004 B
005 B
005 B
006 B
003 A2
003 A2
004 A2
004 A2
005 A2
005 A2

006 A2

a0 Qoo aaoa

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
29
00
29
00
29
00
29
00
20
00
00
00
00
00
00
00

*/

01
01
01
01
01
01
01
01
01
01
01
01
01
01

01:
01:

01

:00:
:00
:00
:00
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
00:
00:
:00:

is

00:
:00:
:00:
:01
01:
01:
02:
02:
02:
03:
03:
03:
04:
04:
04:
:00
0b:

05

generated

00
10
20

:00

10
20
00
10
20
00
10
20
00
10
20

10

01:
01:
01:
01:

01
01

01:
01:

01
01
01

01:
01i:
01:
01:

01
01

00:
00:
00:
00:
:00:
:00
00:
00:
:00:
:00:
:00:
00:
00:
00:
00:
:00:
:00:

by

00:
00:
:00
:10
01:
:00

01
01

:02
02:
02:
:00
03:
03:
:00
04:
:20
:00
05:
05:

03

04

04
05

a simplified

10

20

20

10
20

10
20

10

10
20

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

:00:
:00
:00
:00
:00
:00
:00:
:00
:00:
:00:
:00
:00
:00
:00
:00
:00
:00

00:
:00:
:00:
:01:
:01:
:01:
02:
:02:
02:
03:
:03:
:03:
:04:
:04:
:04:
:05:
:05:

oo
10
20
00
10
20
00
10
20
00
10
20
00
10
20
00
10

01:
01:

01
01
01
01
o1
01
01
01
01
01
01
01
01

01:

01

00:
00:
:00:
:00:
:00:
:00:
:00
:00
:00
:00
:00
100
:00:
:00:
:00:
00:
:00:

00:
00:
:00
110

01
01

01:
02:
:02:
:02:
:03
:03:
:03:
:04:
04:
04:
05:
056:
05:

10
20

20
00
10
20

:00

10
20
00
10
20
00
10
20

APPENDIX B

/* talk.c */
/* This program runs an infinite loop, it prints or modifies
EDL’s in the file "sample.edl" upon request on the console. */

#include <stdio.h>

#define
#define
#define
#define
#define
#define
#define
#define

EDLLEN 79 /* EDL length */

BEGIN O /* selected origin */
HERE 1 /* for the function */
END 2 /* lseek */
RE1 1 /* number of lines */

RE2 2 /% for replacement */

RWMODE 066¢ /* read & write mode */
Eof 0

char *filename;

int evnum, curzv, fd, evln;

char buf[85],

long offset, accpos;

char str{10];

char cmd[20];

/* start an infinite loop by busy waiting for command from terminal */

main()
{
filename = "sample.edl";
while(gets(str)) {
/* SEnd event# : command for reading a specified event */
it (sscanf(str, "se#%d", &evaum)== 1) {
rdedl();
continue;
}
/* RE1 event# : replace a specified event by a i-line edit */
/* RE2 event# : replace a specified event by a 2-line edit */
if (sscanf(str, "re%d#%d", &evln, &evnum)== 2) {
rpedl();
continue;
}
printf ("bad command\n");
}
}
/* readedl : reads a specified event from "sample.edl"
and prints it on the terminal. */
rdedl()
{
if (evnum==0 || evnum>512) { /* test for validity of event # */
printf("Event # %d does not exist.\n", evnum);
return(1);
}
fd = open(filename,0);
evlookup() ; /* search for event */

read(fd, buf, EDLLEN);
printf ("be#%d %s", evnum, buf);
if (read(fd, buf, EDLLEN) != Eof) {

sscanf (buf, "%d", &curev);
if (curev == evnum) /* If it is a 2-line edit, */

printf("%s", buf); /* send the 2nd line. */

}
close(fd);

/* replace edl : replaces a specified event with the new EDL
typed by an operator at the terminal x/

rpedl ()
{
int n_read;
if (evnum==0 || evnum>512) { /+ test for validity of event # */
printf("Event # %d does not exist.\n", evnum);
return(2);
}
fd = open(filename,2);
evlookup();
gets(buf); /* get new EDL from the terminal */
strcat (buf,"\n");
write(fd,buf ,EDLLEN);
accpos += EDLLEN;
n_read = read(fd, buf, EDLLEN);
if (n_read == Eof) {
if (evln == RE2) { /* replacing in the file the last */
gets(buf); /* event which is & 1-line edit by */
strcat(baf,"\n"); /* a 2-line edit */
write(fd, buf, EDLLEN);
}
close(fd);
return;
}
lseek(fd, -EDLLEN, HERE);
sscanf (buf, "%d", &curev);
if (evln == RE2) {
gets(buf);
strcat(buf,"\n");
if (evnum == curev) { /* 2 -> 2 replacement */
write(fd, buf, EDLLEN);
close(£fd);
}
else updatef(); /* 1 -> 2 replacement, 2nd line */
/* of new EDL must be inserted */
if (evln == RE1 &% evnum == curev) updatef(); /% 2 -> 1 replacement */
else close(fd); /* 2nd line of old event must be deleted */
}

/* event lookup : searches for a specified event in the file,
calculates its absolute position in the variable accpos. */

evlookup()
{
accpos = offset = (evnum - 1) * EDLLEN;
1seek(fd, offset, BEGIN);
read(fd, buf, EDLLEN);
1seek(fd, -EDLLEN, HERE);
sscanf (buf, "%d", &curev);
while(curev != evnum) {
offset = (evnum - curev) * EDLLEN;
accpos += offset;
1lseek(fd, offset, HERE);
read(fd, buf, EDLLEN);
1seek(fd, -EDLLEN, HERE);
sscanf (buf, "%d", &curev);

/* update file : rewrites sample.edl due to 2->1 and 1->2 EDL replacement x/
updatef ()
{

long curpos = 0;
char *tempfile, tempbuf[85], *cmdbuf;

int tempfd;

tempfile = "tempfile";

tempfd = creat(tempfile, RWMODE); /* creates a temporary file */

lseek(fd, O, BEGIN);

while (curpos !'= accpos) { /* copy sample.edl to tempfile */
read(fd, tempbuf, EDLLEN); /* until the line where */
curpos += EDLLEN; /* replacement occurs */
write(tempfd, tempbuf, EDLLEN);
}

if (evln==RE1 && evnum==curev) /* 2->1 replacement */
lseek(fd, EDLLEN, HERE); /* skip 2nd line of old event */

if (evln==RE2 &% evnum!=curev) /* 1->2 replacement */

write(tempfd, buf, EDLLEN); /* insert 2nd line of new event */
while (read(fd, tempbuf, EDLLEN) != Eof) /* copy the rest of the */
write(tempfd, tempbuf, EDLLEN); /x sample.edl to tempfile */
close(fd);
close(tempfd);
cmdbuf = "mv ";
strcpy(cmd,cmdbuf) ;
strcat(cmd,tempfile);
strcat(cmd," ");
strcat(cmd,filename);
system(cmd) ; /* execute system call (mv tempfile sample.edl) */

APPENDIX C

/** keytbl---list of keys and their functions *x/

/* AUDIO/VIDEO MODE */

tyle---- A/V (B)
n’----- Al or A2
,1’ _____ V

1ple---- CUT

1"[ree--- DISSGLVE

1] 7 WIPE

A KEY

/* VTR SELECTIONS %/
'a’~---- RVTR

'glem--- AVTR

12 --m-- BVTR

L AETEES CVIR

gl----- DVTR

"hl----- EVIR

1jre--n- FVTR

TKP----- AUX

110 - BLK

/* TIME CODE INPUTS x/
R SET IN
1ermmme- SET OUT

A DURATION

R TRIM IN

N TRIM OUT

/* OTHER FUNCTIONS */
SRR SELECT EVENT # FOR DISPLAY
180 ----- OPEN END

P e DELETE EVENT
L ----- SAVE EVENT

167 ----- SAVE DATA ON DISK

/*** locdef.h ---- location definition of parameters on menu window *¥#/
/**x prefix 'X’ stands for x-coordinate; 'Y’ stands for y-coordinate *xk [

/* column 1 */

#define XCOL1 2 /% column 1 */

#define YAVMODE 2 /* edit mode */

#define XAVMODE 5

#define YTRNMD 5 /* transition type */
#define YSRCDST 6 /* sourzes designation */
#define YTRNLEN 7 /* transition duration */
#define YEVNUM 9 /* event number */
#define XEVNUM O

#define YINPUT 17 /* input line */

/* column 2 */

#define XVIR 16 /* VIR column */

#define YRVTR 4 /* record VIR */

#define YAVIR 6 /* A-VTR =/

/* column 3 */

#define XIN 22 /* time in column */

/* column 4 */

#define XOUT 35 /* time out column */

/* column 5 */
#define XDUR 49 /* edit duration column */

/* edldef.h ---- definitions of common variables and constants */

#define
#define
#define
#define
#define
#define
#define
#define
#define

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EDLLEN 79
Eof 0
TCLEN 11
MAXEVNUM 512
RWMODE 0666
LBLANK "
SHBLANK "
MTTC "

/* EDL length */

/* time code length */

/* biggest possible event number */

/* read & write mode */

CTRL(c) (’c’&037)

WINDOW *menuwin,

*cmdwin,

/* 12 spaces */
/% 11 spaces */

*edlwin;

char filename[10], *edlptr{1024];

int fd, lnstart, lnend, curln, tmptc(4];

int curev, num_of_ln, maxev, newfile, evnum;
int curry, currx, reel, oreel, wcode;

char avmo[3], tmode, tdur[5], sign;

char ptci[12], ptco[12], rtcil[12], ortci[12];
char rtco[12], tcdur[12], evstr([3];

char rlstr[3], src[2], dst[2], tmdstr(5];

int ysrc, ydst;

/* 38 spaces */

/* edlentry.c ---- main program for EDL entry utility */

#inclnde <curses.h>
#define EXTERN
#include "edldef.h"

main ()

{
initscr();
nonl();
echo();
cbreak();
menudisp();
edlemd();

readedl () ;
edldisp();
edledit();
endwin() ;
exit (0);

/*
/*

/*
/*
/*
/*

open a menu window and display */
open a command window and

prompt for file to be accessed */
read the EDL file */
open an EDL window and display EDL */
edit mode */
destroy all windows and reset terminal */

/* menudisp ---- create menuwin and display entry items */
#include <curses.h>

#define EXTERN extern

#include "edldef.h"

menudisp()

{

int i;

menuwin = newwin(20,80,0,0);
mvwprintw(menuwin, 1, 33, "FILM/VIDEC MENU");
mvwprintw(menuwin, 2, 26, "IN");

mvwprintw(menuwin, 2, 39, "OUT");
mvwprintw(menuwin, 2, 50, "DURATION");
mvwprintw(menuwin, 2, 68, "TIME-CODE");
mvwprintw(menuwin, 4, 15, "R-VIR");
mvwprintw{menuwin, 4, 62, "/STP");

for(i=6; i<11; i++)

mvwprintw(menuwin, i, 62, "/STP");
for(i=1; i<7; i++)

mvwprintw(menuwin, i+5, 16, "%c-00%d", (char)(64+i), i);
mvwprintw(menuwin, 12, 15, "AUX");
mvwprintw(menuwin, 13, 15, "BLACK");
mvwprintw(menuwin, 12, 70, "PUNCH ON");
mvwprintw(menuwin, 9, 2, "EVENT #");
wmove (menuwin, 19,0);
for(i=1; i<9; i++)

wprintw(menuwin, "---------- ")
wrefresh(menuwin) ;
return(1);

/%

edlcmd.c ---- create cmdwin and prompt user for filename */

#include <curses.h>
#define EXTERN extern
#include "edldef.h"

edlemd ()

{

int c;

cmdwin = newwin(3, 80, 42, 0);

wprintw(cmdwin, "Please enter 1) for oldfile or 2) for newfile :

wrefresh(cmdwin) ;

¢ = wgetch(cmdwin);

while (c!='1’ && c!='2’) {
mvwdelch(cmdwin, O, 48);
wmove (cmdwin,0,48) ;
wrefresh(cmdwin) ;
¢ = wgetch(cmdwin);

mvwprintw(cmdwin, 1, O, "ENTER FILENAME : ");
wrefresh(cmdwin);
wgetstr(cmdwin,filename);
if (c=='1’) {
while ((fd = open(filename,0)) == -1){
/* test if file exists */
werase (cmdwin) ;

"),

mvwprintw(cmdwin,0,0,"%s does not exist.",filename);

nvwprintw(cmdwin,1,0,"ENTER FILENAME : ");
wrefresh(cmdwin) ;
wgetstr(cmdwin,filename);

}
else {
fd = creat(filename,RWMODE); /* create a new file */
newfile = TRUE;
}

close(fd);
lnstart = O; /*** initialize lnstart

*xx [

/* readedl.c ---- copy EDL file into memory */
#include <curses.h>

#define EXTERN extern

#include "edldef.h"

readedl()
{
int i=0;
char linebuf[80], *p, *calloc();

fd = open(filename, 0);

while (read(fd, linebuf, EDLLEN) != Eof) {
p = calloc(1,EDLLEN);
strcpy(p,linebuf);
edlptr[i] = p;

i+
}
num_of_1n = i;
edlptr[i] = NULL;
if (newfile == TRUE) {maxev = 0;} /* define max event */
else sscanf(p, "%d", &maxev);
close(fd);

/* edldisp.c ---- create edlwin, display EDL from top of file */
#include <curses.h>

#define EXTERN extern

#include "edldef.h"

edldisp()

{
edlwin = newwin(20,80,20,0);
lnstart = O;
disp();

disp()
{

/** display 20 lines of edits %/
int i=0;
while(Ilnstart+i < lnstart+20) {

if (edlptr[lnstart+i] != NULL) {
mvwprintw(edlwin, i, 0, " %s", edlptr[lnstart+il);

i++;
}
else i=20;
}
wclrtobot (edlwin); /** clear rest of window **/
lnend = lnstart + 19; /** save index of last line displayed *x*/
wrefresh(edlwin);

/* edledit.c ---- edit mode */
#include <curses.h>

#define EXTERN extern
#include "edldef.h"

#include "locdef.h"

#define CTRL(c) (’c’&037)

char buf [15] ;

edledit()
{
int ¢, i;
curry = YRVIR; /** default y-coordinate of cursor position *x/
tmode = 'C’; /*x default transition type *x/
curln = O;
if (newfile == TRUE) { }
else shwevnt(); /** display 1st event on menuwin **/
keypad(menuwin,TRUE); /** enable key pad **/
noecho();
while(1) { /#x infinite looping *x/
wmove (menuwin, curry, XVIR);
wrefresh(meruwin);
= getch();
mvwprintw(menuwin, YINPUT, XCOL1, LBLANK);
wrefresh(menuwin) ;
switch(c) {
case '1': /**% event selection for display ***/
evat();
curry = YRVIR;
break;
case ’a’: /**xx VIR selection x¥x*/
curry = YRVIR;
break;
case ’'s’:
curry = YAVIR;
break;
case ’d’:
curry = YAVTR+1;
break;
case 'f’:
curry = YAVTR+2;
break;
case 'g’:
curry = YAVIR+3;
break;
case ’h’:
curry = YAVIR+4;
break;
case ’j’:
curry = YAVIR+5;
break;
case ’k’:
curry = YAVIR+6;
break;
case '1’:
curry = YAVTR+7;
break;
case ’y’: /*%* audio/video mode *x*/
mvwprintw(menuwin, YAVMODE, XAVMODE, "A/V");
wrefresh(menuwin) ;

strcpy(avmo,"B");
curry = YRVIR;
break;
case ’i’: /*** video-only ***/
mvwprintw(menuwin, YAVMODE, XAVMODE, "V ");

wrefresh(menuwin) ;
strcpy(avmo,"V");
curry = YRVIR;

break;

case ’u’: /** audio-only, prompt for track # *x/
audin() ;
curry = YRVIR;
break;

case ’'p’: /xxx CUT #%x/
mvarlntw(menuw1n YTRNMD, XCOL1, "CUT ");
wrefresh(menuwin) ;
tmode = ’C’;
curry = YRVIR;
break;

case '[’: /*x% DISSOLVE %%/
mvwprintw(menuwin, YTRNMD, XCOL1, "FADE "),
wrefresh(menuwin) ;
tmode = ’D’;
curry = YRVIR;
break;

case ’]’: [¥xx WIPE %/
mvwprintw(menuwin, YTRNMD, XCOL1, "WIPE- ");
wrefresh(menuwin) ;
tmode = W’;
getwcode() ; /*x% get wipe code *xx/
curry = YRVIR;
break;

case ’\\': /xx%x KEY *xx/
mvwprintw(menuwin, YTRNMD, XCOLi, "KEY "),
wrefresh(menuwin) ;
tmode = ’K’;
curry = YRVIR;
break;

case ’8’: /*% OPEN END *x/

for (i=0; i<10; i++) {
mvwprintw(menuwin, YRVTR+i, XOUT, SHBLANK);
mvwprintw(menuwin, YRVTR+i, XDUR, SHBLANK);

}
wrefresh(menuwin) ;
curry = YRVIR;
break;
case 'x’: /** SET IN *x/
currx = XIN;
settc(ptci);
break;
case ’c’: /%% SET OUT xx/
currx = XOUT;
settc(ptco);
break;
case ’'z’: /%% ENTER EDIT DURATION **/
mvwprintw(menuwin, YINPUT,XCOL1, "DURATION : ");
wrefresh(menuwin) ;
sign = ’+’;

strcpy(tcdur,"00:00:");

if (getdur(tcdur)==0) break;
readscr(menuwin, curry,XIN,TCLEN,ptci);
tcadd(ptci,tcdur);

teprin(curry, X0UT);
nvwprintw(menuwin, curry ,XDUR,"%s",tcdur) ;
wrefresh(menuwin) ;
break;

case 'Vv’: /** TRIM IN *x/
nvwprintw(menuwin, YINPUT,XCOL1,"TRIM IN : ");
wrefresh(menuwin) ;

trimio(ptci,XIN);
break;

case 'b’: /** TRIM OUT %/
mvarintw(menuwin.YINPUT,XCOLl,"TRIM ouUT : ");
wrefresh(menuwin) ; '
trimio(ptco,X0UT);
break;
case CTRL(L): /*x save edl input *x*/
if (getsrc()==1) {
if (save()==1) {
upedlwin();
upmenu() ;
}
else {
upedlwin();
mvwprintw(menuwin, YINPUT,XCOL1,
"ERROR--ILLEGAL INPUTS--FUNCTION FAILED");

wrefresh(menuwin) ;
}
}
curry = YRVIR;
break;
case ’6’: /** save on disk **/
todisk();
mvwprintw(menuwin, YINPUT,XCOL1,"DATA SAVED ON DISK");
wrefresh(menuwin) ;
curry = YRVIR;
break;
case ’.°’: /%% delete event **/
if (ridevnt()==1)
upedlwin() ;
curry = YRVIR;
break;
case 'Q’: [k QUIT sxx/
mvwprintw(menuwin, YINPUT,XCOL1,"SAVE DATA? (y/n): ");
wrefresh(menuwin) ;

if (request()==1) todisk();

mvwprintw(menuwin, YINPUT,XCOL1,"QUIT 7 (y/n) = ");
wrefresh(menuwin) ;

if (request()==1) return;

curry = YRVIR;

break;

VAL LS

evnt.c

*kxf

#include <curses.h>
#define EXTERN extern
#include "edldef.h"
#include "locdef.h"

char buf[5];

/x*% prompt for event # and display sk*/

evnt ()

{

int m=0;

char *fmt;

strcpy(buf,"");

echo();

mvwprintw(menuwin, YINPUT, XCOL1, "EVENT # : ");
while (m!=1 || evnum<1) {

nvwprintw(menuwin, YINPUT, XCOL1+10, SHBLAXNK) ;
wrefresh(menuwin) ;

nvwgetstr (menuwin, YINPUT, XCOL1+10, buf);

if (strcmp(buf,"")==0) {noecho(); return;}

m = sscanf (buf, "%d", &evnunm);

}

if (evnum>MAXEVNUM) { /*%x test for validity of event # **x/

mvwprintw(menuwin, YINPUT, XCOL1, "EVENT # %d IS TOO BIG", evnum);
wrefresh(menuwin) ;

noecho() ;

return;

}

if (findev()==0) { /*%x event does not exist *¥x/

else

curev = evnum;
if (curev>99) fmt = "%d";

if (curev>9 && curev<100) fmt = "0%d";
if (curev<iO) fmt = "00%4";

sprintf (evstr,fmt,curev);

clrmenu(); /*% clear old data for new inputs **/
nvwprintw(menuwin, YEVNUM, XEVNUM, fmt, curev);
wrefresh(menuwin) ;

}

{ /** event # exists ¥x/
clrmenu(); /** clear menu **/

shwevnt () ; /** show event **/
upedlwin(); /** update edlwin **/

}

noecho();

/**x event lookup : 1) if event does not exist, return O.

findev()
{

if event exists, return 1.
2) save index of location where event should belong. ***/

int i=0, tmpevnt;

while (edlptr[i] != NULL) {

sscanf (edlptr[i],"%d",&tmpevnt) ;
if (tmpevnt < evnum) {

i++;

continue;

}
if (tmpevnt == evnum) {

curln = i;

return(1);

}
if (tmpevnt > evnum) {
curln = i;
return(0);
}
}
curln = i;
return(0) ;
}
/*%x clear menu, show default values. **x*/
clrmenu()
{
int i;

mvwprintw(menuwin, YAVMODE, XAVMODE, "A/V");
mvwprintw(menuwin, YTRNMD, XCOL1, "CUT "),
tmode = 'C’;
mvarintw(menuwin. YSRCDST, XCOL1, SHBLAWK);
mvwprintw(menuwin, YTRNLEN, XCOL1, SHBLANK) ;
for (i=0; i<10; i++)

mvwprintw(menuwin, YRVTR+i, XIN, LBLANK) ;
wrefresh(menuwin) ;

/*x% update edlwin to show EDLs of interest %/
upedlwin()

{

if (curln >= lnend) {
1nstart = curln - 9;
}

else if {(curln < 1lnstart) {
lnstart = curln-1;
}

disp();

/* shwevnt.c */
#include <curses.h>
#define EXTERN extern
#include "edldef.h"
#include "locdef.h"

/**x ghow data of selected event *¥x/

shwevnt ()

{
int cury;
char tmp;
shwed1();

strcpy(ortci,rtci);

if (edlptrlcurln+1]==NULL) {return;}

else sscanf (edlptr[curln+1], "%d", &evnum);

if (evnum==curev) { /** show 2nd line of a 2-line edit *x/
oreel = reel;
curln++;
shwedl();
mvwprintw(menuwin, YRVIR, XIN, "%s", ortci);
wrefresh(menuwin) ;
tcsub(rtco,ortci);
cury = YRVIR;
tcprin(cury,XDUR) ;
if (oreel<7) {tmp = ’A’+oreel-1; sprintf(src, "Yc", tmp);}
if (reel<7) {tmp = ’'A’+reel-1; sprintf(dst, "%c", tmp);}
if (oreel==7) strcpy(src,"AX");
if (reel==7) strcpy(dst,"AX");
if (oreel==8) strcpy(src,"BL");
if (reel==8) strcpy(dst,"BL");
mvwprintw(menuwin, YSRCDST, XCOL1, "%s TO %s", src, dst);
wrefresh(menuwin) ;

}

/*** ghow one line of edit #*#*x/
shwedl()
{

int cury;

char *xfmt;

sscanf (edlptr[curln] ,"%3s %3s %2s %4s %5s %11s %11s %11s %11s",
evstr, rlstr ,avmo,tmdstr,tdur,ptci,ptco,rtci,rtco);

sscanf (evstr,"%d",&curev) ;

if (sscanf(tmdstr, "%c%d",&tmode,&wcode) != 2)
sscanf (tmdstr, "%c",&tmode) ;

if (strcmp(rlstr,"AX") == 0) reel = 7;
if (stremp(rlstr,"BL") == 0) {reel = 8;}
else sscanf(rlstr, "%d", &reel);

mvwprintw(menuwin, YEVNUM, XEVNUM, "%s" , evstr);
wrefresh{menuwin);

if (strcmp(avmo,"B") == 0) {
mvwprintw(menuwin, YAVMODE, XAVMODE, "A/V");

else mvwprintw(menuwin, YAVMODE, XAVMODE, "%s ", avmo);
wrefresh(menuwin) ;

switch(tmode) {

case 'C’:
fmt="CUT";
break;
case ’'W’:
fmt="WIPE-";
break;
case 'K’:
fmt="KEY";
break;
case 'D’:
fmt="FADE";
break;
}
mvwprintw(menuwin, YTRNMD, XCOL1, fmt);
if (tmode==’'W’) {
if (wcode<10) fmt="00%d";
if (wcode>99) {fmt="%4";}
else fmt="0%d";
wprintw(menuwin, fmt,wcode) ;
}

wrefresh(menuwin) ;

if (strcmp(tdur,"00:00") '= 0) {
mvwprintw(menuwin, YTRNLEN, XCOL1, "%s", tdur);
wrefresh(menuwin);

}

cury = reel==1 ? YAVIR : YAVIR + reel-1;
mvwprintw(menuwin, cury, XIN, "%s", ptci);
mvwprintw(menuwin, cury, XOUT, "%s", ptco);
wrefresh(menuwin);

tcsub(ptco,ptei);

tcprin(cury,XDUR) ;

mvwprintw(menuwin, YRVIR, XIN, "%s", rtci);
mvwprintw(menuwin, YRVTR, XOUT, "%s", rtco);
wrefresh(menuwin) ;

tcsub(rtco,rtci);

cury = YRVIR;

tcprin(cury,XDUR);

/**% gsubtract tc2 from tcl *¥x/
tcsub(tcl, tc2)
char *tci,*tc2;
{
int hri, mini, secl, fri;
int hr2, min2, sec2, fr2;
int dhr, dmin, dsec, dfr;

sscanf (tcl, "%d:%d:%d:%d", &hrl,&minl,&seci,&frl);
sscanf (tc2, "%d:%d:%d:%d", &hr2,&min2,&sec2,&fr2);

if (fri<fr2) {
secl--;
frl += 30;
}

dfr = fri - fr2;

if (seci<sec2) {
mini--;
secl += 60;
}

dsec = secl - sec2;

if (mini<min2) {

hri--;
minl += 60;
}
dmin = minl - min2;
dhr = hrl - hr2;

tmptc [0] =dhr;

tmptc [1]=dmir.;

tmptc [2]=dsec;

tmptc [3]=dfr;

if (tmptc[0]<0) {return(0);}
else return(1);

/**% print a tc data array in the right format ***/

teprin(y,x)
int y.x;
{
int i;
char *fmt;
fmt = tmptc[0]1<10 ? "O%d" : "%d";
mvwprintw(menuwin,y,x,fmt, tmptc[0]);
wrefresh(menuwin) ;
for (i=1; i<4; i++) {
fmt = tmptc[il<10 ? ":0%d" : ":%d";
wprintw(menuwin, fmt,tmptc [i]);
wrefresh(menuwin) ;
}

/**% rout.c *xx /
#include <curses.h>
#define EXTERN extern
#include "edldef.h"
#include "locdef.h"
char buf[15];

/*** prompt for audio track specification *xx/
audin()

echo();
strcpy(buf,"");
mvwprintw(menruwin, YINPUT, XCOL1, "A1 OR A2 : "),
while (strcmp(buf,"A1")1=0 g& stremp(buf, "A2") 1=0) {
mvwprintw{(menuwin, YINPUT, XCOL1+11, SHBLANK);
wrefresh(menuwin) ;
mvwgetstr(menuwin, YINPUT, XCOL1+11, buf);
if (strcmp(buf,"")==0) {noecho(); return;}
}

mvwprintw(menuwin, YAVMODE, XAVMODE, "%2s ", buf);
wrefresh(menuwin) ;
noecho() ;

/*** prompt for wipe code %¥%/
getwcode ()
{

int m=0;
char *fmt;

echo();
mvwprintw(menuwin, YINPUT, XCOL1, "WIPE CODE : ");
while (m!=1) {
mvwprintw(menuwin, YINPUT, XCOL1+12, SHBLANK):
wmove (menuwin, YINPUT, XCOL1+12);
wrefresh(menuwin) ;
wgetstr(menuwin,buf);
m = sscanf(buf,"}d", &wcode) ;

if (wcode<10) {fmt = "00%d";}

else fmt = wcode>99 ? "Ydqv - "o%d";
Rvwprintw(menuwin, YTRNMD, XCOL1+5, fmt, wcode);
wrefresh(menuwin) ;

noecho() ;

/*%% call tcinput, set tc and calculates duration x*x/
settc(tc)

char xtc; /** tc is either ptci or Ptco *x/
{

readscr(menuwin, curry, XIN, TCLEN, ptci);

readscr(menuwin, curry, XOUT, TCLEN, ptco);

if (tcinput(tc,curry,currx)==0) return;

if (stremp(ptci,MTTC)==0 || stremp(ptco,MTTC)==0)

/** either or both tc’s are missing, cannot calculate duration *% /

return;

if (tcsub(ptco,pteci)==0) { /** time in > time out, blank duration *%/
- mvwprintw(menuwin, curry, XDUR, MTTC) ;
wrefresh(menuwin) ;

else tcprin(curry,XDUR):

/**x prompt for time code input with or without colons **x/
tcinput(te,y,x) '

char *tc;

int y, x;

int m=0;

strcpy(buf,"");
echo();
if (x==XIN) mvwprintw(menuwin,YINPUT,XCOL1,"ENTER IN POINT : ");
if (x==XO0UT) mvwprintw(menuwin,YINPUT,XCOL1,"ENTER OUT POINT: ");
wvhile(m!=4) {
mvwprintw(menuwin, YINPUT, XCOL1+17, SHBLANK);
wnove (menuwin, YINPUT,XCOL1+17) ;
wrefresh(menuwin) ;
wgetstr (menuwin,buf) ;
if (strcmp(buf,"")==0) {noecho(); return(0);}
if (strlen(buf)==8) {
m = sscanf (buf,"%2d%2d%2d%24",
&tmptc [0] ,&tmptc[1],&tmptc[2], &tmptc [3]);
}
else m = sscanf (buf,"%d:%d:%d:%d4",
&tmptc [0] ,&tmptc[1],&tmptc[2], &tmptc[3]);
}

tcprin(YRVTR+1,XIN) ;

readscr(menuwin, YRVTR+1,XIN,TCLEN, tc);
mvwprintw(menuwin, YRVTR+1,XIN,MTTC) ;
mvwprintw(menuwin,y,x,"%s",tc);
wrefresh(menuwin) ;

noecho();

return{1);

3

getdur(dur) /** get edit duration or tc offset *x/
char *dur;
{

int sec=0, fr=0, m=0;
char *fmt;

strcpy(buf,"");
echo();
while (m!=1 && m!=2) {
nvwprintw(menuwin, YINPUT, XCOL1+11, SHBLANK);
wmove (menuwin, YINPUT, XCOL1+11);
wrefresh(menuwin) ;
wgetstr(menuwin,buf);
if (stremp(buf,"")==0) {noecho(); return(0);}
if ((m=sscanf (buf,"%d:%d".&sec ,&fr)) != 2) {
m = sscanf (buf,"%d",&fr);
sec = 0;
}
if (sign=='+') {
if (sec<0 || fr<0) m=0;
}
}

if (sign=="\0’) {
if (sec<0 || fr<0) {

sign = '-’;

if (sec<Q) sec = -sec;
if (fr<0) fr = -fr;

}

else sign = ’+’;

}

tcadd(tc,dte)
char *tc, *dtc; /%% and put it into tmptc

{

}

trimio(tc,x)

if (m==1 && fr>29) {sec=fr/30; fr=fr%30;}
if (sec<10) strcat(dur,"O");

fmt = fr<10 ? "%d:0%d4" : "%d:%a" ;
sprintf (buf,fmt,sec,fr);

strcat (dur,buf);

noecho();

return(1);

int hr, min, sec, fr;
int dhr, dmin, dsec, dfr;
int shr, smin, ssec, sfr;

sscanf (tc,"%d:%d:%d:%d",&hr,&nin,&sec ,&fr);

sscanf (dtc,"%d:%d:%d:%d" ,&dhr,&dmin, &dsec , &dfr) ;

shr = hr + dhr;
smin min + dmin;
sS€C sec + dsec;
sfr = fr + dfr;

if (sfr>29) {ssec++; sfr -= 30;}
if (ssec>59) {smin++; ssec -= 60;}
if (smin>59) {shr++; smin -= 60;}

tmptc [0] = shr;
tmptc[1] = smin;
tmptc [2] = ssec;
tmptc[3] = sfr;

char *tc;
int x;

sign = ’\0’;
strcpy (tcdur, "00:00:") ;
if (getdur(tcdur)==0) return;
readscr(menuwin, curry,x, TCLEN, tc);
if (sign=='+’) tcadd(tc,tcdur);
if (sign==’-') {
if (tcsub(tc,tcdur)==0) return;
}
teprin(curry,x);
readscr{menuwin,curry,XIN, TCLEN,ptci);
readscr(menuwin,curry,XOUT, TCLEN, ptco) ;

if (strcmp(ptci,MTTC)==0 || strcmp(ptco,MITC)==0)

return;

if (tcsub(ptco,ptci)==0) {
mvwprintw(menuwin,curry,XDUR,MTTC) ;
wrefresh(menuwin) ;

}
else tcprin(curry,XDUR);

/** trim in and out *x*/

/** increment tc by duration or offset dtc *x/

*x [

/*
readscr.c - get a string from window structure

*/
#include <curses.h>

int
readscr(win, y, x, len, str)

WINDOW *win; /* window to read from */
int x, y; /* starting window location of string */
int len; /* size of string */
char *str; /* where to put NULL-terminated result */
{

char *tbuf;

char c;

char *malloc();

int index;

int tx,ty;

if(win==NULL) return(-1);
if(len<0) return(-1);

tbuf = (char *)malloc(len+l);
if(tbuf==NULL) return(-1);

getyx(win, ty, tx);

for(index=0; index<len; index++) {
¢ = (char)(mvwinch(win,y,x++) & A_CHARTEXT);
tbuf [index]=c;
}

tbuf[len]=’\0’;

strcpy(str, tbuf);
free((char *) tbuf);

wmove(win, ty, tx);

return(0) ;

/** getdat.c *x/

#include <curses.h>

#define EXTERN extern

#include "edldef.h"

#include "locdef.h"

#define CAT2SPACES strcat(linebuf," ")

/*x% read data from menu to compose one line of edit ¥**/
getdati(linebuf)

{

char *linebuf;
char c;

strcpy(linebuf,evstr) ;
CAT2SPACES;
if (strcmp(src,"AX")=
if (strcmp(src,"BL")=
if (strlen(src)==1) {
sscanf (src,"%c",&c);
curry = YAVIR + (int)(c-’A’);
readscr(menuwin, curry,XVTR+2,3,rlstr);
strcat(linebuf,rlstr);
1
ysrc = curry;
ydst = 0O;
CAT2SPACES;
readscr(menuwin, YAVMODE , XAVMODE, 3,2vmo) ;
if (strcmp(avmo,"A/V")==0) strcpy(avmo,"B ");
if (strcmp(avmo,"V")==0) strcpy(avmo,"V ");
strcat(linebuf,avmo);
CAT2SPACES;
strcat(linebuf,"C 00:00 ");
readscr(menuwin,curry,XIN,TCLEN,ptci);
strcat(linebuf,ptci);
CAT2SPACES;
readscr(menuwin,curry,X0UT,TCLEN, ptco) ;
strcat(linebuf,ptco);
CAT2SPACES;
readscr(menuwin, YRVTR,XIN,TCLEN,rtci);
strcat(linebuf,rtci);
CAT2SPACES;
readscr(menuwin,curry,XDUR, TCLEN, tcdur) ;
tcadd(rtci,tcdur);
if (tmptc[11>59 || tmptc[2]>59 || tmptc[3]1>29) return(-1);
if (tmode=='C’) {
teprin(YRVIR, XOUT) ;
wrefresh(menuwin) ;
readscr(menuwin, YRVTR,XOUT, TCLEN, rtco) ;
}
else {
teprin(YRVIR+1,X0UT) ;
readscr(menuwin, YRVTR+1,X0OUT, TCLEN,rtco) ;
nvwprintw(menuwin, YRVTR+1,X0UT ,MTTC) ;
}

=0) {strcat(linebuf,"AX "); curry
=0) {strcat(linebuf,"BL "); curry

[}

strcat(linebuf,rtco);
strcat(linebuf,"\n");
return(1);

/**x compose 2nd line of edit from data on menuwin **x/
getdat2(linebuf)

{

char *linebuf;

char c;

YAVIR + 6;}
YAVIR + 7;}

strcpy(linebuf,evstr);
CAT2SPACES;

if (strcmp(dst,"AX")==0) {strcat(linebuf,"AX "); curry = YAVIR + 6;}
if (strcmp(dst,"BL")==0) {strcat(linebuf,"BL "); curry = YAVIR + 7;}
if (strlen(dst)==1) {
sscanf (dst,"%c",&c);
curry = YAVIR + (int)(c-’A’);
readscr (menuwin,curry,XVIR+2,3,rlstr);
strcat(linebuf,rlstr);
}
ydst = curry;
CAT2SPACES;
strcat(linebuf,avmo);
CAT2SPACES;
if (tmode!=’W’) {sprintf(tmdstr,"l%c " tmode); strcat(linebuf,tmdstr);}
else {

readscr(menuwin, YTRNMD, XCOL1+5,3,tmdstr) ;
strcat (linebuf, "W");
strcat(linebuf,tmdstr);
}
CAT2SPACES;
strcat(linebuf, tdur) ;
CAT2SPACES;
readscr(menuwin,curry,XIN, TCLEN,ptci);
strcat(linebuf,ptci);
CAT2SPACES;
readscr(menuwin,curry,X0UT, TCLEN, ptco) ;
strcat(linebuf,ptco);
CAT2SPACES;
strcpy(rtci,rteo);
strcat(linebuf,rtci);
CAT2SPACES;
readscr(menuwin,curry,XDUR,TCLEN.tcdur);
tcadd(rtci,tcdur);
if (tmptc[11>59 || tmptc[2]1>69 || tmptc[3]>29) return(-1);
tcprin(YRVTR,XOUT) ;
wrefresh(menuwin) ;
readscr (menuwin, YRVTR, XOUT, TCLEN,rtco) ;
strcat(linebuf,rtco);
strcat(linebuf,"\n");
return(l);

/**x write EDLs from buffer to file ¥/
todisk()
{
int i=0;
fd = open(filename,1);
while (edlptr{i]!=NULL) {
write(fd,edlptr[i] ,EDLLEN);
i++;
}
close(fd);

/*%% prompt for a boolean input %/
request{)

char ¢ = NULL;
while (c!='y’ && c!='n’) {

mvwprintw(menuwin, YINPUT,XCOL1+18, SHBLANK) ;
wnove (menuwin, YINPUT,XCOL1+18) ;

wrefresh(menuwin) ;
¢ = wgetch(menuwin);
-
if (c=='y’) return(1);
return(0) ;

/*% save.c takes care of routines called by CTRL(L) *x/
#include <curses.h>

#define EXTERN extern

#include "edldef.h"

#include "locdef.h"

char buf[5];
char edlbuf[80], *p, *calloc();

/*x% call getvtr xxx/

getsrc ()
{
nvwprintw(menuwin, YINPUT,XCOL1, "ENTER SRC : "); /** source 1 *x/
wrefresh(menuwin) ;
if (getvtr(src)==0) return(0);
if (tmode != °C’) {

/** source 2 for a 2-line edit **/
mvwprintw(menuwin, YINPUT,XCOL1,"ENTER DST : ");
wrefresh(menuwin) ;
if (getvtr(dst)==0) return(0);
if (stremp(src,dst)==0) {

mvwprintw(menuwin, YINPUT,XCOL1,"SRC = DST : ILLEGAL INPUTS");
wrefresh(menuwin) ;
return(-1);
}
mvarintw(menuwin.YINPUT.XCOLl,"TRANSITION:"):
wrefresh(menuwin) ; /%% prompt for transition duration *x/
strcpy(tdur,""); /** for cases other than a CUT *x/
if (getdur(tdur)==0) return(0);
}
mvwprintw(menuwin, YSRCDST, XCOL1, SHBLANK) ;
mvwprintw(menuwin, YTRNLEN, XCOL1, SHBLANK) ;
if (tmode!='C’) {
nvwprintw(menuwin, YSRCDST,XCOL1,"%s TO %s",src,dst);
nvwprintw(menuwin, YTRNLEN,XCOL1,"%s", tdur) ;
}
else mvwprintw(menuwin,YSRCDST,XCOL1,"%s",src);
wrefresh(menuwin) ;
return(1);

/*%* prompt for VIR designation *#**/

getvtr(vtr)

char *vtr;
{

char c¢;

strcpy(buf,"");
echo();
while(1) {
nvwprintw(menuwin, YINPUT,XCOL1+12,SHBLANK) ;
wmove (menuwin, YINPUT,XCOL1+12) ;
wrefresh(menuwin) ;
wgetstr (menuwin,buf);
if (strcmp(buf,"")==0) {noecho();return(0);}
if (strlen(buf)==2) {
if (strcmp(buf,"AX")==0) {
strcpy (vtr,"AX");
noecho();
return(1);
}
if (strcmp(buf,"BL")==0) {
strcpy(vtr,"BL") ;
noecho();
return(1);

}

continue;

}

if (strlen(buf)==1) {

sscanf (buf,"%c",&c) ;

if (c>=’A’ && c<='F’) {
strcpy(vtr,buf) ;
noecho();
return(1);
}

continue;

}

/*** save event input on menu into buffer %/

save()
{
if (getdati(edlbuf)==-1) return(-1);
p = calloc(1,EDLLEN);
strcpy(p.edlbuf);
evnum = curev;
if (findev()==0) { /#* data are a new addition to the list *x/
insrtev(curln);
num_of_1n++;
if (maxev<curev) maxev=curev;
if (tmode!=’C’) {
if (getdat2(edlbuf)==-1) return(-1);
p = calloc(1,EDLLEN);
strcpy(p,edlbuf);
curln++;
insrtev(curln);
num_of _1ln++;
}
return(1);
}
else { /%% findev()==1; replacing old data **/
edlptr[curln] = p;
if (edlptr[curln+1]==NULL) {evnum=0;}
else sscanf (edlptr[curln+1],"%d",&evnum) ;
if (tmode=='C’) {
if (evnum==curev) {delev(curln+1); num_of_ln--;}
/*% 2 -> 1 replacement **/
return(1);
/** 1 -> 1 replacement **/
}
else {
if (getdat2(edlbuf)==-1) return(-1);
P = calloc(1,EDLLEN);
strcpy(p,edlbuf);
curln++;
if (evnum==curev) {edlptr([curln] = p;}
/%% 2 -> 2 replacement *x/
else {insrtev(curln); num_of_ln++;}
/** 1 -> 2 replacement **/
return(1);
}
}
}

/**% delete event of index 1ln **x/
delev(ln)

int 1n;
{

int i=1n;
while(i<num_of_1n) {
edlptr[il=edlptr[i+1];
i+t
}
edlptr[i]=NULL; .

/**x insert event at index 1n *¥x/
insrtev(ln)

int 1ln;
{

int i=num_of_1n;

while(i>=1n) {
edlptr[i+1]=edlptr[i];
i--;
}

edlptr[1ln]=p;

/#%* update menu for next event input ¥/
upmenu()

int i;
char *fmt;
if (maxev==MAXEVNUM) {

/* if the last edit is event 512, show it on menu. */

evnum=curev;

findev();

clrmenu();

shwevnt () ;

return;

}
readscr(menuwin.ysrc.XOUT.TCLEN,ptci);
readscr(menuwin.ydst,XDUT.TCLEN,ptco);
for (i=0; i<10; i++)

mvwprintw(menuwin, YRVTR+i,XIN,LBLANK) ;
nvwprintw(menuwin, YRVIR,XIN, "%s",rtco) ;

/** agsign time out to time in **/
mvwprintw(menuwin, YRVTR, XOUT, "%s" ,rtco); /** blank duration **/
mvwprintw(menuwin,ysrc,XIN,"%s",ptci);
mvwprintw(menuwin,ysrc,X0UT, "%s",ptci);
if (ydst!=0) {

rvwprintw(menuwin,ydst,XIN,"%s",ptco);

mvwprintw(menuwin,ydst,X0UT, "%s",ptco);

}
wrefresh(menuwin);
curev = maxev + 1;
if (curev>9 && curev<100) {fmt="0%d";}
else fmt = curev<iO ? "00%d" : "%d" ;
sprintf (evstr,fmt,curev);
mvwprintw (menuwin, YEVNUM, XEVNUM, fnt , curev) ;
wrefresh(menuwin) ;

/*** prompt for an event # to be deleted **/
ridevnt()
{

int m=0;

strcpy(buf,"");
echo();
mvwprintw(menuwin, YINPUT ,XCOL1,"DELETE EVENT # : ");

while (m!=1) {
mvwprintw(menuwin, YINPUT, XCOL1+17,SHBLANK) ;
wrefresh(menuwin) ;
nvwgetstr (menuwin, YINPUT, XCOL1+17 ,buf) ;
if (strcmp(buf,"")==0) {noecho(); return(0);}
m = sscanf (buf,"%d",&evnun);
if (m==1 && (evnum<1l || evnum>maxev)) m=0;
}

noecho();

if (findev()==0) {
mvwprintw(menuwin, YINPUT,XCOL1, "EVENT #%d DOES NOT EXIST", evnum);

wrefresh(menuwin) ;
return(0) ;
}

delev(curln);

num_of_1n--;

if (findev()==1) {
delev{curln);
num_of_1ln--;
}

return(1);

10.

11.

12,

13.

14,
15,

REFERENCE

Video Editing And Post-Production
Gary H. Anderson
NY: Knowledge Industry Publications, Inc.,1984.

The C Programming Language
Kernighan / Ritchie
NJ: Prentice-Hall, Inc.,1978.

Recording Studio Handbook :
Time Code Implementation
John M., Woram

CMX User Guide

Television Broadcasting :
Video and Audio Signal Distribution

Videodisc Editing System
Russ Sasnett, Peter RooOs
(MIT Film/Video)

The Time Code Book
EECO incorporated

The Impact of Optical Videodiscs on Filmmaking
Nicholas Negropoate
(MIT Professor Of Computer Graphics)

Horizontal And Vertical Blanking,
The 4 Color Fields and Subcarrier Phase
ABC Tech Notes Feb., 79

Editing By The 'Scope
Diana Weynand
EITV / OCTOBER / 1984

VCRs : Very Cloudy Regions
Carl Bentz
Video Systems April 1985

The Fundamentals of Television
Rex H. Stevens International Television

PC-TV
William Claxton
PC World February 1984

SMPTE Journal, July 1982
'SMPTE' The Fusion Force For Audio And Video

Frank Serafine
R-e/p 108 April 1981

le.

17.

Basic System Timing
Sally Wells
International Television May 1985

Videodiscs And Optical Storage

Andy Lippman
(MIT Achitecture Machine Group)

